

FE	EATURES	DGG OR DL F	PACKAGE
•	Member of the Texas Instruments Widebus™ Family	(TOP VI	
•	Operates From 1.65 V to 3.6 V		48 20E
•	Inputs Accept Voltages to 5.5 V	1Y1 🛛 2	47 1 1A1
•	Max t _{pd} of 4.2 ns at 3.3 V	1Y2 3	46 1A2
•	Typical V _{OLP} (Output Ground Bounce)	GND 4 1Y3 5	45 GND 44 1A3
	<0.8 V at V _{CC} = 3.3 V, T _A = 25°C	1Y4 🛛 6	43 1A4
٠	Typical V _{онv} (Output V _{он} Undershoot)	V _{CC} [7	42 🛛 V _{CC}
	>2 V at V _{CC} = 3.3 V, T _A = 25°C	2Y1 🛛 8	41 2A1
٠	I _{off} Supports Partial-Power-Down Mode	2Y2 🛛 9	40 2A2
	Operation	GND 10	39 GND
٠	Bus Hold on Data Inputs Eliminates the Need	2Y3 🛛 11	38 2A3
	for External Pullup/Pulldown Resistors	2Y4 12	37 2A4
•	Supports Mixed-Mode Signal Operation on	3Y1 13	36 3A1
	All Ports (5-V Input/Output Voltage With	3Y2 14	35 3A2
	3.3-V V _{cc})	GND 15	34 GND
•	Latch-Up Performance Exceeds 250 mA Per	3Y3 16	33 3A3
	JESD 17	3Y4 17	32 3A4
•	ESD Protection Exceeds JESD 22		31 V _{CC}
	– 2000-V Human-Body Model (A114-A)	4Y1 [19 4Y2 [20	30 4A1
	– 200-V Machine Model (A115-A)	GND 21	29 4A2 28 GND
		4Y3 22	27 4A3
	– 1000-V Charged-Device Model (C101)	4Y4 23	26 4A4
		4 <u>0</u> E [] 24	25 3 <u>0E</u>

DESCRIPTION/ORDERING INFORMATION

This 16-bit buffer/driver is designed for 1.65-V to 3.6-V V_{CC} operation.

The SN74LVCH16240A is designed specifically to improve both the performance and density of 3-state memory address drivers, clock drivers, and bus-oriented receivers and transmitters.

The device can be used as four 4-bit buffers, two 8-bit buffers, or one 16-bit buffer. This device provides inverting outputs and symmetrical active-low output-enable (\overline{OE}) inputs.

To ensure the high-impedance state during power up or power down, \overline{OE} should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

Inputs can be driven from either 3.3-V or 5-V devices. This feature allows the use of these devices as translators in a mixed 3.3-V/5-V system environment.

T _A	PACK	AGE ⁽¹⁾	ORDERABLE PART NUMBER	TOP-SIDE MARKING		
		Tube	SN74LVCH16240ADL			
–40°C to 85°C	SSOP – DL	Tape and reel	SN74LVCH16240ADLR	LVCH16240A		
	TSSOP – DGG	Tape and reel	SN74LVCH16240ADGGR	LVCH16240A		

ORDERING INFORMATION

(1) Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. Widebus is a trademark of Texas Instruments.

SN74LVCH16240A 16-BIT BUFFER/DRIVER WITH 3-STATE OUTPUTS

SCAS566H-MARCH 1996-REVISED MARCH 2005


DESCRIPTION/ORDERING INFORMATION (CONTINUED)

Active bus-hold circuitry holds unused or undriven inputs at a valid logic state. Use of pullup or pulldown resistors with the bus-hold circuitry is not recommended.

This device is fully specified for partial-power-down applications using I_{off} . The I_{off} circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down.

