FQPF12N60

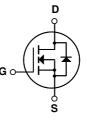
SEMICONDUCTOR

FQPF12N60 600V N-Channel MOSFET

General Description

These N-Channel enhancement mode power field effect transistors are produced using Fairchild's proprietary, planar stripe, DMOS technology.

This advanced technology has been especially tailored to minimize on-state resistance, provide superior switching performance, and withstand high energy pulse in the avalanche and commutation mode. These devices are well suited for high efficiency switch mode power supply.


Features

+ 5.8A, 600V, ${\rm R}_{\rm DS(on)}$ = 0.7 Ω @ V_{GS} = 10 V + Low gate charge (typical 42 nC)

April 2000

FET™

- Low Crss (typical 25 pF)
- · Fast switching
- 100% avalanche tested
- · Improved dv/dt capability
- GDS **TO-220F** FQPF Series

Absolute Maximum Ratings $T_{c} = 25^{\circ}C$ unless otherwise noted

Symbol	Parameter		FQPF12N60	Units
V _{DSS}	Drain-Source Voltage		600	V
I _D	Drain Current - Continuous (T _C = 25°C)	5.8	Α
	- Continuous (T _C = 100°	°C)	3.7	A
I _{DM}	Drain Current - Pulsed	(Note 1)	23	A
V _{GSS}	Gate-Source Voltage		± 30	V
E _{AS}	Single Pulsed Avalanche Energy	(Note 2)	790	mJ
I _{AR}	Avalanche Current	(Note 1)	5.8	А
E _{AR}	Repetitive Avalanche Energy	(Note 1)	5.5	mJ
dv/dt	Peak Diode Recovery dv/dt	(Note 3)	4.5	V/ns
PD	Power Dissipation ($T_C = 25^{\circ}C$)		55	W
	- Derate above 25°C		0.44	W/°C
T _J , T _{STG}	Operating and Storage Temperature Range		-55 to +150	°C
Τ _L	Maximum lead temperature for soldering purposes, 1/8" from case for 5 seconds		300	°C

Thermal Characteristics

Symbol	Parameter	Тур	Max	Units
$R_{\theta JC}$	Thermal Resistance, Junction-to-Case		2.27	°C/W
$R_{ hetaJA}$	Thermal Resistance, Junction-to-Ambient		62.5	°C/W

©2000 Fairchild Semiconductor International

Symbol	Parameter	Test Conditions	Min	Тур	Max	Units
Off Cha	aracteristics					
BV _{DSS}	Drain-Source Breakdown Voltage	$V_{GS} = 0 V, I_{D} = 250 \mu A$	600			V
ΔBV _{DSS} / ΔT _J	Breakdown Voltage Temperature Coefficient	$I_D = 250 \ \mu$ A, Referenced to 25°C		0.71		V/°C
I _{DSS}	$V_{DS} = 600 \text{ V}, \text{ V}_{GS} = 0 \text{ V}$	$V_{DS} = 600 \text{ V}, V_{GS} = 0 \text{ V}$			10	μA
	Zero Gate Voltage Drain Current	$V_{DS} = 480 \text{ V}, \text{ T}_{C} = 125^{\circ}\text{C}$			100	μA
I _{GSSF}	Gate-Body Leakage Current, Forward	$V_{GS} = 30 \text{ V}, V_{DS} = 0 \text{ V}$			100	nA
I _{GSSR}	Gate-Body Leakage Current, Reverse	V_{GS} = -30 V, V_{DS} = 0 V			-100	nA
On Cha	aracteristics					
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}, I_D = 250 \mu\text{A}$	3.0		5.0	V
R _{DS(on)}	Static Drain-Source On-Resistance	$V_{GS} = 10 \text{ V}, \text{ I}_{D} = 2.9 \text{ A}$		0.55	0.7	Ω
9 _{FS}	Forward Transconductance	$V_{DS} = 50 \text{ V}, I_D = 2.9 \text{ A}$ (Note 4)		6.0		S
C _{iss}	Input Capacitance	$V_{DS} = 25 \text{ V}, \text{ V}_{GS} = 0 \text{ V},$		1480	1900	pF
C _{oss} C _{rss}	Output Capacitance Reverse Transfer Capacitance	f = 1.0 MHz		200 25	270 35	PF PG
Orss	neverse mansier Capacitance			25	35	μ
Switch	ing Characteristics					
t _{d(on)}	Turn-On Delay Time	V _{DD} = 300 V, I _D = 12 A,		30	70	ns
t _r	Turn-On Rise Time	$R_G = 25 \Omega$		115	240	ns
t _{d(off)}	Turn-Off Delay Time	u -		95	200	ns
t _f	Turn-Off Fall Time	(Note 4, 5)		85	180	ns
Qg	Total Gate Charge	V _{DS} = 480 V, I _D = 12 A,		42	54	nC
Q _{gs}	Gate-Source Charge	V _{GS} = 10 V		8.6		nC
Q _{gd}	Gate-Drain Charge	(Note 4, 5)		21		nC
Durin C						
Drain-S	Source Diode Characteristics ar Maximum Continuous Drain-Source Dic			5.8	А	
I _{SM}	Maximum Pulsed Drain-Source Diode Forward Current				23	A
		$V_{GS} = 0 \text{ V}, \text{ I}_{S} = 5.8 \text{ A}$			1.4	V
Ved	Drain-Source Diode Forward Voltage	$V_{12} = 0$ V, $12 = 3.0$ A				
V _{SD}	Drain-Source Diode Forward Voltage Reverse Recovery Time	$V_{GS} = 0 V, I_S = 3.0 A$ $V_{GS} = 0 V, I_S = 12 A,$		380		ns

