
GENERAL DESCRIPTION

The 85322 is a Dual LVCMOS / LVTTL-to-Differential 2.5V / 3.3V LVPECL translator. The 85322 has selectable single ended clock inputs. The single ended clock input accepts LVCMOS or LVTTL input levels and translate them to 2.5V / 3.3V LVPECL levels. The small outline 8-pin SOIC package makes this device ideal for applications where space, high performance and low power are important.

FEATURES

- Two differential 2.5V/3.3V LVPECL outputs
- Selectable CLK0, CLK1 LVCMOS/LVTTL clock inputs
- CLK0 and CLK1 can accepts the following input levels: LVCMOS or LVTTL
- Maximum output frequency: 267MHz
- Part-to-part skew: 250ps (maximum)
- 3.3V operating supply voltage (operating range 3.135V to 3.465V)
- 2.5V operating supply voltage (operating range 2.375V to 2.625V)
- 0°C to 70°C ambient operating temperature
- Lead-Free package available

BLOCK DIAGRAM

PIN ASSIGNMENT

Q0 🗌 1	8 🗌 Vcc
nQ0 🗌 2	7 CLK0
Q1 🗌 3	6 CLK1
nQ1	5 🗌 Vee

85322

8-Lead SOIC 3.90mm x 4.92mm x 1.37mm body package M Package Top View

TABLE 1. PIN DESCRIPTIONS

Number	Name	Туре		Description
1, 2	Q0, nQ0	Output		Differential output pair. LVPECL interface levels.
3, 4	Q1, nQ1	Output		Differential output pair. LVPECL interface levels.
5	V _{EE}	Power		Negative supply pin.
6	CLK1	Input	Pullup	LVCMOS / LVTTL clock input.
7	CLK0	Input Pullup		LVCMOS / LVTTL clock input.
8	V _{cc}	Power		Positive supply pin.

NOTE: Pullup refers to internal input resistors. See Table 2, Pin Characteristics, for typical values.

TABLE 2. PIN CHARACTERISTICS

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
C _{IN}	Input Capacitance			4		pF
R _{PULLUP}	Input Pullup Resistor			51		kΩ

RENESAS

Absolute Maximum Ratings

Supply Voltage, V _{cc}	4.6V
Inputs, V _I	-0.5V to V _{cc} + 0.5 V
Outputs, I _o Continuous Current Surge Current	50mA 100mA
Package Thermal Impedance, $\boldsymbol{\theta}_{_{J\!A}}$	112.7°C/W (0 lfpm)
Storage Temperature, T_{STG}	-65°C to 150°C

NOTE: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These ratings are stress specifications only. Functional operation of product at these conditions or any conditions beyond those listed in the *DC Characteristics* or *AC Characteristics* is not implied. Exposure to absolute maximum rating conditions for extended periods may affect product reliability.

TABLE 3A. Power Supply DC Characteristics, $V_{cc} = 3.3V \pm 5\%$, TA = 0°C to 70°C

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
V _{cc}	Positive Supply Voltage		3.135	3.3	3.465	V
I	Power Supply Current				25	mA

TABLE 3B. LVCMOS / LVTTL DC Characteristics, $V_{cc} = 3.3V \pm 5\%$, TA = 0°C to 70°C

Symbol	Parameter		Test Conditions	Minimum	Typical	Maximum	Units
V _{IH}	Input High Voltage	CLK0, CLK1		2		3.765	V
V _{IL}	Input Low Voltage	CLK0, CLK1		-0.3		1.3	V
I _{IH}	Input High Current	CLK0, CLK1	$V_{\rm CC} = V_{\rm IN} = 3.465 V$			5	μA
I _{IL}	Input Low Current	CLK0, CLK1	$V_{\rm CC} = V_{\rm IN} = 3.465 V$	-150			μA

TABLE 3C. LVPECL DC CHARACTERISTICS, $V_{cc} = 3.3V \pm 5\%$, TA = 0°C to 70°C

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
V _{OH}	Output High Voltage; NOTE 1	$V_{\rm CC} = V_{\rm IN} = 3.465 V$	V _{cc} - 1.4		V _{cc} - 0.9	V
V _{ol}	Output Low Voltage; NOTE 1	$V_{\rm CC} = V_{\rm IN} = 3.465 V$	V _{cc} - 2.0		V _{cc} - 1.7	V
V _{SWING}	Peak-to-Peak Output Voltage Swing		0.65		1.0	V

NOTE 1: Outputs terminated with 50 Ω to V $_{cc}$ - 2V.