FUNCTION TABLE (EACH 4-BIT BUFFER)

INPL	JTS	OUTPUT
OE	Α	Y
L	Н	L
L	L	Н
Н	Х	Z

LOGIC DIAGRAM (POSITIVE LOGIC)

Absolute Maximum Ratings⁽¹⁾

over operating free-air temperature range (unless otherwise noted)

			MIN	MAX	UNIT
V _{CC}	Supply voltage range		-0.5	6.5	V
VI	Input voltage range ⁽²⁾		-0.5	6.5	V
Vo	Voltage range applied to any output in the high-impe	edance or power-off state ⁽²⁾	-0.5	6.5	V
Vo	Voltage range applied to any output in the high or lo	ow state ⁽²⁾⁽³⁾	-0.5	V _{CC} + 0.5	V
I _{IK}	Input clamp current	V ₁ < 0		-50	mA
I _{OK}	Output clamp current	V _O < 0		-50	mA
I _O	Continuous output current			±50	mA
	Continuous current through each V_{CC} or GND			±100	mA
0	Paakaga thermal impedance (4)	DGG package		70	°C/W
θ_{JA}	Package thermal impedance ⁽⁴⁾	DL package		63	-0/00
T _{stg}	Storage temperature range		-65	150	°C

(1) Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) The input negative-voltage and output voltage ratings may be exceeded if the input and output current ratings are observed.

(3) The value of V_{CC} is provided in the recommended operating conditions table.

(4) The package thermal impedance is calculated in accordance with JESD 51-7.

Recommended Operating Conditions⁽¹⁾

			MIN	MAX	UNIT
V	Supply voltage	Operating	1.65	3.6	V
V _{CC}	Supply voltage	Data retention only	1.5		v
		V _{CC} = 1.65 V to 1.95 V	$0.65 imes V_{CC}$		
V _{IH}	High-level input voltage	V_{CC} = 2.3 V to 2.7 V	1.7		V
		$V_{CC} = 2.7 \text{ V to } 3.6 \text{ V}$	2		
		V_{CC} = 1.65 V to 1.95 V		$0.35 \times V_{CC}$	
V _{IL}	Low-level input voltage	V_{CC} = 2.3 V to 2.7 V		0.7	V
		$V_{CC} = 2.7 \text{ V to } 3.6 \text{ V}$		0.8	
VI	Input voltage		0	5.5	V
V	Output veltage	High or low state	0	V _{CC}	V
V _O Ou	Output voltage	3-state	0	5.5	v
		V _{CC} = 1.65 V		-4	
	High-level output current	$V_{CC} = 2.3 V$		-8	mA
I _{OH}		$V_{CC} = 2.7 V$		-12	ШA
		$V_{CC} = 3 V$		-24	
		V _{CC} = 1.65 V		4	
		$V_{CC} = 2.3 V$		8	mA
I _{OL}	Low-level output current	$V_{CC} = 2.7 V$		12	ШA
		$V_{CC} = 3 V$		24	
$\Delta t/\Delta v$	Input transition rise or fall rate			10	ns/V
T _A	Operating free-air temperature		-40	85	°C

 All unused control inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

SN74LVCH16240A **16-BIT BUFFER/DRIVER** WITH 3-STATE OUTPUTS

SCAS566H-MARCH 1996-REVISED MARCH 2005

TEXAS **STRUMENTS** www.ti.com

Electrical Characteristics

over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS	6	V _{cc}	MIN	TYP ⁽¹⁾ MAX	UNIT
	I _{OH} = -100 μA		1.65 V to 3.6 V	$V_{CC} - 0.2$		
	$I_{OH} = -4 \text{ mA}$		1.65 V	1.2		
	$I_{OH} = -8 \text{ mA}$		2.3 V	1.7		v
V _{OH}	I _{OH} = -12 mA		2.7 V	2.2		v
	$I_{OH} = -12$ IIIA		3 V	2.4		
	I _{OH} = -24 mA		3 V	2.2		
	I _{OL} = 100 μA		1.65 V to 3.6 V		0.2	
	I _{OL} = 4 mA		1.65 V		0.45	
V _{OL}	I _{OL} = 8 mA		2.3 V		0.7	V
	I _{OL} = 12 mA		2.7 V		0.4	
	I _{OL} = 24 mA		3 V		0.55	
I _I	$V_1 = 0$ to 5.5 V		3.6 V		±5	μA
	V _I = 0.58 V	– 1.65 V	(2)			
	V _I = 1.07 V		1.05 V	(2)		
	$V_{I} = 0.7 V$		– 2.3 V	45		
I _{I(hold)}	V ₁ = 1.7 V		2.3 V	-45		μΑ
	V ₁ = 0.8 V		- 3 V	75		
	$V_1 = 2 V$		3 V	-75		
	$V_1 = 0$ to 3.6 V ⁽³⁾		3.6 V		±500	
I _{off}	$V_1 \text{ or } V_0 = 5.5 \text{ V}$		0		±10	μA
I _{OZ}	$V_0 = 0$ to 5.5 V		3.6 V		±10	μA
I	$V_{I} = V_{CC}$ or GND	1 = 0	3.6 V		20	
I _{CC}	3.6 V \leq V ₁ \leq 5.5 V ⁽⁴⁾	I _O = 0	3.0 V		20	μA
ΔI_{CC}	One input at $V_{CC} - 0.6$ V, Other inputs	at V _{CC} or GND	2.7 V to 3.6 V		500	μA
C _i	$V_1 = V_{CC}$ or GND		3.3 V		5	pF
Co	$V_0 = V_{CC}$ or GND		3.3 V		6	pF

