Freescale Semiconductor User's Guide

Document Number: KTXSWITCHG3UG Rev. 1.0, 10/2008

eXtreme Switch Evaluation Boards

KIT10XS3412EVBE, KIT10XS3435EVBE, KIT15XS3400EVBE, KIT35XS3400EVBE

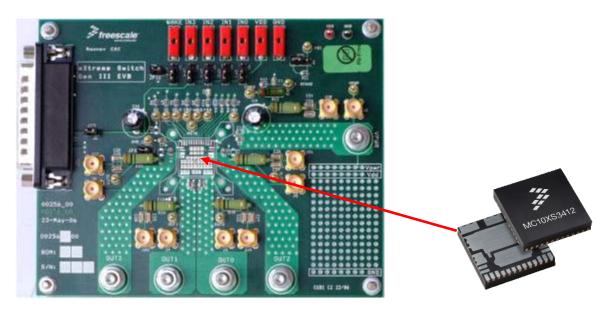


Figure 1. eXtreme Switch Evaluation Board (EVB)

Table of Contents

	Kit Contents / Packing List	
2 l	mportant Notice	. 3
3 l	ntroduction	. 4
4 F	Required Equipment	. 5
5 l	nstalling SPIGen Freeware on your Computer	. 6
	EVB Setup	
7 ι	Jsing the EVB	. 8
8 J	Jumper Connections	. 9
9 5	Schematic	10
10 E	Board Layout	11
11 E	Bill of Material	15
	References	
13 F	Revision History	17

© Freescale Semiconductor, Inc., 2008. All rights reserved.

Kit Contents / Packing List

1 Kit Contents / Packing List

- Evaluation Board
- Parallel Cable

2 Important Notice

Freescale provides the enclosed product(s) under the following conditions:

This evaluation kit is intended for use of ENGINEERING DEVELOPMENT OR EVALUATION PURPOSES ONLY. It is provided as a sample IC pre-soldered to a printed circuit board to make it easier to access inputs, outputs, and supply terminals. This EVB may be used with any development system or other source of I/O signals by simply connecting it to the host MCU or computer board via off-the-shelf cables. This EVB is not a Reference Design and is not intended to represent a final design recommendation for any particular application. Final device in an application will be heavily dependent on proper printed circuit board layout and heat sinking design as well as attention to supply filtering, transient suppression, and I/O signal quality.

The goods provided may not be complete in terms of required design, marketing, and or manufacturing related protective considerations, including product safety measures typically found in the end product incorporating the goods. Due to the open construction of the product, it is the user's responsibility to take any and all appropriate precautions with regard to electrostatic discharge. In order to minimize risks associated with the customers applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards. For any safety concerns, contact Freescale sales and technical support services.

Should this evaluation kit not meet the specifications indicated in the kit, it may be returned within 30 days from the date of delivery and will be replaced by a new kit.

Freescale reserves the right to make changes without further notice to any products herein. Freescale makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typical", must be validated for each customer application by customer's technical experts.

Freescale does not convey any license under its patent rights nor the rights of others. Freescale products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale product could create a situation where personal injury or death may occur.

Should Buyer purchase or use Freescale products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale was negligent regarding the design or manufacture of the part.Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. © Freescale Semiconductor, Inc. 2008

3 Introduction

3.1 EVB Features

This family of devices is designed for low-voltage automotive lighting applications. Its four low RDS(ON) MOSFETs can control:

- Four separate 55W / 28W bulbs
- Four separate Xenon modules
- Four separate LEDs
- Four separate Other type of loads

In addition, this family of devices has the following features:

- Programming, control, and diagnostics are accomplished using a 16-bit SPI interface.
- Its output with selectable slew-rate allows to satisfy electromagnetic compatibility (EMC) requirements.
- Each output can be controlled with an internal PWM modulated clock signal, instead of an external clock.

3.2 Device Description/Features

- Four protected high-side switches
- Operating voltage range of 6.0V to 20V with sleep current < 5.0 A, extended mode from 4.0V to 28V
- 8 MHz 16-bit 3.3V and 5V SPI control and status reporting with daisy chain capability
- PWM module using external clock or calibratable internal oscillator with programmable outputs delay
 management
- Smart over-current shutdown, severe short-circuit, over-temperature protections with time limited auto-retry, and fail-safe mode in case of MCU damage
- Output OFF or ON open-load detection compliant to bulbs or LEDs and short-to-battery detection. Analog current feedback with selectable ratio and board temperature feedback.

