

General Description

The MAX3984 evaluation kit (EV kit) is a fully assembled and tested demonstration board that provides complete evaluation of the MAX3984 1Gbps to 10Gbps preemphasis driver with receive equalizer.

Features

- ♦ Fully Assembled and Tested
- ♦ Allows Full Electrical Evaluation

Ordering Information

PART		TEMP RANGE IC PACKA	
Γ	MAX3984EVKIT+	0°C to +85°C	16 TQFN-EP

⁺Denotes a lead-free/RoHS-compliant package.

Component List

DESIGNATION	QTY	DESCRIPTION
C1	1	33μF ±10% tantalum capacitor (B case)
C2, C3, C8	3	0.1µF ±10% ceramic capacitors (0402)
C4–C7, C9, C10	6	0.01µF ±5% ceramic capacitors (0402)
J1–J4	4	SMA connectors (edge-mount, tab-contact)
J6, J10, TP1, TP2, TP3, TP5	6	Test points

DESIGNATION	QTY	DESCRIPTION	
JU1, JU2 JU4–JU7	6	3-pin headers (0.1in centers)	
JU3	1	2-pin header (0.1in centers)	
None	6	Shunts	
L1	1	4.7µH ±10% inductor (1008)	
R1	1	4.7kΩ ±5% resistor (0402)	
U1	1	MAX3984UTE+ 16-pin TQFN-EP	
None	1	PCB: MAX3984 EV kit circuit board, Rev A	

Quick Start

See Figure 1 for quick reference.

- 1) Remove shunt from JU2.
- 2) Install shunt on JU3. This disables the squelch. To enable squelch connect JU2 between VCC and center pin and remove JU3.
- 3) Install shunt on TX_DISABLE (JU4) between GND (logic 0) and the center pin. This enables the output
- 4) Install shunt on IN_LEV (JU1) between GND (logic 0) and center pin. This disables the equalization at the input of the chip.
- 5) Install shunts on PE0 (JU5) and PE1 (JU6) between GND (logic 0) and the center pin. This sets the output preemphasis to a minimum. See Table 1 for a complete list of settings.

- 6) Install shunt on OUT_LEV (JU7) between GND (logic 0) and the center pin. This sets the output swing to a reduced level.
- 7) Connect at +3.3V power supply to the +3.3V (J6) and GND (J10) terminals. Set the current limit to 150mA. Monitor the supply voltage at VCC (TP2). This is the supply that powers the chip.
- 8) Apply a 500mV_{P-P} differential signal to IN+ (J1) and IN- (J2).
- 9) Using 50Ω cables, connect OUT+ (J3) and OUT-(J4) to an oscilloscope with a 50Ω input terminations.

___Adjustment and Control Descriptions (see Quick Start first)

COMPONENT	NAME	FUNCTION		
J1, J2 IN+, IN-		Data Input. CML input that is internally terminated with 50Ω to VCC - 1.5V.		
J3, J4	OUT+, OUT-	Data Output. CML output that is internally terminated with 50Ω to VCC.		
J6, J10	+3.3V, GND	Connection for a +3.3V or +3.6V Power Supply. Set the current limit to 150mA.		
JU1	IN_LEV	Receive Equalization Control Input. Set to VCC (logic 1) for higher LOS assert/deassert levels and 10in FR-4 compensation. Set to GND (logic 0) for lower LOS assert/deassert levels and to bypass the FR-4 equalization.		
JU2	_	LOS Pullup Termination. Connected to VCC terminates the LOS though a $4.7 k\Omega$ resistor to VCC. Connected to TP5 terminates the LOS through a $4.7 k\Omega$ resistor to +5.5V.		
JU3 — LOS Disable. Intalling jumper disable the LOS		LOS Disable. Intalling jumper disable the LOS. Remove jumper for normal LOS operation.		
JU4	TX_DISABLE	Tramsitter Disable. Set to GND (logic 0) for normal operation. Set to VCC (logic 1) or open to reduce the differential output to less than 10mV _{P-P} .		
JU5 PE0		Preemphasis Control Least Significant Bit. See Table 1 for controls.		
JU6 PE1		Preemphasis Control Most Significant Bit. See Table 1 for controls.		
JU7	OUT_LEV	Output-Swing Control. Set to VCC (logic 1) or open for maximum output swing. Set to GND (logic 0) for reduced swing.		
TP1 LOS Loss-of-Signa		Loss-of-Signal Output. Monitor with high-impedance probe.		
TP2, TP3	VCC, GND	Connection for Monitoring VCC and GND		
TP5	+5.5V	Connection for Alternate Pullup Voltage for LOS		