Q_{rr}

Notes: 1. Repetitive Rating : Pulse width limited by maximum junction temperature 2. L = 43mH, I_{AS} = 5.8A, V_{DD} = 50V, R_G = 25 Ω , Starting T_J = 25°C 3. $I_{SD} \leq 12A$, di/dt $\leq 200A/\mu s$, $V_{DD} \leq BV_{DSS}$, Starting T_J = 25°C 4. Pulse Test : Pulse width $\leq 300\mu s$, Duty cycle $\leq 2\%$ 5. Essentially independent of operating temperature

©2000 Fairchild Semiconductor International

FQPF12N60

Typical Characteristics

1.8 1.6

3000

2400

Capacitance [pH]

600

0 L

10

5

15

10

V_{DS'} Drain-Source Voltage [V]

Figure 5. Capacitance Characteristics

 $I_{_D}$, Drain Current [A]

Figure 3. On-Resistance Variation vs.

Drain Current and Gate Voltage

20

25

30

+ C_{ad} (C_{ds} + C_d

> 1. V_{GS} = 0 V 2. f = 1 MHz

10

35

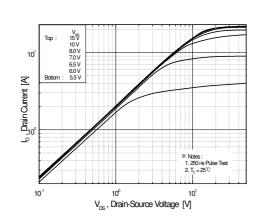


Figure 1. On-Region Characteristics

10V

= 20\

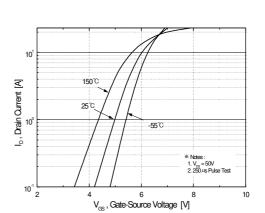
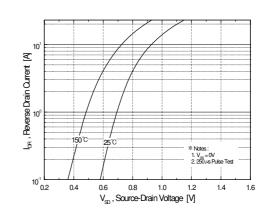
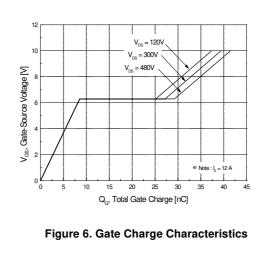
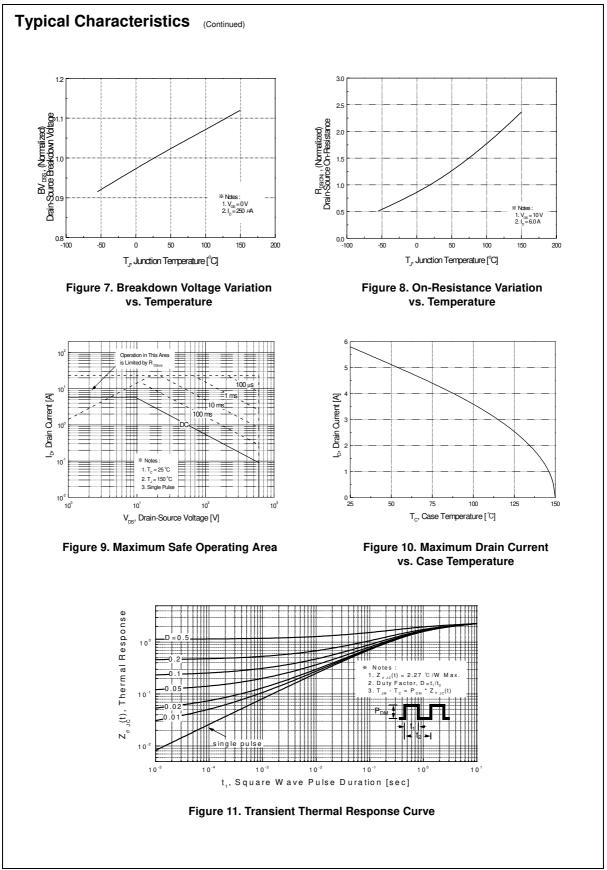
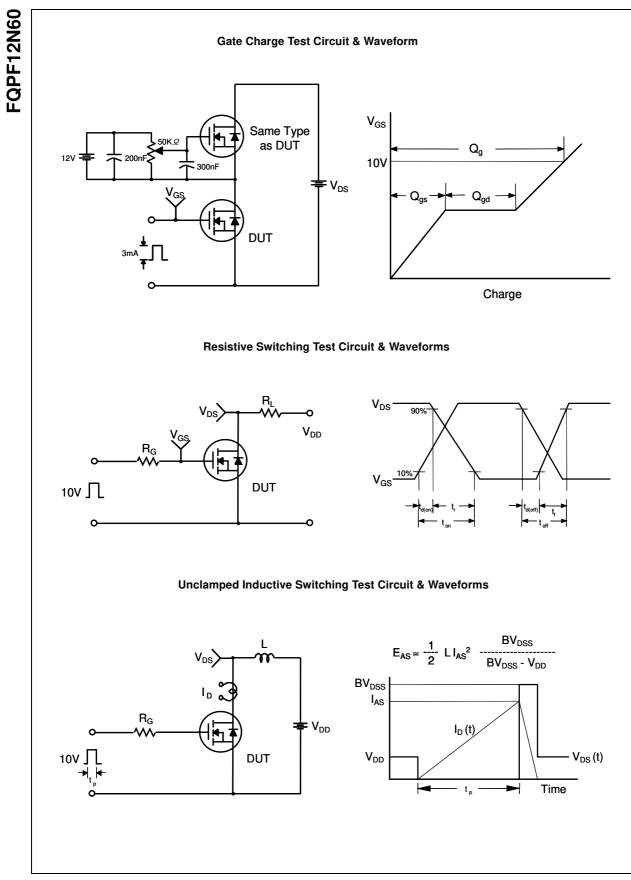
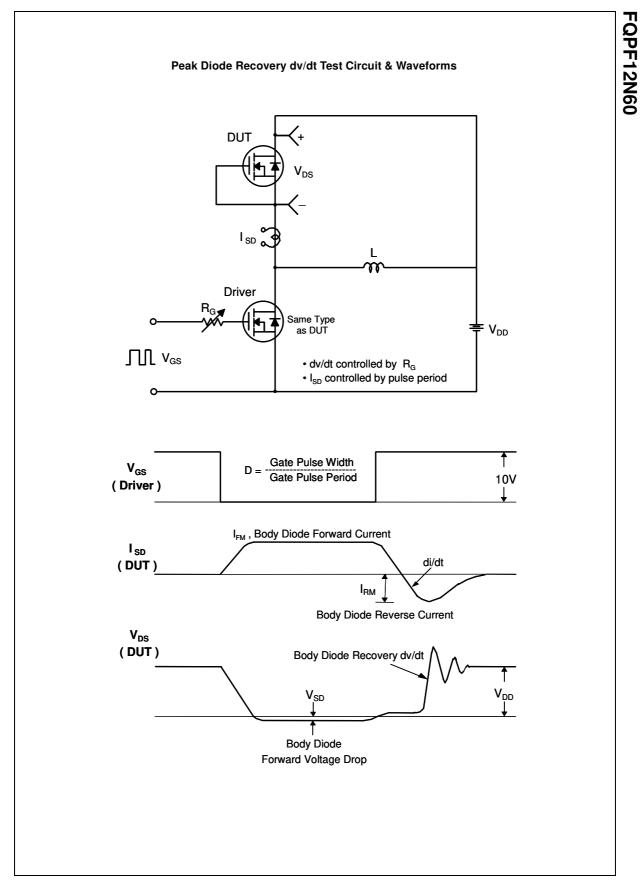