(1)

All typical values are at V_{CC} = 3.3 V, T_A = 25°C. This information was not available at the time of publication. (2)

(3) This is the bus-hold maximum dynamic current required to switch the input from one state to another.

(4) This applies in the disabled state only.

Switching Characteristics

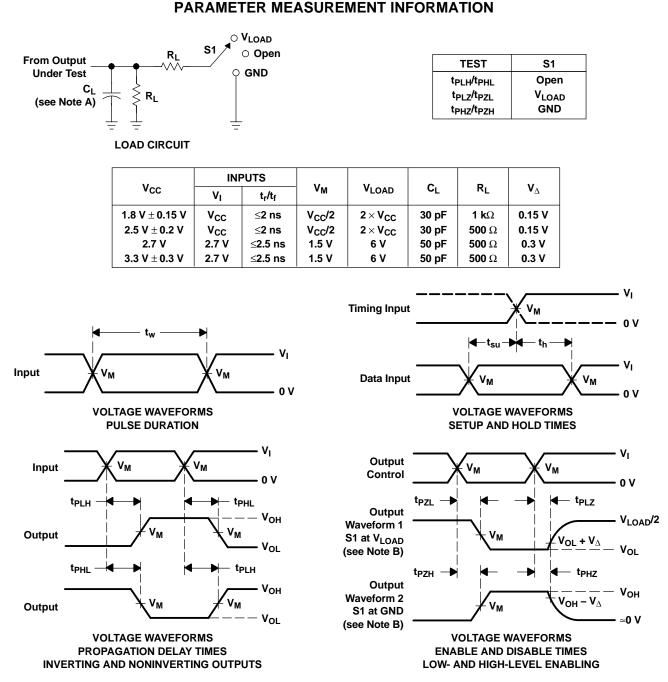
over recommended operating free-air temperature range (unless otherwise noted) (see Figure 1)

PARAMETER	FROM	TO (OUTPUT)	V _{CC} = 1.8 V ± 0.15 V		V_{CC} = 2.5 V ± 0.2 V		V _{CC} = 2.7 V		V_{CC} = 3.3 V ± 0.3 V		UNIT
	(INPUT)	(001F01)	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
t _{pd}	А	Y	(1)	(1)	(1)	(1)		5	1	4.2	ns
t _{en}	OE	Y	(1)	(1)	(1)	(1)		5.8	1.5	4.7	ns
t _{dis}	OE	Y	(1)	(1)	(1)	(1)		6.6	1.5	5.9	ns

(1) This information was not available at the time of publication.

Operating Characteristics

 $T_A = 25^{\circ}C$


	PARAMETER	TEST CONDITIONS	V _{CC} = 1.8 V TYP	V _{CC} = 2.5 V TYP	V _{CC} = 3.3 V TYP	UNIT	
C	Power dissipation capacitance	Outputs enabled	f 10 MU	(1)	(1)	34	٥F
C _{pd}	per buffer/driver	Outputs disabled	f = 10 MHz	(1)	(1)	3	рг

(1) This information was not available at the time of publication.

SN74LVCH16240A 16-BIT BUFFER/DRIVER WITH 3-STATE OUTPUTS

TEXAS INSTRUMENTS www.ti.com

SCAS566H-MARCH 1996-REVISED MARCH 2005

NOTES: A. C_L includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z₀ = 50 Ω .
- D. The outputs are measured one at a time, with one transition per measurement.
- E. t_{PLZ} and t_{PHZ} are the same as t_{dis} .
- F. t_{PZL} and t_{PZH} are the same as t_{en}.
- G. t_{PLH} and t_{PHL} are the same as t_{pd}.
- H. All parameters and waveforms are not applicable to all devices.

