



# High Efficiency, Low Ripple Boost Regulator

# GENERAL DESCRIPTION

The ML4890 is a high efficiency, PFM (Pulse Frequency Modulation), boost switching regulator connected in series with an integrated LDO (Low Dropout Regulator) that incorporates "Silent Switcher™" technology. This technique incorporates a patented tracking scheme to minimize the voltage drop across the LDO and increase the total efficiency of the regulator beyond that which can be obtained by using a discrete external LDO regulator.

The ML4890 is designed to convert single or multiple cell battery inputs to regulated output voltages for integrated circuits and is ideal for portable communications equipment that cannot tolerate the output voltage ripple normally associated with switching regulators.

An integrated synchronous rectifier eliminates the need for an external Schottky diode and provides a lower forward voltage drop, resulting in higher conversion efficiency.

### FEATURES

- Incorporates "Silent Switcher™" technology to deliver very low output voltage ripple (typically 5mV)
- Guaranteed full load start-up and operation at 1.0V input and low operating quiescent current (<100µA) for extended battery life
- Pulse Frequency Modulation and internal synchronous rectification for high efficiency
- Minimum external components
- Low ON resistance internal switching MOSFETs
- 5V, 3.3V, and 3V output versions

# BLOCK DIAGRAM



# PIN CONNECTION





# PIN DESCRIPTION



8 PWR GND Return for the NMOS boost transistor

# ABSOLUTE MAXIMUM RATINGS

Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.





### OPERATING CONDITIONS



### ELECTRICAL CHARACTERISTICS

Unless otherwise specified,  $V_{IN}$  = Operating Voltage Range,  $T_A$  = Operating Temperature Range. (Note 1)





Figure 1. Application Test Circuit



Figure 2. PFM Regulator and LDO Block Diagram

# FUNCTIONAL DESCRIPTION

The ML4890 combines Pulse Frequency Modulation (PFM) and synchronous rectification to create a boost converter that is followed by a low dropout linear regulator (LDO). This combination creates a low output ripple boost converter that is both highly efficient and simple to use.

The PFM regulator charges a single inductor for a fixed period of time and then completely discharges before another cycle begins, simplifying the design by eliminating the need for conventional current limiting circuitry. Synchronous rectification is accomplished by replacing an external Schottky diode with an on-chip PMOS device, reducing switching losses and external component count.

The integrated LDO reduces the output ripple voltage to less than 5mV peak-to-peak. Integrating the LDO along with the PFM regulator allows the circuit to be optimized for very high efficiency using a patented feedback technique. It also allows the LDO to provide the maximum ripple rejection over the operating frequency range of the regulator.

A block diagram of the ML4890 is shown in Figure 2. The PFM stage is comprised of Q1, Q2, A1, A2, the one shot, the flip-flop, and externals L1 and C2. The LDO stage is comprised of Q3, A3, R1, R2, the offset voltage control, and external C1. Since the LDO actually controls the operation of the PFM regulator, the operation of the LDO stage will be covered first.

#### LDO OPERATION

The LDO stage operates as a linear regulator. A3 is the error amplifier, which compares the output voltage through the divider R1 and R2 to the reference, and Q3 is the pass device. When the output voltage is lower than desired, the output of A3 increases the gate drive of Q3, which reduces the voltage drop across it and brings the output back into regulation. Similarly, if the output voltage is higher than desired, A3 adjusts the gate drive of Q3 for more drop and the output is brought back into regulation.



Figure 3. LDO  $V_{OS}$  versus output current.

Also included in the LDO stage is an offset voltage control. This circuit monitors the output current and adjusts the offset voltage according the general characteristic shown in Figure 3. The offset control ensures that the PFM stage provides just enough "overhead" voltage for the LDO stage to operate properly.