Figure 2. Transfer Characteristics



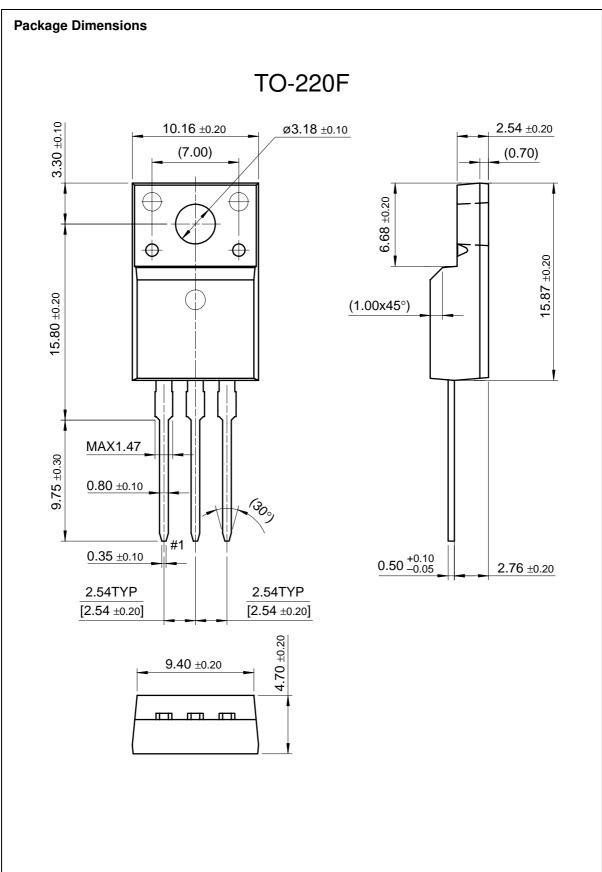


Rev. A, April 2000



FQPF12N60

©2000 Fairchild Semiconductor International


Rev. A, April 2000

©2000 Fairchild Semiconductor International

Rev. A, April 2000

©2000 Fairchild Semiconductor International

Rev. A, April 2000

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACExTM BottomlessTM CoolFETTM CROSSVOLTTM E^2 CMOSTM FACTTM FACT Quiet SeriesTM FAST[®] FASTrTM GTOTM HiSeC[™] ISOPLANAR[™] MICROWIRE[™] POP[™] PowerTrench[®] QFET[™] QS[™] Quiet Series[™] SuperSOT[™]-3 SuperSOT[™]-6 SuperSOT[™]-8 SyncFET[™] TinyLogic[™] UHC[™] VCX[™]

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR INTERNATIONAL.

As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to

result in significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.

Fairchild Semiconductor			t Folders and Applica
find products Products groups Analog and Mixed Signal Discrete Interface Logic Microcontrollers Non-Volatile Memory Optoelectronics Markets and applications New products Product selection and parametric search Cross-reference search	Home >> Find products >> FQPF12N60 600V N-Channel QFET Contents General description Features Product. status/pricing/packaging Models General description These N-Channel enhancement mode power field effect transistors are produced using Fairchild's proprietary, planar stripe, DMOS technology. This advanced technology has been especially tailored to minimize on-state resistance, provide superior switching performance, and withstand high energy pulse in the avalanche and commutation mode. These devices are well suited for high efficiency switch mode power supply.	Datasheet Download this datasheet PDF e-mail this datasheet [E- This pagePrint version	Leolders and Annlica Related Links Request samples Dotted Line How to order products Dotted Line Product Change Notices (PCNs) Dotted Line Support Dotted Line Distributor and field sales representatives Dotted Line Quality and reliability Dotted Line Design tools
my Fairchild company	Features		

- 5.8A, 600V, $R_{DS(on)} = 0.7\Omega @V_{GS} = 10$ V
- Low gate charge (typical 42 nC)
- Low Crss (typical 25 pF)
- Fast switching
- 100% avalanche tested
- Improved dv/dt capability

back to top

Product status/pricing/packaging

Product	Product status	Pricing*	Package type	Leads	Packing method
FQPF12N60	Full Production	\$1.86	<u>TO-220F</u>	3	RAIL
FQPF12N60T	Full Production	\$1.86	<u>TO-220F</u>	3	RAIL

Product Folder - Fairchild P/N FQPF12N60 - 600V N-Channel QFET

* 1,000 piece Budgetary Pricing

back to top

Models

Package & leads	Condition	Temperature range	Software version	Revision date	
PSPICE					
TO-220F-3	Electrical/Thermal	-55°C to 150°C	9.2	Apr 24, 2001	

back to top

<u>Home</u> | <u>Find products</u> | <u>Technical information</u> | <u>Buy products</u> | <u>Support</u> | <u>Company</u> | <u>Contact us</u> | <u>Site index</u> | <u>Privacy policy</u>

© Copyright 2002 Fairchild Semiconductor