Figure 1. Load Circuit and Voltage Waveforms

10-Dec-2020

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead finish/ Ball material	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
							(6)				
SN74LVCH16240ADGGR	ACTIVE	TSSOP	DGG	48	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	LVCH16240A	Samples
SN74LVCH16240ADL	ACTIVE	SSOP	DL	48	25	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	LVCH16240A	Samples
SN74LVCH16240ADLR	ACTIVE	SSOP	DL	48	1000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	LVCH16240A	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

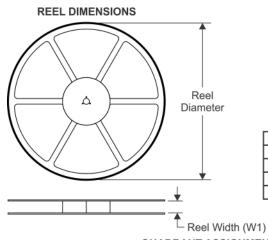
(6) Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

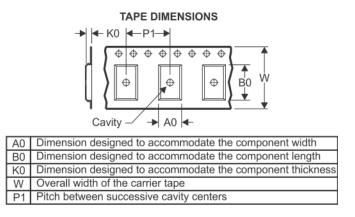
Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

www.ti.com

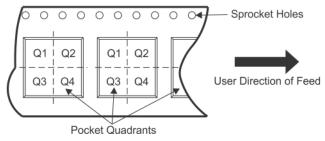
PACKAGE OPTION ADDENDUM

10-Dec-2020


In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

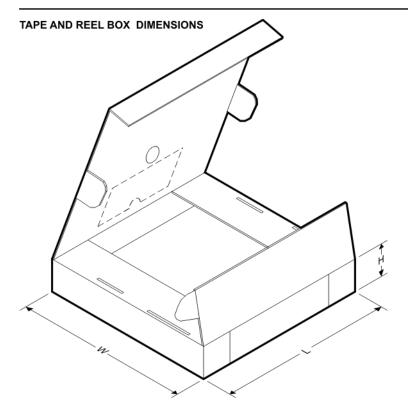

PACKAGE MATERIALS INFORMATION

Texas Instruments


www.ti.com

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

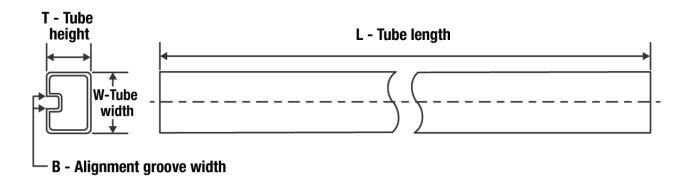

*All dimensions are nominal												
Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
SN74LVCH16240ADGGR	TSSOP	DGG	48	2000	330.0	24.4	8.6	13.0	1.8	12.0	24.0	Q1
SN74LVCH16240ADLR	SSOP	DL	48	1000	330.0	32.4	11.35	16.2	3.1	16.0	32.0	Q1

www.ti.com

PACKAGE MATERIALS INFORMATION

5-Jan-2022

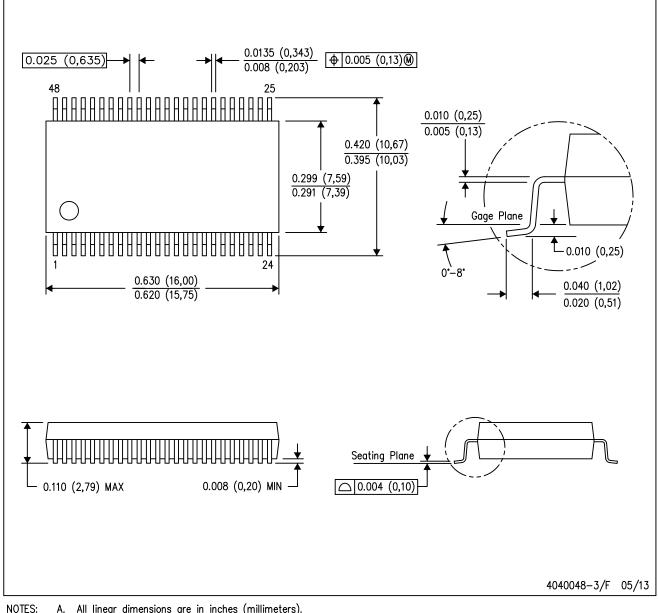
*All dimensions are nominal


Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
SN74LVCH16240ADGGR	TSSOP	DGG	48	2000	367.0	367.0	45.0
SN74LVCH16240ADLR	SSOP	DL	48	1000	367.0	367.0	55.0

