

Sample Kit 2021

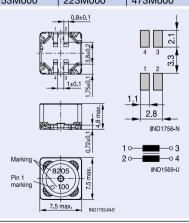
SMT Power Inductors

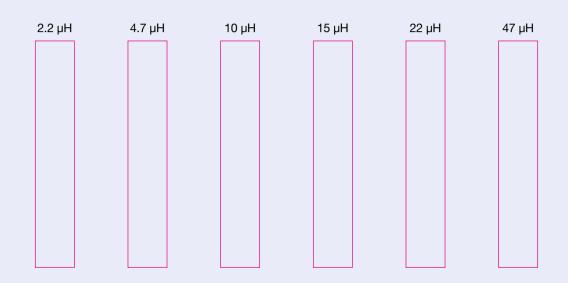
B82472D6*M000 Dual Inductors

www.tdk-electronics.tdk.com

SMT Power Inductors – Dual Inductor 7.3 x 7.3 x 4.8	mm)
---	-----

L _{ind} ±20%	μΗ	2.2	4.7	10	15	22	47
I _R	Α	4.3	3.3	2.3	1.85	1.65	1.1
I _{sat. typ}	Α	5.6	4.1	2.7	2.1	1.8	1.1
R _{DC. typ}	mΩ	30	47	95	144	177	400
K_{typ}	%	97	98	98	99	99	99
Ordering code	B82472D6	222M000	472M000	103M000	153M000	223M000	473M000


Features


- Special winding technology for tight coupling of the two windings (coupling factor K = 97% to 99%)
- Magnetically shielded
- Winding welded to terminals
- Base plate construction for high mechanical robustness
- Temperature range up to +150 °C
- Qualification to AEC-Q200

Applications

- DC/DC converter, especially for SEPIC topology
- Buck converter with auxililary output
- Common mode choke
- 1:1 transformer

Inductance is per winding. When leads are connected in parallel, inductance is the same value. When leads are connected in series, inductance is four times the value. $R_{\rm cc}$ is for each winding. When leads are connected in parallel, $R_{\rm cc}$ is for each winding. When leads are connected in parallel, $R_{\rm cc}$ is half the value. When leads are connected in series, $R_{\rm cc}$ is twice the value. $R_{\rm cc}$ is the current flowing through one winding. When leads are connected in parallel, $R_{\rm cc}$ is the current flowing through one winding. When leads are connected in parallel, $R_{\rm cc}$ is the total current through both windings. It and $R_{\rm cc}$ is the calculated like this: $R_{\rm cc} = R_{\rm cc} = R_{\rm cc} = R_{\rm cc}$.

Important information: It is incumbent on the customer to check and decide whether a product is suitable for use in a particular application. Our products are described in detail in our data sheets. Our Important notes and the product-specific Cautions and warnings must be observed. All relevant information is available through our sales offices.