

Rochester Electronics Manufactured Components

Rochester branded components are manufactured using either die/wafers purchased from the original suppliers or Rochester wafers recreated from the original IP. All recreations are done with the approval of the OCM.

Parts are tested using original factory test programs or Rochester developed test solutions to guarantee product meets or exceed the OCM data sheet.

Quality Overview

- ISO-9001
- AS9120 certification
- Qualified Manufacturers List (QML) MIL-PRF-35835
 - Class Q Military
 - Class V Space Level
- Qualified Suppliers List of Distributors (QSLD)
- Rochester is a critical supplier to DLA and meets all industry and DLA standards.

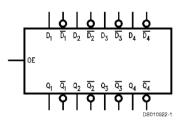
Rochester Electronics, LLC is committed to supplying products that satisfy customer expectations for quality and are equal to those originally supplied by industry manufacturers.

The original manufacturer's datasheet accompanying this document reflects the performance and specifications of the Rochester manufactured version of this device. Rochester Electronics guarantees the performance of its semiconductor products to the original OEM specifications. 'Typical' values are for reference purposes only. Certain minimum or maximum ratings may be based on product characterization, design, simulation, or sample testing.

100316

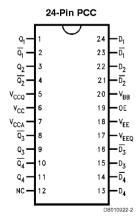
Low Power Quad Differential Line Driver with Cut-Off

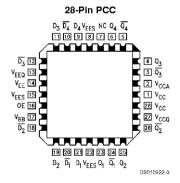
General Description

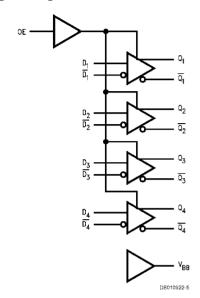

The 100316 is a quad differential line driver with output cut-off capability. The outputs are designed to drive a doubly terminated 50Ω transmission line (25 Ω equivalent impedance) in an ECL backplane. The 100316 is ideal for driving low noise, differential ECL backplanes. A LOW on the output enable (OE) will set both the true and complementary outputs into a high impedance or cut-off state, isolating them from the backplane. The cut-off state is designed to be more negative than a normal ECL LOW state.

Unlike most 100K devices, the data inputs (D_n, \overline{D}_n) do not have input pull-down resistors. An internal reference supply (V_{BB}) is available for single-ended operation.

Features


- Differential inputs and outputs
- Output cut-off capability
- Drives 25Ω load
- V_{BB} available for single-ended operation
- 2000V ESD protection
- Voltage compensated operating range = -4.2V to -5.7V
- Available to industrial grade temperature range


Ordering Code: Logic Symbol


Pin Names	Description
D _n	Data Inputs
Q_n	Data Outputs
\overline{Q}_{n}	Complementary Data Outputs
OE	Output Enable

Connection Diagrams

Logic Diagram

Truth Table

	Inputs		Outputs					
D _n	\overline{D}_{n}	OE	Qn	Q _n				
L	Н	Н	L	Н				
Н	L	Н	Н	L				
Х	Х	L	Cut-Off	Cut-Off				

- H = HIGH Voltage Level
 L = LOW Voltage Level
 X = Don't Care
 Cut-Off = Lower-than-Low State

Absolute Maximum Ratings (Note 1)

Storage Temperature (T_{STG}) -65°C to +150°C

Maximum Junction Temperature (T₁)

+175°C Ceramic +150°C Plastic Pin Potential to Ground Pin (V_{EE}) -7.0V to 0.5V V_{EE} to +0.5V Input Voltage (DC)

Output Current (DC Output HIGH) -100 mA

ESD (Note 2) ≥2000**V**

Recommended Operating Conditions

Case Temperature (T_C)

Commercial 0°C to +85°C -40°C to +85°C Industrial -55°C to +125°C Military Supply Voltage (V_{EE}) -5.7V to -4.2V

Note 1: Absolute maximum ratings are those values beyond which the device may be damaged or have its useful life impaired. Function operation under these conditions is not implied.

Note 2: ESD testing conforms to MIL-STD-883, Method 3015.