4 Required Equipment

Minimum required equipment:

- Power DC supply 40A/20V
- Optional DC supply 1A/ 5V
- Typical load (lamps,...)
- Parallel port enabled Computer with Windows XP or higher

5 Installing SPIGen Freeware on your Computer

There are two different versions of SPIGen. One is designed to run on Windows 95/98/Me, and the other is designed to run on Windows NT/2000/XP. Be sure to choose the appropriate installation program for your computer.

Each version of SPIGen includes a README.txt file which will describe the operating systems that the software should be installed on. Before you install the program, refer to the SPIGen README.txt file to check the compatibility of the installation program and your computer operating system.

To install the software from the CD-ROM, insert the CD-ROM into your CD drive. Click the Start button, and then click "Run...".

If you are running Windows 95, Windows 98, or Windows Me, type "D:\SPIGen_Win_95_98_Me\Setup.exe" in the box, and then click "OK".

If you are running Windows NT, Windows 2000, or Windows XP, type "D:\SPIGen_Win_NT_2000_XP\Setup.exe" in the box, and then click "OK".

Several temporary files will be copied to your computer, and then the Installation Wizard will guide you through the rest of the process.

To use SPIGen, Go to the Windows Start menu, then Programs, then SPIGen, and click on the SPIGen icon. The SPIGen "Generic SPI Generator" GUI will appear. Go to the File menu in the upper left hand corner of the GUI, and select Open, then browse the CD to find and select the SPIGen Configuration ".spi" file for the EVB you are using. Click Open, and SPIGen will open a specifically configured SPI command generator for your EVB.

<u>one command at a rin</u>	ie Send a <u>B</u>	atch of Commands	nere	itor					<u>S</u>	end (Jnci	•	2)onti	nu
Word to Send (DI)		٤	SPI wa	ord sent	State Street	0 0 13 12 1		1	23	0 (6 5	a the	÷	1.00	1	
Yord Received (DO)					15 14	13 12 1			Ŭ	0 (6 5		Ŭ	0 2	0 1	Č.
Data 0 Hig Data 1 Hig		Control 0 Control 1	High High	Low	-6		_fullyO fullyO	N N				S <u>a</u> Del			
Data 2 Hig Data 3 Hig		Control 2 Control 3	High High	Low		OUT2 OUT3 OUT0 OUT1 OUT1 OUT2 OUT3	fullyO Off Off Off				_	7000	All Bi		

Figure 2. SPIGen GUI

6 EVB Setup

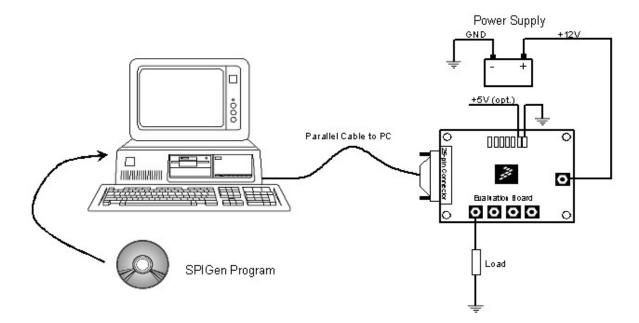
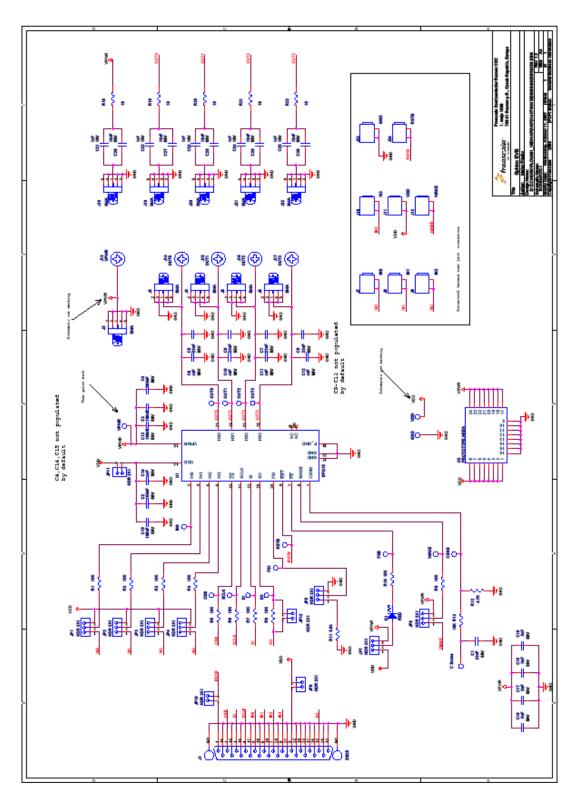


Figure 3. EVB Setup

7 Using the EVB

Warning: Always wear Safety Glasses when working around electronic modules and when soldering.


