

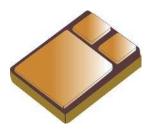
P-CHANNEL MOSFET

Qualified per MIL-PRF-19500/595

<u>Qualified Levels</u>: JAN, JANTX, and JANTXV

DESCRIPTION

This 2N7236U switching transistor is military qualified up to the JANTXV level for high-reliability applications. This device is also available in a TO-254AA leaded package. Microsemi also offers numerous other transistor products to meet higher and lower power ratings with various switching speed requirements in both through-hole and surface-mount packages.


Important: For the latest information, visit our website http://www.microsemi.com.

FEATURES

- Surface mount equivalent of JEDEC registered 2N7236 number.
- JAN, JANTX, and JANTXV qualifications are available per MIL-PRF-19500/595.
 (See part nomenclature for all available options.)
- · RoHS compliant by design.

APPLICATIONS / BENEFITS

- Low-profile design.
- Military and other high-reliability applications.

U (SMD-1 or TO-267AB) Package

Also available in:

TO-254AA package

MAXIMUM RATINGS @ T_A = +25 °C unless otherwise stated

Parameters / Test Cond	Symbol	Value	Unit	
Operating & Storage Junction Temperature Range		T _J & T _{stg}	-55 to +150	°C
Thermal Resistance Junction-to-Case		$R_{\Theta JC}$	1.0	°C/W
Total Power Dissipation	@ $T_A = +25 ^{\circ}C$ @ $T_C = +25 ^{\circ}C^{(1)}$	P _T	4 125	W
Gate-Source Voltage, dc	@ 10 = +20 0	V _{GS}	± 20	V
Drain Current, dc @ $T_C = +25 {}^{\circ}C^{(2)}$		I _{D1}	-18	Α
Drain Current, dc @ T _C = +100 °C (2)		I _{D2}	-11	Α
Off-State Current (Peak Total Value) (3)		I_{DM}	-72	A (pk)
Source Current		Is	-18	Α

NOTES:

- 1. Derate linearly by 1.0 W/ $^{\circ}$ C for T_C > +25 $^{\circ}$ C.
- 2. The following formula derives the maximum theoretical I_D limit. I_D is limited by package and internal wires and may also be limited by pin diameter:

$$I_D = \sqrt{\frac{T_J (max) - T_C}{R_{\theta JC} x R_{DS(on)} @ T_J (max)}}$$

3. $I_{DM} = 4 \times I_{D1}$ as calculated in note 2.

MSC - Lawrence

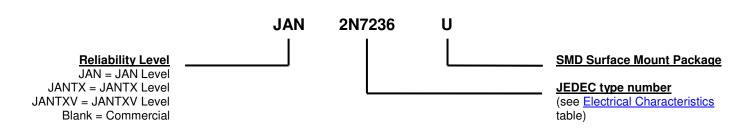
6 Lake Street, Lawrence, MA 01841 Tel: 1-800-446-1158 or (978) 620-2600

Fax: (978) 689-0803

MSC - Ireland

Gort Road Business Park, Ennis, Co. Clare, Ireland Tel: +353 (0) 65 6840044 Fax: +353 (0) 65 6822298

Website:


www.microsemi.com

MECHANICAL and PACKAGING

- CASE: Ceramic and gold over nickel plated steel.
- TERMINALS: Gold over nickel plated tungsten/copper.
- MARKING: Manufacturer's ID, part number, and date code.
- WEIGHT: 0.9 grams.
- See <u>Package Dimensions</u> on last page.