#### PFM REGULATOR OPERATION

When the output of the PFM stage,  $V_{\text{BOOST}}$  (pin 5), is at or above the dropout voltage,  $V_{\text{OUT}} + V_{\text{OS}}$ , the output of A1 stays low and the circuit remains idle. When  $V_{\text{BOOST}}$  falls below the required dropout voltage, the output of A1 goes high, signaling the regulator to deliver charge to the capacitor C2. Since the output of A2 is normally high, the output of the flip-flop becomes SET. This triggers the one shot to turn Q1 on and begins charging L1 for 5µs. When the one shot times out, Q1 turns off, allowing L1 to flyback and momentarily charge C2 through the body diode of Q2. But, as the source voltage of Q2 rises above the drain, the current sensing amplifier A2 drives the gate of Q2 low, causing Q2 to short out the body diode. The inductor then discharges into C2 through Q2. The output of A2 going low also serves to RESET the flip-flop in preparation for the next charging cycle. When the inductor current in Q2 falls to zero, the output of A2 goes high, releasing Q2's gate, allowing the flip-flop to be SET again. If the voltage at  $V_{\text{BOOST}}$  is still low, A1 will initiate another pulse. Typical inductor current and voltage waveforms are shown in Figure 4.





#### SHUTDOWN

The SHDN pin should be held low for normal operation. Raising the voltage on SHDN above the threshold level will release the gate of Q3, which effectively becomes an open circuit. This also prevents the one shot from triggering, which keeps switching from occurring.

### DESIGN CONSIDERATIONS

#### INDUCTOR

Selecting the proper inductor for a specific application usually involves a trade-off between efficiency and maximum output current. Choosing too high a value will keep the regulator from delivering the required output current under worst case conditions. Choosing too low a value causes efficiency to suffer. It is necessary to know the maximum required output current and the input voltage range to select the proper inductor value. The maximum inductor value can be estimated using the following formula:

$$
L_{MAX} = \frac{V_{IN(MIN)}^{2} \times T_{ON(MIN)} \times \eta}{2 \times (V_{OUT} + V_{OS}) \times I_{OUT(MAX)}} \tag{1}
$$

where  $\eta$  is the efficiency, typically between 0.75 and 0.85, and  $V_{OS}$  is the dropout voltage at  $I_{OUT(MAX)}$  taken from Figure 3. Note that this is the value of inductance that just barely delivers the required output current under worst case conditions. A lower value may be required to cover inductor tolerance, the effect of lower peak inductor currents caused by resistive losses, and minimum dead time between pulses.

Another method of determining the appropriate inductor value is to make an estimate based on the typical performance curves given in Figures 5 and 6. Figure 5 shows maximum output current as a function of input voltage for several inductor values. These are typical performance curves and leave no margin for inductance and ON-time variations. To accommodate worst case conditions, it is necessary to derate these curves by at least 10% in addition to inductor tolerance.





Figure 5. Output Current versus Input Voltage.

For example, a two cell to 5V application requires 40mA of output current while using an inductor with 15% tolerance. The output current should be derated by 25% to 50mA to cover the combined inductor and ON-time tolerances. Assuming that 2V is the end of life voltage of a two cell input, Figure 5 shows that with a 2V input, the ML4890-5 delivers 58mA with a 22µH inductor.

Figure 6 shows efficiency under the conditions used to create Figure 5. It can be seen that efficiency is mostly independent of input voltage and is closely related to inductor value. This illustrates the need to keep the inductor value as high as possible to attain peak system efficiency. As the inductor value goes down to 10µH, the efficiency drops to between 70% and 75%. With 33µH, the efficiency reaches approximately 85% and there is little room for improvement. At values greater than 47µH, the operation of the synchronous rectifier becomes unreliable at low input voltages because the inductor current is so small that it is difficult for the control circuitry to detect. The data used to generate Figures 5 and 6 is provided in Table 1.

After the appropriate inductor value is chosen, it is necessary to find the minimum inductor current rating required. Peak inductor current is determined from the following formula:

$$
I_{L(PEAK)} = \frac{T_{ON(MAX)} \times V_{IN(MAX)}}{L_{MIN}} \tag{2}
$$

It is important to note that for reliable operation, make sure that  $I_{L(PFAK)}$  does not exceed the 1A maximum switch current rating. In the two cell application previously described, a maximum input voltage of 3V would give a peak current of 880mA. When comparing various inductors, it is important to keep in mind that suppliers use different criteria to determine their ratings. Many use a conservative current level, where inductance has dropped to 90% of its normal level. In any case, it is a good idea to try inductors of various current ratings with the ML4890 to determine which inductor is the best choice. Check efficiency and maximum output current, and if a current probe is available, look at the inductor current to see if it looks like the waveform shown in Figure 4.



Figure 6. Typical Efficiency as a Function of  $V_{IN}$ .