www.ti.com

5-Jan-2022

TUBE



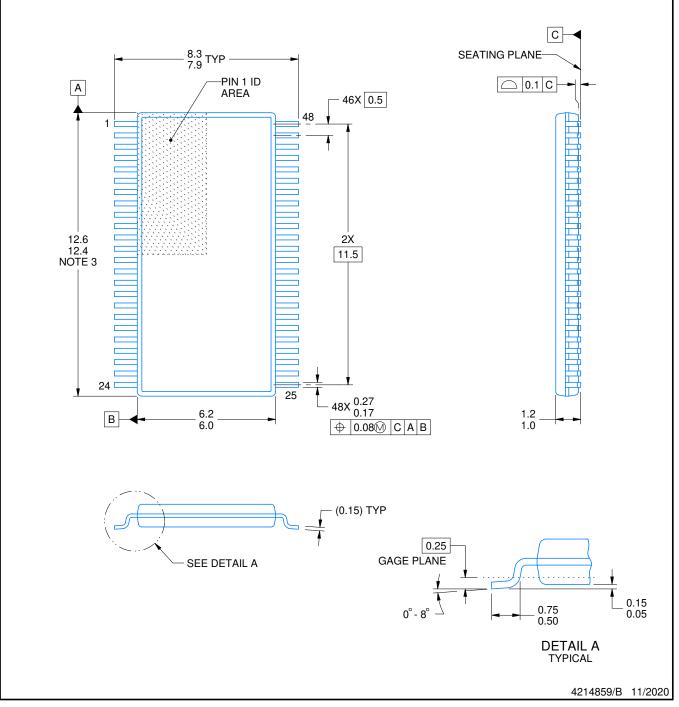
*All dimensions are nominal

Device	Package Name	Package Type	Pins	SPQ	L (mm)	W (mm)	Τ (μm)	B (mm)
SN74LVCH16240ADL	DL	SSOP	48	25	473.7	14.24	5110	7.87

DL (R-PDSO-G48)

PLASTIC SMALL-OUTLINE PACKAGE

- A. All linear dimensions are in inches (millimeters).B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15).
- D. Falls within JEDEC MO-118


PowerPAD is a trademark of Texas Instruments.

PACKAGE OUTLINE

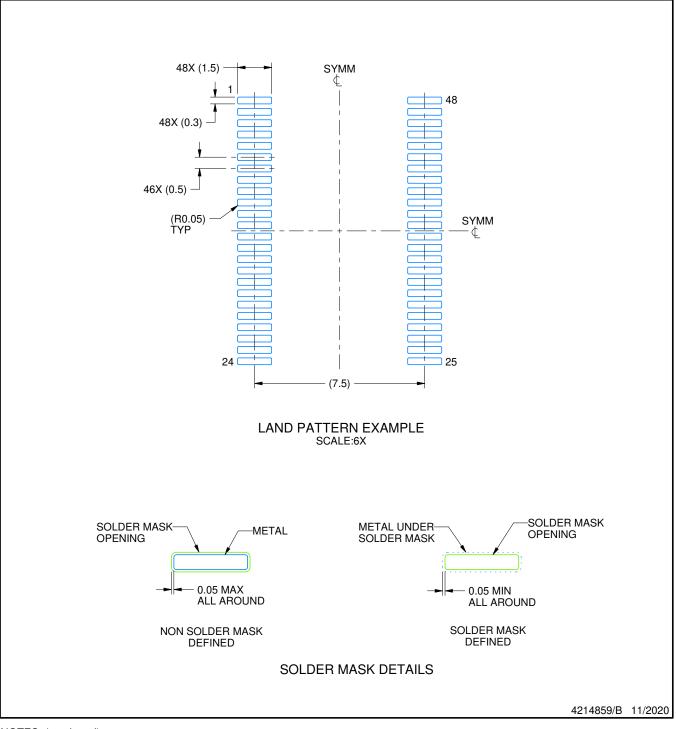
TSSOP - 1.2 mm max height

SMALL OUTLINE PACKAGE

NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
 This drawing is subject to change without notice.
 This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not

- exceed 0.15 mm per side. 4. Reference JEDEC registration MO-153.