PART NOMENCLATURE

SYMBOLS & DEFINITIONS			
Symbol	Definition		
di/dt	Rate of change of diode current while in reverse-recovery mode, recorded as maximum value.		
I _F	Forward current		
R_{G}	Gate drive impedance		
V_{DD}	Drain supply voltage		
V_{DS}	Drain source voltage, dc		
V _{GS}	Gate source voltage, dc		

ELECTRICAL CHARACTERISTICS @ $T_A = +25$ °C, unless otherwise noted

Parameters / Test Conditions	Symbol	Min.	Max.	Unit
OFF CHARACTERISTICS				
Drain-Source Breakdown Voltage $V_{GS} = 0 \text{ V}, I_D = 1.0 \text{ mA}$	$V_{(BR)DSS}$	-100		V
Gate-Source Voltage (Threshold) $V_{DS} \ge V_{GS}$, $I_D = -0.25$ mA $V_{DS} \ge V_{GS}$, $I_D = -0.25$ mA, $T_J = +125$ °C	V _{GS(th)1} V _{GS(th)2}	-2.0 -1.0	-4.0	٧
$V_{DS} \ge V_{GS}$, $I_D = -0.25$ mA, $T_J = -55$ °C	V _{GS(th)3}		-5.0	
Gate Current $V_{GS} = \pm 20 \text{ V}, V_{DS} = 0 \text{ V}$ $V_{GS} = \pm 20 \text{ V}, V_{DS} = 0 \text{ V}, T_{J} = +125 \text{ °C}$	I _{GSS1} I _{GSS2}		±100 ±200	nA
Drain Current $V_{GS} = 0 \text{ V}, V_{DS} = -80 \text{ V}$	I _{DSS1}		-25	μΑ
Drain Current $V_{GS} = 0 \text{ V}, V_{DS} = -100 \text{ V}, T_J = +125 ^{\circ}\text{C}$	I _{DSS2}		-1.0	mA
Drain Current $V_{GS} = 0 \text{ V}, V_{DS} = -80 \text{ V}, T_J = +125 ^{\circ}\text{C}$	I _{DSS3}		-0.25	mA
Static Drain-Source On-State Resistance $V_{GS} = 10 \text{ V}, I_D = -11.0 \text{ A pulsed}$	r _{DS(on)1}		0.20	Ω
Static Drain-Source On-State Resistance $V_{GS} = -10 \text{ V}, I_D = -18.0 \text{ A pulsed}$	r _{DS(on)2}		0.22	Ω
Static Drain-Source On-State Resistance $T_J = +125^{\circ}C$ $V_{GS} = -10 \text{ V}, I_D = -11.0 \text{ A pulsed}$	r _{DS(on)3}		0.34	Ω
Diode Forward Voltage V _{GS} = 0 V, I _D = -18.0 A pulsed	V _{SD}		-5.0	V

DYNAMIC CHARACTERISTICS

Parameters / Test Conditions	Symbol	Min.	Max.	Unit
Gate Charge:				
On-State Gate Charge V_{GS} = -10 V, I_D = -18.0 A, V_{DS} = -50 V	$Q_{g(on)}$		60	nC
Gate to Source Charge $V_{GS} = -10 \text{ V}, I_D = -18.0 \text{ A}, V_{DS} = -50 \text{ V}$	Q_gs		13	nC
Gate to Drain Charge $V_{GS} = -10 \text{ V}, I_D = -18.0 \text{ A}, V_{DS} = -50 \text{ V}$	Q_{gd}		35.2	nC

ELECTRICAL CHARACTERISTICS @ $T_A = +25$ °C, unless otherwise noted (continued)

SWITCHING CHARACTERISTICS

Parameters / Test Conditions	Symbol	Min.	Max.	Unit
Turn-on delay time I _D = -11.0 A, V _{GS} = -10 V, R _G = 9.1 Ω , V _{DD} = -50 V	t _{d(on)}		35	ns
Rinse time I_D = -11.0 A, V_{GS} = -10 V, R_G = 9.1 Ω , V_{DD} = -50 V	t _r		85	ns
Turn-off delay time I_D = -11.0 A, V_{GS} = -10 V, R_G = 9.1 Ω , V_{DD} = -50 V	$t_{d(off)}$		85	ns
Fall time I_D = -11.0 A, V_{GS} = -10 V, R_G = 9.1 Ω , V_{DD} = -50 V	t _f		65	ns
Diode Reverse Recovery Time di/dt \leq 100 A/ μ s, V _{DD} \leq 30 V, I _F = -18.0 A	t _{rr}		280	ns