The DC resistance of the inductor should be kept to a minimum to reduce losses. A good rule of thumb is to allow 5 to 10mý of resistance for each µH of inductance. Also, be aware that the DC resistance of an inductor usually isn't specified tightly, so an inductor with a maximum DC resistance spec of 150mý may actually have 100mý of resistance.

Suitable inductors can be purchased from the following suppliers:



#### BOOST CAPACITOR

The boost capacitor (C2) supplies current to the load during the ON-time of Q1 and will limit the ripple the LDO stage has to contend with. The ripple on C2 is influenced by three capacitor parameters: capacitance, ESL, and ESR. The contribution due to capacitance can be determined by looking at the change in the capacitor voltage required to store the energy delivered by the inductor in a single charge-discharge cycle, as given by the following formula:

$$
C2 \ge \frac{T_{ON}^2 \times V_{IN}^2}{2 \times L \times \Delta V_{BOOST} \times (V_{OUT} - V_{IN})} \text{(in Farads)} \quad (3)
$$

For example, a 2.4V input, a 5V output, a 22µH inductor, and an allowance of 100mV of ripple on the boost capacitor results in a minimum C2 value of 15µF.

The boost capacitor's Equivalent Series Resistance (ESR) and Equivalent Series Inductance (ESL), also contribute to the ripple due to the inductor discharge current waveform. Just after the NMOS transistor turns off, the output current ramps quickly to match the peak inductor current. This fast change in current through the boost capacitor's ESL causes a high frequency (5ns) spike that can be over 1V in magnitude. After the ESL spike settles, the boost voltage still has a ripple component equal to the inductor discharge current times the ESR. This component will have a sawtooth waveshape and can be calculated using the following formula:

$$
ESR \le \frac{\Delta V_{\text{BOOST}}}{I_{L(PEAK)}} (\text{in } \Omega) \tag{4}
$$

For example, a 2.4V input, a 22µH inductor, and an allowance of 100mV of ripple on the boost capacitor results in a maximum ESR of 200mý. Therefore, a boost capacitor with a capacitance of 22µF or 33µF, an ESR of less than 200mý, and an ESL of less than 5nH is a good choice. Tantalum capacitors which meet these requirements can be obtained from the following suppliers:



#### OUTPUT CAPACITOR

The LDO stage output capacitor (C1) is required for stability and to provide a high frequency filter. An output capacitor with a capacitance of 100µF, an ESR of less than 100mý, and an ESL of less than 5nH is a good general purpose choice.

#### INPUT CAPACITOR

Unless the input source is a very low impedance battery, it will be necessary to decouple the input with a capacitor with a value of between 47µF and 100µF. This provides the benefits of preventing input ripple from affecting the ML4890 control circuitry, and it also improves efficiency by reducing I-squared R losses during the charge and discharge cycles of the inductor. Again, a low ESR capacitor (such as tantalum) is recommended.

#### REFERENCE CAPACITOR

Under some circumstances input ripple cannot be reduced effectively. This occurs primarily in applications where inductor currents are high, causing excess output ripple due to "pulse grouping", where the chargedischarge pulses are not evenly spaced in time. In such cases it may be necessary to decouple the reference pin  $(V_{RFF})$  with a small 10nF to 100nF ceramic capacitor. This is particularly true if the ripple voltage at  $V_{IN}$  is greater than 100mV.

# LAYOUT

Good PC board layout practices will ensure the proper operation of the ML4890. Important layout considerations include:

- Use adequate ground and power traces or planes
- Keep components as close as possible to the ML4890
- Use short trace lengths from the inductor to the  $V_L$  pin and from the output capacitor to the  $V_{\text{BOOST}}$  pin.
- Use a single point ground for the ML4890 ground pins, and the input and output capacitors

A sample PC board layout is shown in Figure 7.





BOTTOM TRACE LAYER

Figure 7. Sample PC Board Layout.

# TABLE 1. MAXIMUM OUTPUT CURRENT AND EFFICIENCY

### ML4890-T ML4890-3





# TABLE 1. MAXIMUM OUTPUT CURRENT AND EFFICIENCY (continued)

### ML4890-5



### PHYSICAL DIMENSIONS inches (millimeters)



# ORDERING INFORMATION



#### **DISCLAIMER**

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

#### **LIFE SUPPORT POLICY**

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- 2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com © 2000 Fairchild Semiconductor Corporation