Commercial Version DC Electrical Characteristics

 $V_{\rm EE}$ = -4.2V to -5.7V, $V_{\rm CC}$ = $V_{\rm CCA}$ = GND, $T_{\rm C}$ = 0°C to +85°C (Note 3)

Symbol	Parameter	Min	Тур	Max	Units	Co	onditions		
V _{OH}	Output HIGH Voltage	-1025	-955	-870	mV	V _{IN} = V _{IH} (Max)	Loading with		
V _{OL}	Output LOW Voltage	-1830	-1705	-1620	mV	or V _{IL (Min)}	25Ω to −2.0V		
V _{OHC}	Output HIGH Voltage	-1035			mV	V _{IN} = V _{IH} (Min)	Loading with		
V _{OLC}	Output LOW Voltage			-1610	mV	or V _{IL (Max)}	25Ω to -2.0V		
V _{OLZ}	Cut-Off LOW Voltage			-1950	mV	V _{IN} = V _{IH} (Min)	OE = LOW		
						or V _{IL (Max)}			
V _{BB}	Output Reference Voltage	-1380	-1320	-1260	mV	I _{VBB} = -1 mA			
V _{DIFF}	Input Voltage Differential	150			mV	Required for Full Output	t Swing		
V _{CM}	Common Mode Voltage	V _{CC} - 2.0		V _{CC} - 0.5	V				
V _{IH}	Single-Ended					Guaranteed HIGH Sign	al for All		
	Input High Voltage	-1110		-870	mV	Inputs (with one input ti	ed to V _{BB})		
						V _{BB (Max)} + V _{DIFF}			
V _{IL}	Single-Ended					Guaranteed LOW Signal for All			
	Input Low Voltage	-1830		-1530	mV	Inputs (with one input ti	ed to V _{BB})		
						V _{BB (Min)} - V _{DIFF}			
I _{IL}	Input LOW Current	0.50			μΑ	V _{IN} = V _{IL (Min)}			
I _{IH}	Input HIGH Current D _N			250	μA	V _{IN} = V _{IH} (Max), D ₁ = V _E	3B,		
						$\overline{D}_1 = V_{IL (Min)}$			
I _{IHZ}	Input HIGH Current OE			360	μA	V _{IN} = V _{IH} (Max), D ₁ = V _E	BB;		
						$\overline{D}_1 = V_{IL (Min)}$			
I _{CBO}	Input Leakage Current	-10			μA	$V_{IN} = V_{EE}, D_1 = V_{BB},$			
						$\overline{D}_1 = V_{IL (Min)}$			
I _{EE}	Power Supply Current,	-85		-30	mA	$D_1 = V_{BB}, \overline{D}_1 = V_{IL (Min)}$			
	Normal								
I _{EEZ}	Power Supply Current,	-152		-75	mA	$D_1-D_4 = V_{BB}, \overline{D}_1-\overline{D}_4 =$	V _{IL (Min)} ,		
	Cut-Off					OE = LOW			

Note 3: The specified limits represent the 'worst case" value for the parameter. Since these values normally occur at the temperature extremes, additional noise immunity and guardbanding can be achieved by decreasing the allowable system operating ranges. Conditions for testing shown in the tables are chosen to guarantee operation under "worst case" conditions.

Commercial Version DIP AC Electrical Characteristics $V_{\rm EE} = -4.2 V$ to -5.7 V, $V_{\rm CC} = V_{\rm CCA} = {\rm GND}$

Symbol	Parameter	T _C = 0°C		T _C = +25°C		T _C = +85°C		Units	Conditions
		Min	Max	Min	Max	Min	Max		
t _{PLH}	Propagation Delay	0.65	2.30	0.65	2.30	0.65	2.30	ns	
t _{PHL}	Data to Output								
t _{PZH}	Propagation Delay	1.80	4.20	1.80	4.20	1.80	4.20	ns	Figures 1, 2
t _{PHZ}	OE to Output	1.20	3.10	1.20	3.10	1.20	3.10		
t _{TLH}	Transition Time, D _N to Q _N	0.45	1.70	0.45	1.70	0.45	1.70	ns	
t _{THL}	20% to 80%, 80% to 20%								

PCC AC Electrical Characteristics $V_{EE} = -4.2V$ to -5.7V, $V_{CC} = V_{CCA} = GND$