Table 4A. AC Characteristics, $V_{CC} = 3.3V \pm 5\%$, Ta = 0°C to 70°C

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
f _{MAX}	Output Frequency				267	MHz
t _{PD}	Propagation Delay; NOTE 1	$f \le 267 \text{MHz}$	0.6		1.8	ns
tsk(pp)	Part-to-Part Skew; NOTE 2, 3				250	ps
t _R /t _F	Output Rise/Fall Time	20% to 80% @ 50MHz	300		700	ps
odc	Output Duty Cycle		40		60	%

All parameters measured at 133MHz unless noted otherwise.

NOTE 1: Measured from $V_{\rm cc}/2$ of the input to the differential output crossing point.

NOTE 2: Defined as skew between outputs on different devices operating at the same supply voltages

and with equal load conditions. Using the same type of inputs on each device, the outputs are measured at the differential cross points.

NOTE 3: This parameter is defined in accordance with JEDEC Standard 65.

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
V _{cc}	Positive Supply Voltage		2.375	2.5	2.625	V
I _{EE}	Power Supply Current				25	mA

TABLE 3D. Power Supply DC Characteristics, $V_{CC} = 2.5V\pm5\%$, TA = 0°C to 70°C

TABLE 3E. LVCMOS / LVTTL DC Characteristics, $V_{cc} = 2.5V \pm 5\%$, TA = 0°C to 70°C

Symbol	Parameter		Test Conditions	Minimum	Typical	Maximum	Units
V _{IH}	Input High Voltage	CLK0, CLK1		1.6		2.925	V
V _{IL}	Input Low Voltage	CLK0, CLK1		-0.3		0.9	V
I _{IH}	Input High Current	CLK0, CLK1	$V_{\rm CC} = V_{\rm IN} = 2.625$			5	μA
I _{IL}	Input Low Current	CLK0, CLK1	$V_{\rm CC} = V_{\rm IN} = 2.625$	-150			μA

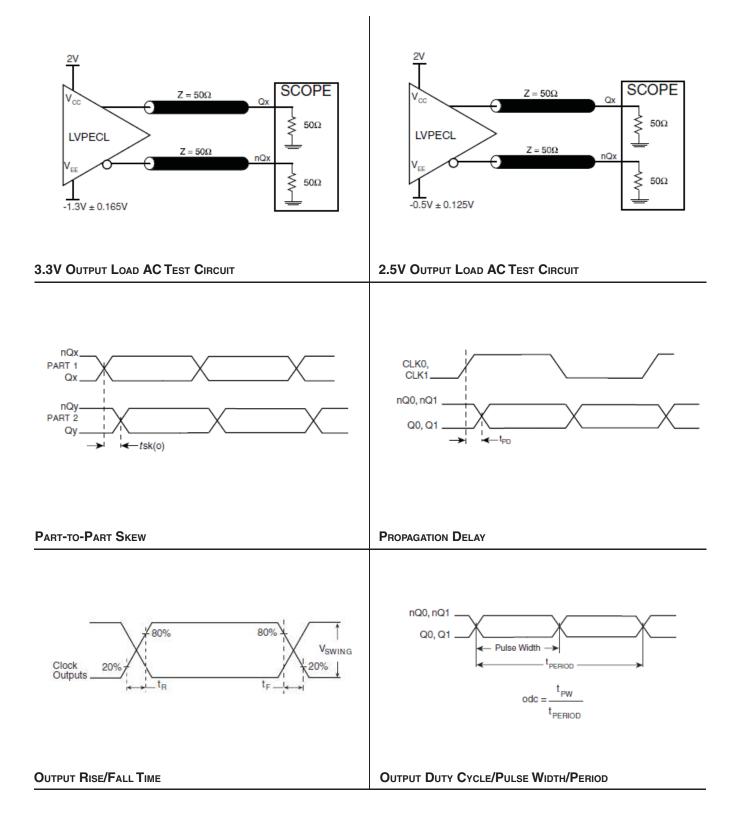
TABLE 3F. LVPECL DC Characteristics, $V_{cc} = 2.5V \pm 5\%$, TA = 0°C to 70°C