Please remove the capacitor C4 when testing reverse supply on Vpwr.

- 1. The EVB allows the customer to quickly evaluate features of the device with a simple bench top setup. All switch inputs may be evaluated using the onboard switch banks or actual system switches connected to the switch input edge connector.
- Using a standard 25 pin Sub-D parallel port cable and the enclosed SPIGen SPI Driver software, you can use a
 personal computer to provide the Serial Peripheral Interface (SPI) communication with this EVB (see
 SETUP_EVB).
- 3. Connect power supply to the VPWR and GND terminals on the EVB. Make sure the voltages provided are in accordance with the device data sheet and that the supply currents are sufficient to supply the switch contact wetting current. For the SPI communication is needed +5V. This voltage can be provided from PC via parallel cable (JP9 must be inserted) or through external power supply via connector VDD.Without +5V the device will be in fail-safe mode.
- 4. Connect desired external load between one of the output (OUT0 OUT3) and power supply ground.
- 5. For direct control of the outputs apply +5V on connectors IN0 IN3. Corresponding HS output turns-on. Each IN input wakes the device.
- 6. For preparing the evaluation board for SPIGen, place jumpers JP9, JP10 to 1-2 position.
- 7. To use SPIGen, Go to the Windows Start menu, then Programs, then SPIGen, and click on the SPIGen icon. The SPIGen "Generic SPI Generator" GUI will appear. Go to the File menu in the upper left hand corner of the GUI, and select Open, then browse the CD to find and select the *Device_EVB_CONFIGURATION_FILE.spi*. file for the Kit. Click Open, and SPIGen will open a specifically configured SPI command generator for the Kit. The configuration file will set all parameters for SPI signals from the PC and provide a list of commands that may be sent to the EVB.
- 8. To set up the device to read switch inputs the user may use the batch commands from the "Send a Batch of Commands" tab. In the "Send a Batch of Commands" window, the Full Initialize batch will appear. To send the batch of commands to the EVB, click the Send Once tab. To quickly evaluate the EVB and device, simply click on the "Send one Command at a Time" tab, select the switch status command from the Quick Commands list, and click the Send Continuous tab. The opening and closing of switches may now be seen on the Word Received bits window field. Refer to the device data sheet for detailed information on I/O communication and device operation.

8 Jumper Connections

Name	Description
JP1	Allows independent control of each high-side switch output
JP2	1-2 selection: outputs are controlled via SPIGen or connectors J7 - J10
JP3	2-3 selection: direct control of the output, appropriate output is ON
JP4	
JP5	FSI selection
	1-2: FSI terminal connected through 6k8 Ohm resistor to ground
	2-3: FSI terminal connected to ground
JP6	Allows wake up function of IC.
	1-2 selection will give external control through connector J12.
	2-3 selection is to wake up from battery voltage, i.e. in the case of ignition.
JP7	Selection of supplying of FSB LED
	1-2: FSB LED D1 connected to VDD (5V)
	2-3: FSB LED D1 connected to Vpwr (12V)
JP9	Source of VDD (+5V)
	1-2: +5V is provided by PC via parallel cable
	Floating: +5V must be connected to J11, otherwise the device is in fail-safe mode (the output states depend on R11 value).
JP10	Connection of RSTB input
	1-2 position: control through SPIGen
	Floating: RSTB is ground. This means that the IC is in sleep mode.
JP11	Connection of VDD to the device
	1-2 position: VDD connected to the device
	Floating: Device without VDD
JP12	R8 bypassing
	1-2 position: R8 is bypassed with 0Ohms. For higher speed of SPI (MCU control of the device only)
	Floating: Low speed SPI operation with SPIGen software
TEST POINTS	Several test points are presented on the evaluation board to check some signals using oscilloscope if necessary.