Table 1. Preemphasis Settings

		=
PE1	PE0	PREEMPHASIS (dB)
0	0	3.5
0	1	6.5
1	0	9.5
1	1	13

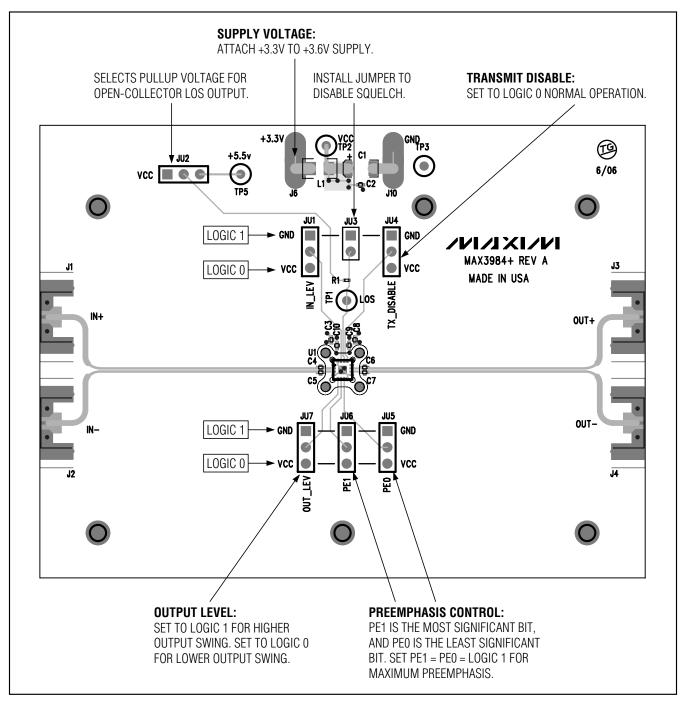


Figure 1. MAX3984 EV Kit Quick Reference

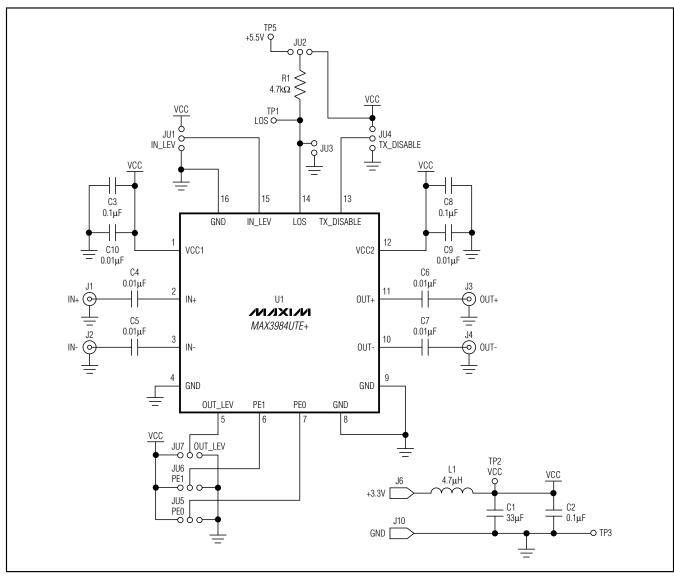


Figure 2. MAX3984 EV Kit Schematic

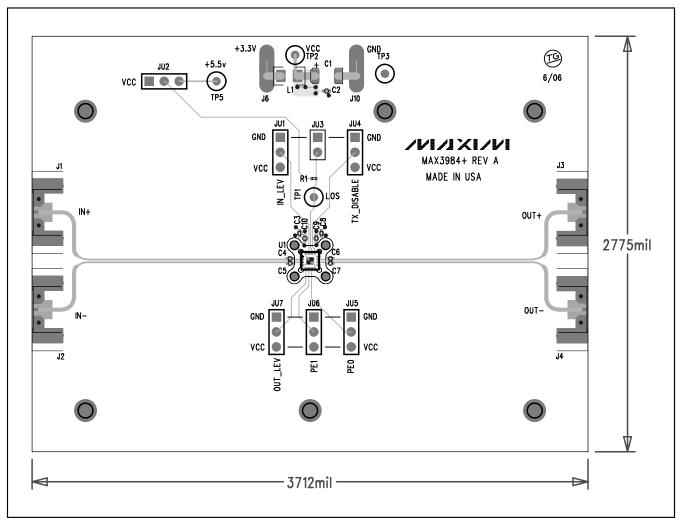


Figure 3. MAX3984 EV Kit Component Placement Guide—Component Side

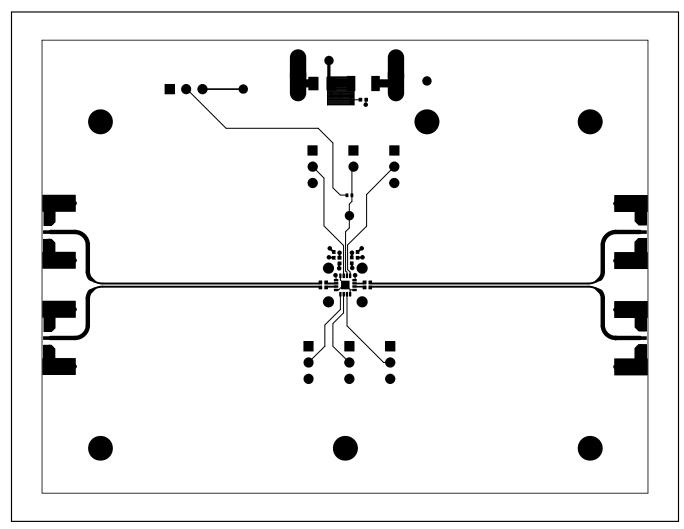