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
V _{OH}	Output High Voltage; NOTE 1		V _{cc} - 1.4		V _{cc} - 0.9	V
V _{ol}	Output Low Voltage; NOTE 1		V _{cc} - 2.0		V _{cc} - 1.7	V
V _{SWING}	Peak-to-Peak Output Voltage Swing		0.65		1.0	V

NOTE 1: Outputs terminated with 50 Ω to V $_{cc}$ - 2V.

TABLE 4B. AC Characteristics, $V_{cc} = 2.5V \pm 5\%$, TA = 0°C to 70°C

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
f _{MAX}	Output Frequency				215	MHz
t _{PD}	Propagation Delay; NOTE 1	$f \le 215 \text{MHz}$	0.8		2	ns
tsk(pp)	Part-to-Part Skew; NOTE 2, 3				250	ps
t _R / t _F	Output Rise/Fall Time	20% to 80% @ 50MHz	300		700	ps
odc	Output Duty Cycle		40		60	%


All parameters measured at 133MHz unless noted otherwise.

NOTE 1: Measured from $V_{cc}/2$ of the input to the differential output crossing point.

NOTE 2: Defined as skew between outputs on different devices operating at the same supply voltages and with equal load conditions. Using the same type of inputs on each device, the outputs are measured at the differential cross points.

NOTE 3: This parameter is defined in accordance with JEDEC Standard 65...

APPLICATION INFORMATION

TERMINATION FOR LVPECL OUTPUTS

The clock layout topology shown below is a typical termination for LVPECL outputs. The two different layouts mentioned are recommended only as guidelines.

FOUT and nFOUT are low impedance follower outputs that generate ECL/LVPECL compatible outputs. Therefore, terminating resistors (DC current path to ground) or current sources must be used for functionality. These outputs are designed to

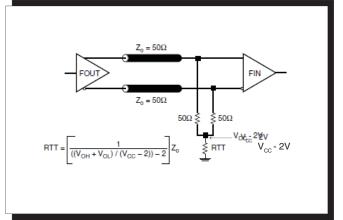


FIGURE 1A. LVPECL OUTPUT TERMINATION

drive 50Ω transmission lines. Matched impedance techniques should be used to maximize operating frequency and minimize signal distortion. Figures 1A and 1B show two different layouts which are recommended only as guidelines. Other suitable clock layouts may exist and it would be recommended that the board designers simulate to guarantee compatibility across all printed circuit and clock component process variations.

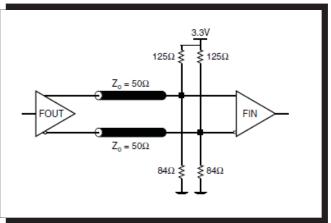


FIGURE 1B. LVPECL OUTPUT TERMINATION

Power Considerations

This section provides information on power dissipation and junction temperature for the 85322. Equations and example calculations are also provided.

1. Power Dissipation.

The total power dissipation for the 85322 is the sum of the core power plus the power dissipated in the load(s). The following is the power dissipation for $V_{cc} = 3.3V + 5\% = 3.465V$, which gives worst case results. **NOTE:** Please refer to Section 3 for details on calculating power dissipated in the load.

- Power (core)_{MAX} = V_{CC MAX} * I_{EE MAX} = 3.465V * 25mA = 86.6mW
- Power (outputs)_{MAX} = 30mW/Loaded Output pair
 If all outputs are loaded, the total power is 2 * 30mW = 60mW

Total Power MAX (3.465V, with all outputs switching) = 86.6mW + 60mW = 146.6mW

2. Junction Temperature.

Junction temperature, Tj, is the temperature at the junction of the bond wire and bond pad and directly affects the reliability of the device. The maximum recommended junction temperature for the devices is 125°C.