9 Schematic

eXtreme Switch Rev. 1.0

10 Board Layout

10.1 Top Assembly Layer

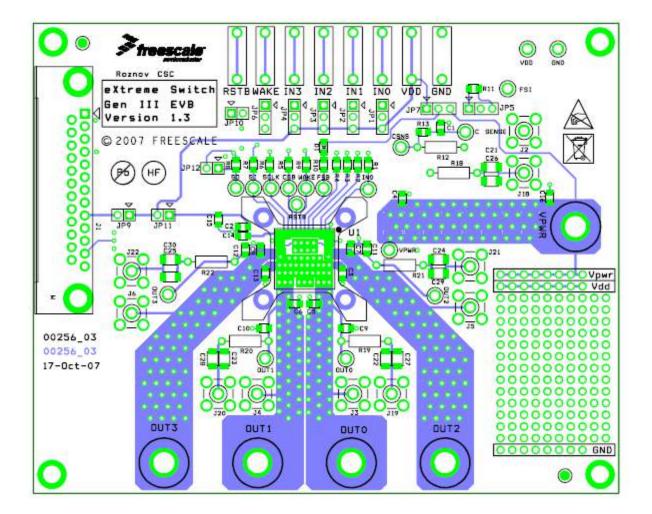


Figure 4. Top Assembly Layer

10.2 Bottom Assembly Layer

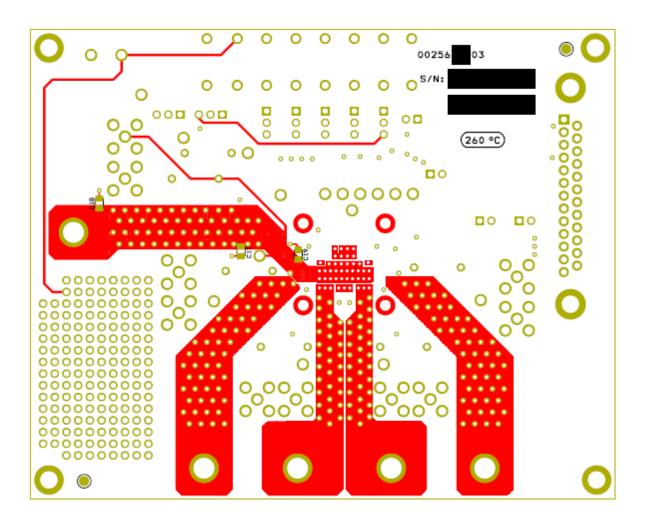


Figure 5. Bottom Assembly Layer

10.3 PCB Top Layer

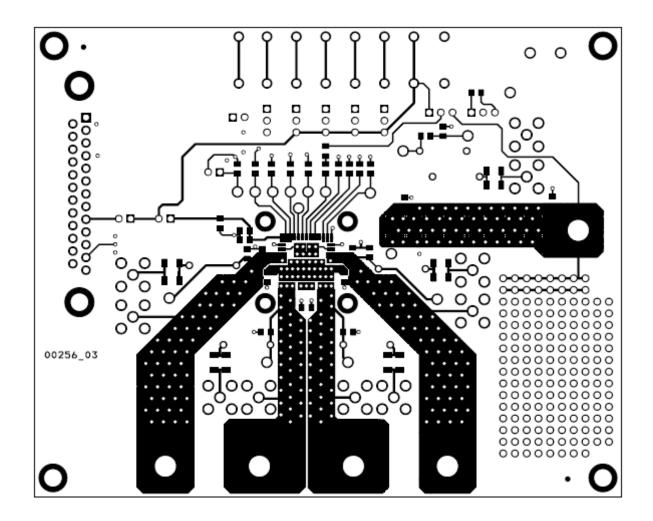


Figure 6. PCB Top Layer

10.4 PCB Bottom Layer

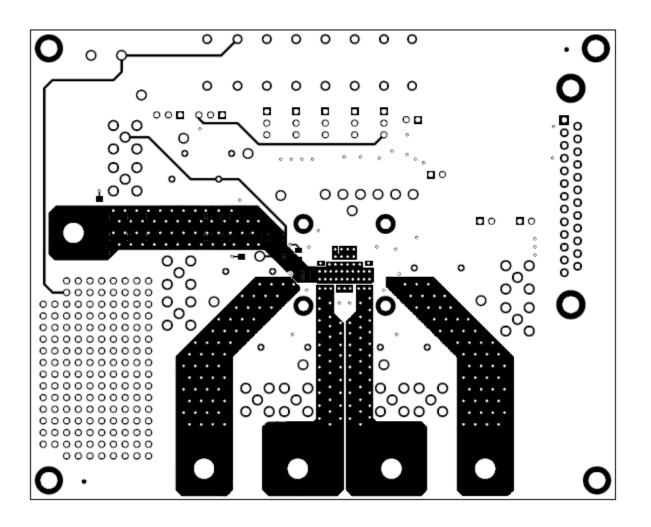


Figure 7. PCB Bottom Layer

Bill of Material

11 Bill of Material

Item	Qty	Part No.	Ref.	Package	Description	Populated	Rohs	Manufacturer		
1	1	SPQ15	U1	PQFN	Quad High-Side Switch	Yes	Yes	Freescale		
2	1		C1	SMD 0805	10nF 50V Ceramic Capacitor	Yes	Yes	AVX		
3	5		C26,C27,C28,C29,C30	SMD 1206	10nF 50V Ceramic Capacitor	No	Yes	AVX		
4	4		C2,C3, C13,C15	SMD 0805	100nF 50V Ceramic Capacitor	Yes	AVX			
5	2		C4,C20	Thru - hole 5mm	10uF 63V Electrolytic Capacitor	No	Yes	Jamicon		
6	4		C5,C6,C7,C8	SMD 0805	22nF 50V Ceramic Capacitor	Yes	Yes	AVX		
7	9		C9,C10,C11,C12,C14, C16, C17,C18,C19	SMD 0805	Ceramic Capacitor (for EMC tuning)	No				
8	5		C21,C22,C23,C24,C25	SMD 1206	1nF 50V Ceramic Capacitor	No	Yes	AVX		
9	1		D1	SMD 0805	red LED diode	Yes	Yes	Lumex		
10	7		JP1,JP2,JP3,JP4,JP5,J P6, JP7		Header 3x1	Yes	Yes	Samtec		
11	4		JP9,JP10,JP11,JP12		Header 2x1	Yes	Yes	Samtec		
12	1	ZEDB25PBA	J1		25-pin 90° PCB connector	Yes	Yes	ITT CANNON		
13	10	19-46-1-TGG	J2, J3, J4, J5, J6, J18, J19, J20, J21, J22	SMA	SMA Jack	No	Yes	MULTICOMP		
14	8	105-0752-001	J7, J8, J9, J10, J11, J12, J23, J24	Horizontal Test jack	YES	Yes	Johnson Components			
15	5		J13, J14, J15, J16, J17		Screw diam. 4mm + 2 nuts + 2 washers each for power connector	Yes	Yes			
16	11		R1, R2, R3, R4, R5, R6, R7, R8, R9, R10, R13	SMD 0805	10k 5% Resistor	Yes	Yes			
17	1		R11	SMD 0805	6.8k 1% Resistor	Yes	Yes			
18	1		R12	Thru - hole 10mm	2.7k 1% Resistor	Yes	Yes			
19	5		R18,R19,R20,R21,R22	Thru - hole 10mm	10R 5% Resistor 1W	No	Yes			
20	18	200-203	OUT1,OUT2, OUT3, WAKE, VPWR, VDD, SO, SI, SCLK, RSTB, OUT0, IN0, GND, FSI, FSB, CSNS, CSB, C Sense	PCB Test Terminal	YES	Yes	William Hughes			