GRAPHS

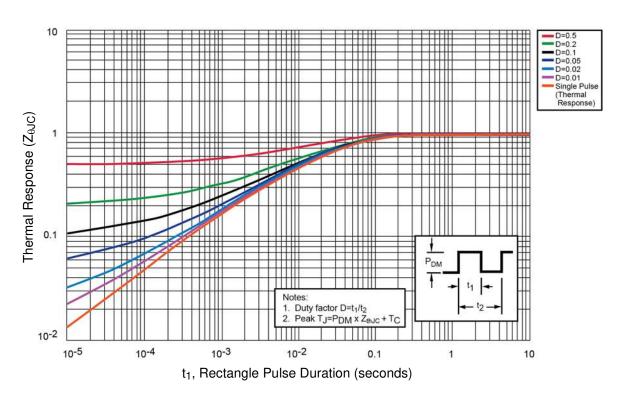


FIGURE 1
Thermal Impedance Curves

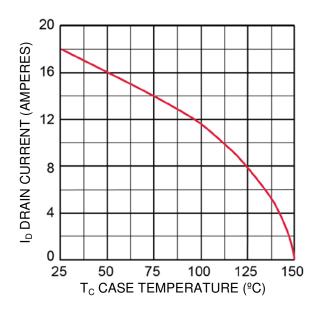


FIGURE 2

Maximum Drain Current vs Case Temperature Graphs

GRAPHS (continued)

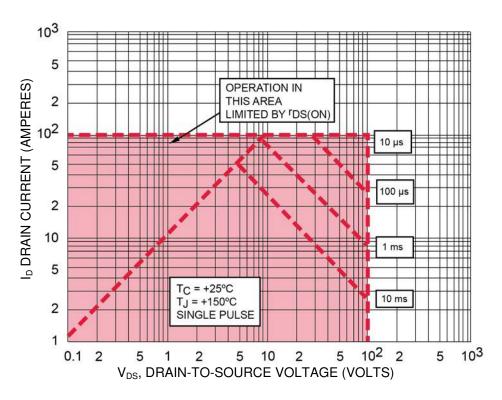
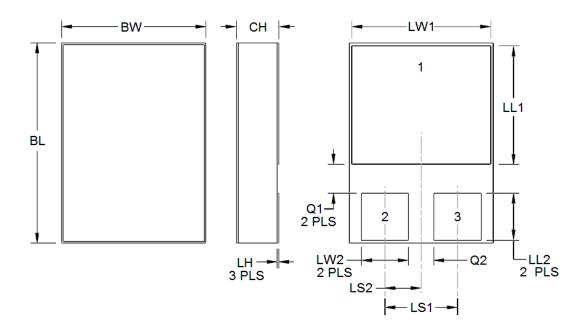



FIGURE 3

Maximum Safe Operating Area

PACKAGE DIMENSIONS

NOTES:

- 1. Dimensions are in inches.

- Millimeters are given for general information only.
 The lid shall be electrically isolated from the drain, gate and source.
 In accordance with ASME Y14.5M, diameters are equivalent to Φx symbology.

Symbol	DIMENSIONS				
Syllibol	INCH		MILLIMETERS		
	Min	Max	Min	Max	
BL	.620	.630	15.75	16.00	
BW	.445	.455	11.30	11.56	
CH	-	.142	-	3.60	
LH	.010	.020	.026	.050	
LL1	.410	.420	10.41	10.67	
LL2	.152	.162	3.86	4.11	
LS1	.210 BSC		5.33 BSC		
LS2	.105 BSC		2.67 BSC		
LW1	.370	.380	9.40	9.65	
LW2	.135	.145	3.43	3.68	
Q1	.030	-	0.76	1	
Q2	.035	-	0.89	-	
Term 1	Drain	-			
Term 2	Gate			•	
Term 3	Source			•	