The equation for Tj is as follows: $Tj = \theta_{JA} * Pd_{total} + T_A$

Tj = Junction Temperature

 θ_{JA} = Junction-to-Ambient Thermal Resistance

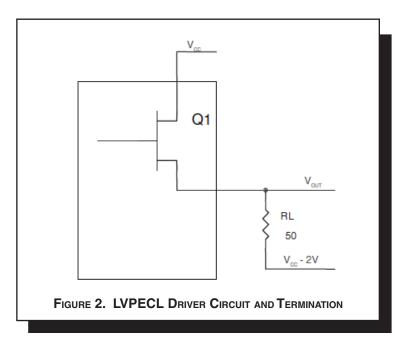
Pd_total = Total Device Power Dissipation (example calculation is in section 1 above)

T_A = Ambient Temperature

In order to calculate junction temperature, the appropriate junction-to-ambient thermal resistance θ_{JA} must be used. Assuming a moderate air flow of 200 linear feet per minute and a multi-layer board, the appropriate value is 103.3°C/W per Table 5 below.

Therefore, Tj for an ambient temperature of 70°C with all outputs switching is: $70^{\circ}C + 0.147W * 103.3^{\circ}C/W = 85.2^{\circ}C$. This is well below the limit of 125°C.

This calculation is only an example. Tj will obviously vary depending on the number of loaded outputs, supply voltage, air flow, and the type of board (single layer or multi-layer).


TABLE 5. THERMAL RESISTANCE θ_{JA} for 8-pin SOIC, Forced Convection

θJA by Velocity (Linear Feet per Minute)			
	0	200	500
Single-Layer PCB, JEDEC Standard Test Boards	153.3°C/W	128.5°C/W	115.5°C/W
Multi-Layer PCB, JEDEC Standard Test Boards	112.7°C/W	103.3°C/W	97.1°C/W

3. Calculations and Equations.

The purpose of this section is to derive the power dissipated into the load.

LVPECL output driver circuit and termination are shown in Figure 2.

To calculate worst case power dissipation into the load, use the following equations which assume a 50Ω load, and a termination voltage of V_{cc} - 2V.

• For logic high, $V_{OUT} = V_{OH_MAX} = V_{CC_MAX} - 0.9V$

 $(V_{\text{CC}_\text{MAX}} - V_{\text{OH}_\text{MAX}}) = \textbf{0.9V}$

• For logic low, $V_{OUT} = V_{OL_{MAX}} = V_{CC_{MAX}} - 1.7V$

 $(V_{CC_MAX} - V_{OL_MAX}) = 1.7V$

Pd_H is power dissipation when the output drives high. Pd_L is the power dissipation when the output drives low.

 $Pd_{H} = [(V_{OH_{MAX}} - (V_{CC_{MAX}} - 2V))/R_{L}] * (V_{CC_{MAX}} - V_{OH_{MAX}}) = [(2V - (V_{CC_{MAX}} - V_{OH_{MAX}}))/R_{L}] * (V_{CC_{MAX}} - V_{OH_{MAX}}) = [(2V - 0.9V)/50\Omega] * 0.9V = 19.8mW$

 $Pd_{L} = [(V_{OL_{MAX}} - (V_{CC_{MAX}} - 2V))/R_{L}] * (V_{CC_{MAX}} - V_{OL_{MAX}}) = [(2V - (V_{CC_{MAX}} - V_{OL_{MAX}}))/R_{L}] * (V_{CC_{MAX}} - V_{OL_{MAX}}) = [(2V - 1.7V)/50\Omega] * 1.7V = 10.2mW$

Total Power Dissipation per output pair = Pd_H + Pd_L = 30mW

RELIABILITY INFORMATION

Table 6. $\boldsymbol{\theta}_{JA} \text{vs.}$ Air Flow Table for 8 Lead SOIC

θ _{JA} by Velocity (Linear Feet per Minute)			
0	200	500	
153.3°C/W	128.5°C/W	115.5°C/W	
112.7°C/W	103.3°C/W	97.1°C/W	
0	0 153.3°C/W	0 200 153.3°C/W 128.5°C/W	