12 References

Following are URLs where you can obtain information on other Freescale products and application solutions:

Description	URL
Data Sheets	www.freescale.com/files/analog/doc/data_sheet/MC10XS3412.pdf
	www.freescale.com/files/analog/doc/data_sheet/MC10XS3435.pdf
	www.freescale.com/files/analog/doc/data_sheet/MC15XS3400.pdf
	www.freescale.com/files/analog/doc/data_sheet/MC35XS3400.pdf
Application Notes	www.freescale.com/files/analog/doc/data_sheet/MC35XS3400.pdf
Freescale's Web Site	www.freescale.com
Freescale's Analog Web Site	www.freescale.com/analog
Freescale's Automotive Applications Web Site	www.freescale.com/automotive

13 Revision History

REVISION	DATE	DESCRIPTION OF CHANGES
1.0	10/2008	Initial Release

How to Reach Us:

Home Page: www.freescale.com

Web Support: http://www.freescale.com/support

USA/Europe or Locations Not Listed:

Freescale Semiconductor, Inc. Technical Information Center, EL516 2100 East Elliot Road Tempe, Arizona 85284 +1-800-521-6274 or +1-480-768-2130 www.freescale.com/support

Europe, Middle East, and Africa:

Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) www.freescale.com/support

Japan:

Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku, Tokyo 153-0064 Japan 0120 191014 or +81 3 5437 9125 support.japan@freescale.com

Asia/Pacific:

Freescale Semiconductor China Ltd. Exchange Building 23F No. 118 Jianguo Road Chaoyang District Beijing 100022 China +86 10 5879 8000 support.asia@freescale.com

For Literature Requests Only:

Freescale Semiconductor Literature Distribution Center P.O. Box 5405 Denver, Colorado 80217 1-800-441-2447 or 303-675-2140 Fax: 303-675-2150 LDCForFreescaleSemiconductor@hibbertgroup.com Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals", must be validated for each customer application by customer's technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part.

Freescale[™] and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. © Freescale Semiconductor, Inc., 2008. All rights reserved.