Symbol	Parameter	T _C = 0°C		+25°C	T _C =	+85°C	Units	Conditions	
		Min	Max	Min	Max	Min	Max	1	
t _{PLH}	Propagation Delay	0.65	2.10	0.65	2.10	0.65	2.10	ns	
t _{PHL}	Data to Output								
t _{PZH}	Propagation Delay	1.8	4.00	1.8	4.00	1.8	4.00	ns	Figures 1, 2
t _{PHZ}	OE to Output	1.2	2.90	1.2	2.90	1.2	2.90		
t _{TLH}	Transition Time, D _N to Q _N	0.45	1.50	0.45	1.50	0.45	1.50	ns]
t _{THL}	20% to 80%, 80% to 20%								

Industrial Version PCC DC Electrical Characteristics

 V_{EE} = -4.2V to -5.7V, V_{CC} = V_{CCA} = GND (Note 4)

Symbol	Parameter	T _C =	–40°C	T _C = 0°C	to +85°C	Units	Conditions	
		Min	Max	Min	Max	1		
V _{OH}	Output HIGH Voltage	-1085	-870	-1025	-870	mV	V _{IN} = V _{IH (Max)}	Loading with
V _{OL}	Output LOW Voltage	-1830	-1585	-1830	-1620	mV	or V _{IL (Min)}	25Ω to -2.0V
V _{OHC}	Output HIGH Voltage	-1095		-1035		mV	V _{IN} = V _{IH (Min)}	Loading with
V _{OLC}	Output LOW Voltage		-1575		-1610	mV	or V _{IL (Max)}	25Ω to -2.0V
V _{OLZ}	Cut-Off LOW Voltage		-1900		-1950	mV	OE = LOW, V _{IN} =	V _{IH (Min)}
							or V _{IL (Max)}	
V _{BB}	Output Reference Voltage	-1395	-1255	-1380	-1260	mV	I _{VBB} = -1 mA	
V _{DIFF}	Input Voltage Differential	150		150		mV	Required for Full (Output Swing
V _{CM}	Common Mode Voltage	V _{CC} - 2.0	V _{CC} - 0.5	V _{CC} - 2.0	V _{CC} - 0.5	V		
V _{IH}	Single-Ended						Guaranteed HIGH	Signal for All
	Input High Voltage	-1115	-870	-1110	-870	mV	Inputs (with one in	put tied to V _{BB})
							V _{BB (Max)} + V _{DIFF}	
V _{IL}	Single-Ended						Guaranteed LOW	Signal for All
	Input Low Voltage	-1830	-1535	-1830	-1530	mV	Inputs (with one in	put tied to V _{BB})
							V _{BB (Min)} - V _{DIFF}	
I _{IL}	Input LOW Current	0.50		0.50		μА	V _{IN} = V _{IL (Min)}	
I _{IH}	Input HIGH Current, D _N		240		240	μA	V _{IN} = V _{IH (Max)} , D ₁	= V _{BB} ,
I _{IHZ}	Input HIGH Current, OE		360		360	1	$\overline{D}_1 = V_{IL (Min)}$	
I _{CBO}	Input Leakage Current	-10		-10		μA	$V_{IN} = V_{EE}, D_1 = V$	BB;
							$\overline{D}_1 = V_{IL (Min)}$	
I _{EE}	Power Supply Current,	-85	-30	-85	-30	mA	$D_1 = V_{BB}, \overline{D}_1 = V_I$	L (Min)
	Normal							
I _{EEZ}	Power Supply Current,	-152	-75	-152	-75	mA	$D_1-D_4 = V_{BB}, \overline{D}_1-$	$\overline{D}_4 = V_{IL (Min)}$
	Cut-Off						OE = LOW	, ,

Note 4: The specified limits represent the "worst case" value for the parameter. Since these values normally occur at the temperature extremes, additional noise immunity and guardbanding can be achieved by decreasing the allowable system operating ranges. Conditions for testing shown in the tables are chosen to guarantee operation under "worst case" conditions.