DGG0048A

DGG0048A

EXAMPLE BOARD LAYOUT

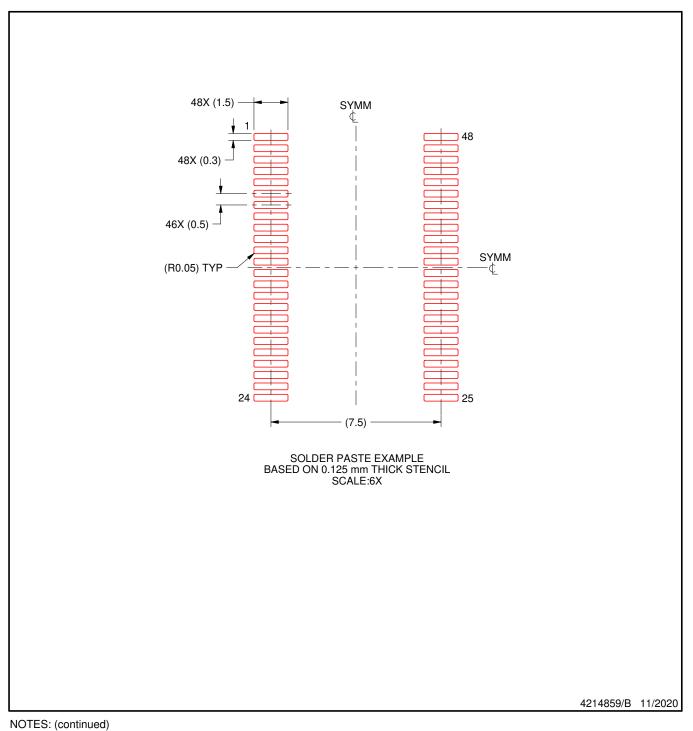
TSSOP - 1.2 mm max height

SMALL OUTLINE PACKAGE

NOTES: (continued)

5. Publication IPC-7351 may have alternate designs.

6. Solder mask tolerances between and around signal pads can vary based on board fabrication site.



DGG0048A

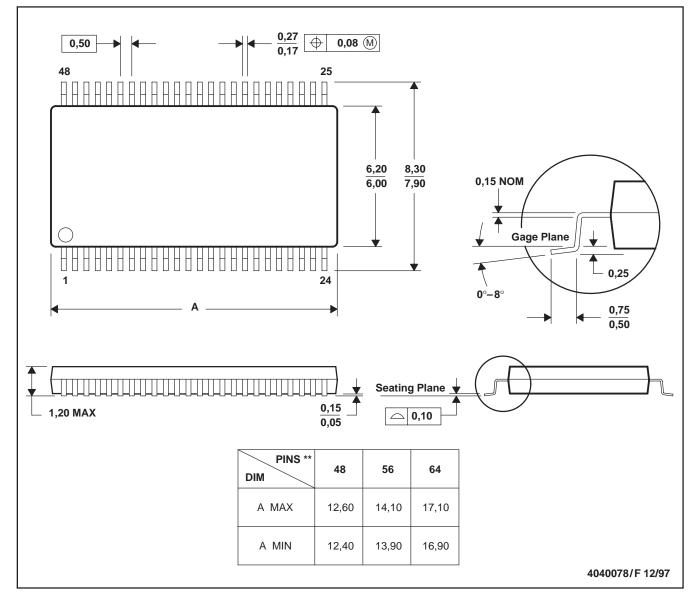
EXAMPLE STENCIL DESIGN

TSSOP - 1.2 mm max height

SMALL OUTLINE PACKAGE

7. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

8. Board assembly site may have different recommendations for stencil design.


MECHANICAL DATA

MTSS003D - JANUARY 1995 - REVISED JANUARY 1998

DGG (R-PDSO-G**)

PLASTIC SMALL-OUTLINE PACKAGE

48 PINS SHOWN

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold protrusion not to exceed 0,15.
- D. Falls within JEDEC MO-153

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2022, Texas Instruments Incorporated