Figure 4. MAX3984 EV Kit PCB Layout—Component Side, Layer 1

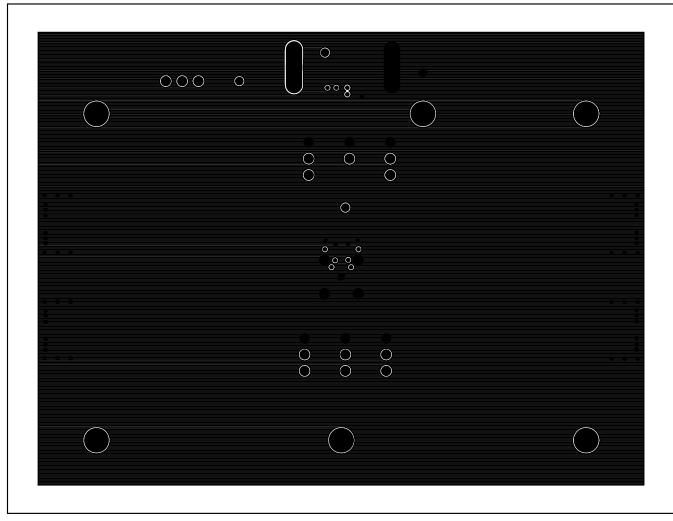


Figure 5. MAX3984 EV Kit PCB Layout—Ground Plane, Layer 2

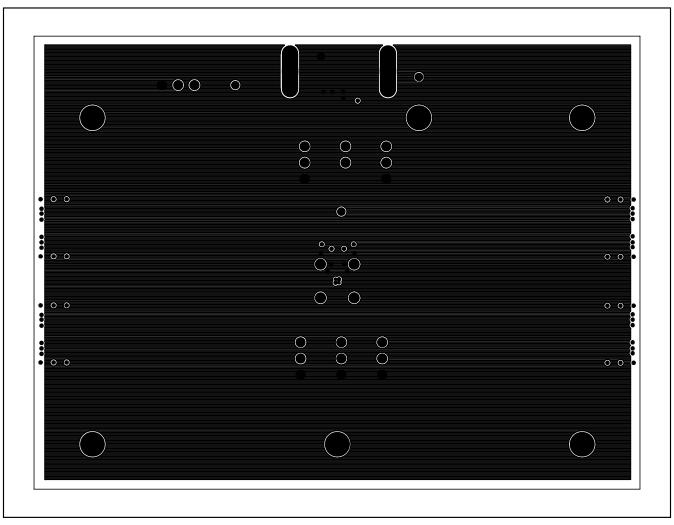


Figure 6. MAX3984 EV Kit PCB Layout—Power Plane, Layer 3

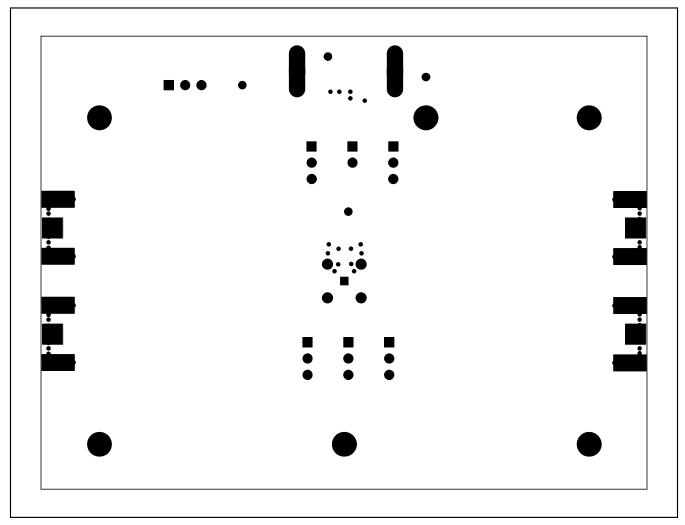


Figure 7. MAX3984 EV Kit PCB Layout—Bottom Side, Layer 4

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.