PCC AC Electrical Characteristics

 V_{EE} = -4.2V to -5.7V, V_{CC} = V_{CCA} = GND

Symbol	Parameter	$T_C = -40^{\circ}C$ $T_C =$		T _C =	$T_C = +25^{\circ}C$ $T_C = +85^{\circ}C$			Units	Conditions
		Min	Max	Min	Max	Min	Max		
t _{PLH}	Propagation Delay	0.65	2.10	0.65	2.10	0.65	2.10	ns	
t _{PHL}	Data to Output								
t _{PZH}	Propagation Delay	1.80	4.00	1.80	4.00	1.80	4.00	ns	Figures 1, 2
t _{PHZ}	OE to Output	1.20	2.90	1.20	2.90	1.20	2.90		
t _{TLH}	Transition Time	0.45	1.50	0.45	1.50	0.45	1.50	ns	
t _{THL}	20% to 80%, 80% to 20%								

Military Version—Preliminary DC Electrical Characteristics (Note 7)

 $V_{EE} = -4.2V$ to -5.7V, $V_{CC} = V_{CCA} = GND$

Symbol	Parameter	Min	Тур	Max	Units	T _C	Cond	itions	Notes	
V _{OH}	Output HIGH	-1025		-870	mV	0°C to	V _{IN} = V _{IH (Max)} or V _{IL (Min)}	Loading with		
	Voltage					+125°C	or V _{IL (Min)}	25Ω to -2.0V		
		-1085		-870	mV	–55°C	1		(Notes	
V _{OL}	Output LOW	-1830		-1620	mV	0°C to	1		6, 7)	
	Voltage					+125°C				
		-1830		-1555	mV	–55°C	1			
V _{OHC}	Output HIGH	-1035			mV	0°C to	V _{IN} = V _{IH (Min)} or V _{IL (Max)}	Loading with 25Ω to -2.0V		
	Voltage					+125°C	or V _{IL (Max)}	25Ω to -2.0V		
	_	-1085			mV	–55°C	1		(Notes 6, 7)	
V _{OLC}	Output LOW			-1610	mV	0°C to	1		0, 7,	
	Voltage					+125°C				
				-1555	mV	–55°C	1			
V _{OLZ}	Cut-Off LOW			-1900	mV	0°C to	OE = LOW	•	İ	
	Voltage					+125°C	$V_{IN} = V_{IH (Min)} \text{ or } V_{IL}$	(Notes 6, 7)		
				-1950	mV	–55°C	1	0, ,,		
V _{BB}	Output Reference			-1260	mV	0°C to	I _{VBB} = 0 μA, V _{EE} =	4.2V	(Notes	
	Voltage					+125°C			6, 7)	
		-1380	-1320	-1260	mV	0°C to	I _{VBB} = -250 μA, V _E	= -5.7V		
						+125°C			(Notes	
		-1396			mV	-55°C	I _{VBB} = -350 μA, V _E	6, 7)		
V _{DIFF}	Input Voltage	150			mV	–55°C to	Required for Full Ou	tput Swing	(Notes	
	Differential					+125°C			6, 7)	
V _{CM}	Common Mode	V _{CC} - 2.0		V _{CC} - 0.5	٧	–55°C to			(Notes	
	Voltage					+125°C			6, 7)	
V _{IH}	Single-Ended	-1165		-870	mV	–55°C to	Guaranteed HIGH S	ignal for All	(Notes	
	Input High Voltage					+125°C	Inputs (with $\overline{\mathbb{D}}_n^-$ tied	to V _{BB})	6, 7, 8	
V _{IL}	Single-Ended	-1830		-1475	mV	–55°C to	Guaranteed LOW S	ignal for All	(Notes	
	Input Low Voltage					+125°C	Inputs (with $\overline{\mathbb{D}}_n^-$ tied	to V _{BB})	`6, 7, 8	
I _{IH}	Input HIGH			75	μA	0°C to	V _{IN} = V _{IH (Max)} , D ₁ =	· V _{BB} ,		
	Current, D _N					+125°C	$\overline{D}_1 = V_{IL (Min)}$		(Notes	
				95	μА	–55°C	1 ` ′		6, 7)	
I _{IHZ}	Input HIGH			360	μA	-55°C to	V _{IN} = V _{IH (Max)} , D ₁ =	· V _{BB} ,	(Notes	
-	Current, OE					+125°C	$\overline{D}_1 = V_{\text{IL (Min)}}$	-	6, 7)	
Ісво	Input Leakage	-10			μА	-55°C to	V _{IN} = V _{EE} , D ₁ = V _{BI}	3,	(Notes	
300	Current					+125°C	$\overline{D}_1 = V_{IL \text{ (Min)}}$		6, 7)	
I _{EE}	Power Supply	-90		-30	mA	-55°C to	$D_1 = V_{BB}, \overline{D}_1 = V_{IL}$	(Min)	(Notes	
	Current, Normal					+125°C		(***** <i>)</i>	6, 7)	
I _{EEZ}	Power Supply	-180		-75	mA	-55°C to	$D_1-D_2 = V_{BB}, \overline{D}_1-\overline{D}$	o = VII (Min).	(Notes	
	Current, Cut-Off	1		· -		+125°C	OE = LOW	Z IL (IVIII)	(Notes 6, 7)	

