BU406, BU407

NPN Power Transistors

These devices are high voltage, high speed transistors for horizontal deflection output stages of TV's and CRT's.

Features

- High Voltage
- Fast Switching Speed
- Low Saturation Voltage
- These Devices are Pb-Free and are RoHS Compliant*

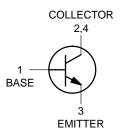
MAXIMUM RATINGS

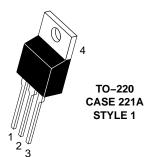
Rating		Symbol	Value	Unit
Collector-Emitter Voltage	BU406 BU407	V _{CEO}	200 150	Vdc
Collector-Emitter Voltage	BU406 BU407	V _{CEV}	400 330	Vdc
Collector-Base Voltage	BU406 BU407	V _{CBO}	400 330	Vdc
Emitter-Base Voltage		V _{EBO}	6	Vdc
Collector Current – Continuous – Peak Repetitiv	е	I _C	7 10	Adc
Collector Current - Peak (10 ms)		I _{CM}	15	Adc
Base Current		I _B	4	Adc
Total Device Dissipation @ T _C = 25 Derate above 25°C	5°C	P _D	60 0.48	W W/°C
Operating and Storage Junction Temperature Storage		T _J , T _{stg}	-65 to 150	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

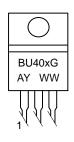
THERMAL CHARACTERISTICS

Characteristics	Symbol	Max	Unit
Thermal Resistance, Junction-to-Case	$R_{\theta JC}$	2.08	°C/W
Thermal Resistance, Junction-to-Ambient	$R_{\theta JA}$	70	°C/W
Maximum Lead Temperature for Soldering Purposes1/8" from Case for 5 Seconds	T _L	260	°C




ON Semiconductor®

www.onsemi.com


NPN SILICON POWER TRANSISTORS 7 AMPERES – 60 WATTS 150 AND 200 VOLTS

SCHEMATIC

MARKING DIAGRAM

BU40x = Specific Device Code

x = 6 or 7

A = Assembly Location

Y = Year
WW = Work Week
G = Pb-Free Package

ORDERING INFORMATION

Device	Package	Shipping
BU406G	TO-220AB (Pb-Free)	50 Units / Rail
BU407G	TO-220AB (Pb-Free)	50 Units / Rail

^{*}For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

BU406, BU407

ELECTRICAL CHARACTERISTICS (T_C = 25°C unless otherwise noted)

Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS	•				
		200 150	_ _	_ _	Vdc
Collector Cutoff Current	ICES	- - -	- - -	5 0.1 1	mAdc
Emitter Cutoff Current BU406, BU407 $(V_{EB} = 6 \text{ Vdc}, I_C = 0)$	I _{EBO}	-	-	1	mAdc
ON CHARACTERISTICS (Note 1)	•				
Collector–Emitter Saturation Voltage ($I_C = 5 \text{ Adc}$, $I_B = 0.5 \text{ Adc}$)	V _{CE(sat)}	-	_	1	Vdc
Base–Emitter Saturation Voltage ($I_C = 5 \text{ Adc}, I_B = 0.5 \text{ Adc}$)	V _{BE(sat)}	-	_	1.2	Vdc
Forward Diode Voltage (I _{EC} = 5 Adc) "D" only	V _{EC}	-	_	2	Volts
DYNAMIC CHARACTERISTICS	•				
Current–Gain – Bandwidth Product ($I_C = 0.5 \text{ Adc}$, $V_{CE} = 10 \text{ Vdc}$, $f_{test} = 20 \text{ MHz}$)	f _T	10	-	-	MHz
Output Capacitance (V _{CB} = 10 Vdc, I _E = 0, f = 1 MHz)	C _{ob}	-	80	_	pF
SWITCHING CHARACTERISTICS					
Inductive Load Crossover Time (V _{CC} = 40 Vdc, I _C = 5 Adc, I _{B1} = I _{B2} = 0.5 Adc, L = 150 μ H)	t _c	-	_	0.75	μs

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

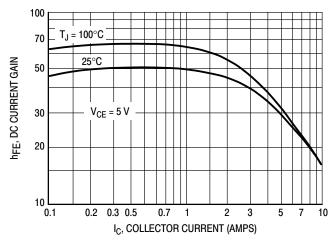


Figure 1. DC Current Gain

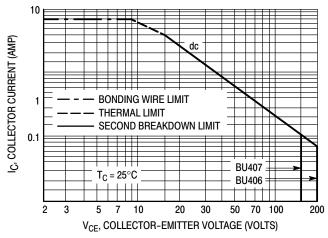


Figure 2. Maximum Rated Forward Bias Safe Operating Area

^{1.} Pulse Test: Pulse Width ≤ 300 μs, Duty Cycle ≤ 1%.

onsemi, Onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at www.onsemi.com/support/sales