TRANSISTOR COUNT

The transistor count for 85322 is: 269

PACKAGE OUTLINE - M SUFFIX FOR 8 LEAD SOIC

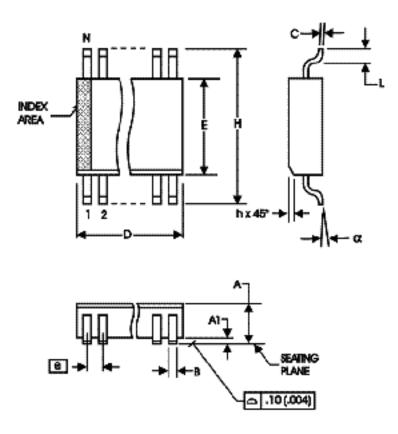


TABLE 7. PACKAGE DIMENSIONS

CYMDOL	Millimeters		
SYMBOL	MINIMUN	MAXIMUM	
N	8		
A	1.35	1.75	
A1	0.10	0.25	
В	0.33	0.51	
С	0.19	0.25	
D	4.80	5.00	
E	3.80	4.00	
е	1.27 BASIC		
н	5.80	6.20	
h	0.25	0.50	
L	0.40	1.27	
α	0°	8°	

Reference Document: JEDEC Publication 95, MS-012

RENESAS

TABLE 8. ORDERING INFORMATION

Part/Order Number	Marking	Package	Shipping Packaging	Temperature
85322AMLF	85322AML	8 lead "Lead-Free" SOIC	tube	0°C to 70°C
85322AMLFT	853322AML	8 lead "Lead-Free" SOIC	tape & reel	0°C to 70°C

REVISION HISTORY SHEET				
Rev	Table	Page	Description of Change	Date
Α		9	Added Termination for LVPECL Outputs section.	5/30/02
А		6 7	3.3V Output Load Test Circuit Diagram, corrected $V_{EE} = -1.3V \pm 0.135V$ to read $V_{EE} = -1.3V \pm 0.165V$. Updated Output Rise/Fall Time Diagram.	8/23/02
в	T2 T4A & T4B	2 3 3 & 4 6	 Pin Characteristics Table - changed C_{IN} 4pF max. to 4pF typical. Absolute Maximum Rating - changed Outputs rating. 3.3V and 2.5V AC Tables - changed tsk(pp) from 150ps max. to 250ps max. and reflects Features section on page 1. Updated LVPECL Output Termination drawings. Updated format. 	6/12/03
В	Т8	11	Ordering Information Table - added Lead Free part.	10/18/04
С	T2 T3C T3F T8	2 3 4 7 - 8 11	Pin Characteristics Table - deleted RPulldown row. LVPECL 3.3V DC Characteristics Table -corrected V_{OH} max. from V_{CC} - 1.0V to V_{CC} - 0.9V; and V_{SWING} max. from 0.85V to 1.0V. LVPECL 2.5V DC Characteristics Table -corrected V_{OH} max. from V_{CC} - 1.0V to V_{CC} - 0.9V; and V_{SWING} max. from 0.85V to 1.0V. Power Considerations - corrected power dissipation to reflect V_{OH} max in Table 3C & 3F. Ordering Information Table - added lead-free note.	4/11/07
D	T8	11 13	Updated datasheet's header/footer with IDT from ICS. Removed ICS prefix from Part/Order Number column. Added Contact Page.	7/31/10
D	Т8	11	Removed ICS from the part number where needed. Ordering Information - Removed leaded parts. Removed quantities for tape and reel. Deleted the LF note below the table. Updated header and footer.	1/20/16

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES ("RENESAS") PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers skilled in the art designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only for development of an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising out of your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use o any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.

(Disclaimer Rev.1.0 Mar 2020)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners. **Contact Information**

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit: <u>www.renesas.com/contact/</u>