Note 5: F100K 300 Series cold temperature testing is performed by temperature soaking (to guarantee junction temperature equals –55°C), then testing immediately without allowing for the junction temperature to stabilize due to heat dissipation after power-up. This provides "cold start" specs which can be considered a worst case condition at cold temperatures.

Note 6: Screen tested 100% on each device at -55°C, +25°C, and +125°C, Subgroups 1, 2, 3, 7, and 8.

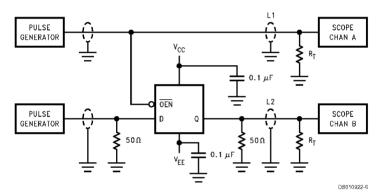
Note 7: Sample tested (Method 5005, Table I) on each manufactured lot at -55°C, +25°C, and +125°C, Subgroups A1, 2, 3, 7, and 8.

Note 8: Guaranteed by applying specified input condition and testing V_{OH}/V_{OL} .

Military Version—Preliminary AC Electrical Characteristics

 V_{EE} = -4.2V to -5.7V, V_{CC} = V_{CCA} = GND

		•								
Symbol	Parameter	T _C =	-55°C	T _C =	T _C = +25°C		T _C = +125°C		Conditions	Notes
		Min	Max	Min	Max	Min	Max			
t _{PLH}	Propagation Delay	0.40	2.50	0.50	2.40	0.50	2.90	ns	Figures 1, 2	(Notes 9, 10,
t _{PHL}	Data to Output									11)
t _{PZH}	Propagation Delay	0.70	4.20	0.70	4.20	0.70	4.20	ns		
t _{PHZ}	OE to Output	0.70	3.20	0.70	3.20	0.70	3.20			
t _{TLH}	Transition Time	0.20	1.70	0.20	1.70	0.20	1.50	ns		(Note 12)
t _{THL}	20% to 80%, 80% to 20%									


Note 9: F100K 300 Series cold temperature testing is performed by temperature soaking (to guarantee junction temperature equals –55°C), then testing immediately after power-up. This provides "cold start" specs which can be considered a worst case condition at cold temperatures.

Note 10: Screen tested 100% on each device at +25°C temperature only, Subgroup A9.

Note 11: Sample tested (Method 5005, Table I) on each manufactured lot at +25°C, Subgroup A9, and at +125°C and -55°C temperatures, Subgroups A10 and A11.

Note 12: Not tested at +25°C, +125°C and -55°C temperature (design characterization data).

Test Circuitry

Notes:

V_{CC}, V_{CCA} = +2V, V_{EE} = -2.5V L1 and L2 = equal length 50Ω impedance lines R_T = 50Ω terminator internal to scope Decoupling 0.1 μF from GND to V_{CC}and V_{EE} All unused outputs are loaded with 25Ω to GND C_L = Fixture and stray capacitance \leq 3 pF

FIGURE 1. AC Test Circuit

Switching Waveforms

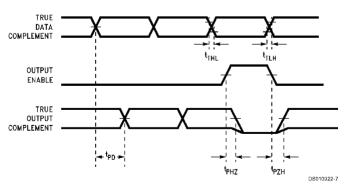
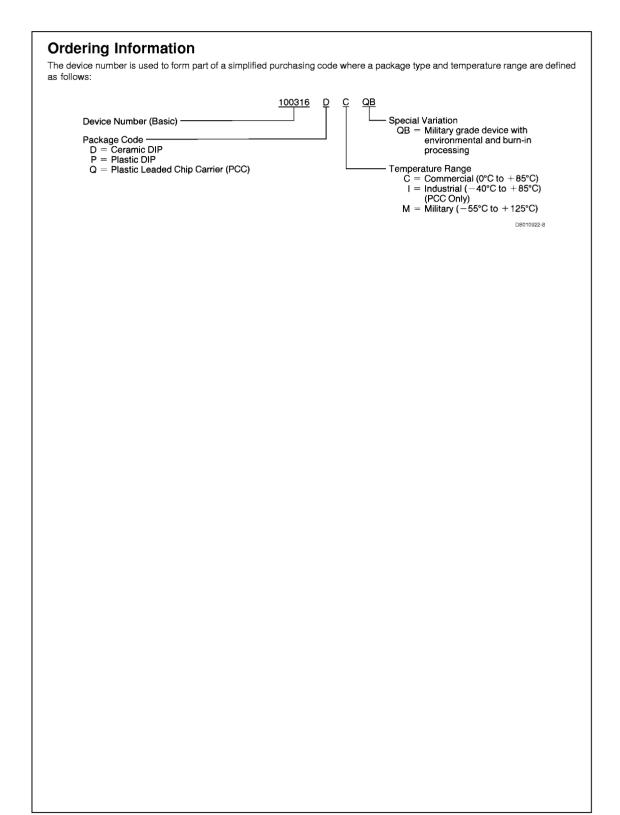
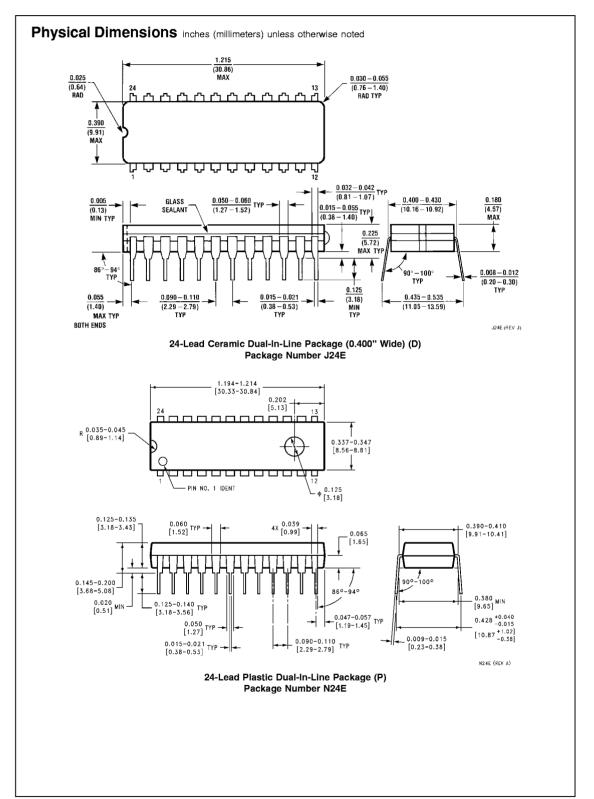
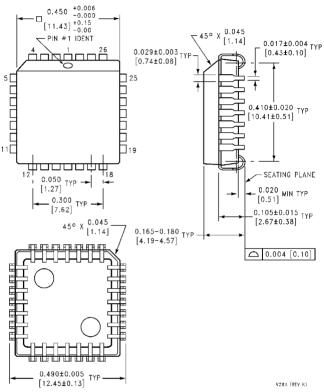





FIGURE 2. Propagation Delay, Cut-Off and Transition Times

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

28-Lead Plastic Chip Carrier (Q)
Package Number V28A

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMI-CONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

Fairchild Semiconductor Corporation Americas Customer Response Cente

Customer Response Center Tel: 1-888-522-5372 Fairchild Semiconductor Europe

Fax: +49 (0) 1 80-530 85 86
Email: europe.support@nsc.com
Deutsch Tel: +49 (0) 8 141-35-0
English Tel: +44 (0) 1 793-85-68-56
Italy 1792 57 5631

Fairchild Semiconductor Hong Kong Ltd. 13th Floor, Straight Block, Ocean Centre, 5 Canton Rd. Tsimshatsui, Kowloon Hong Kong

Tsimshatsui, Kowloon Hong Kong Tel: +852 2737-7200 Fax: +852 2314-0061 National Semiconductor Japan Ltd. Tel: 81-3-5620-6175 Fax: 81-3-5620-6179