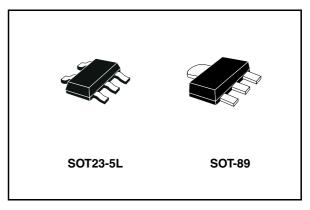


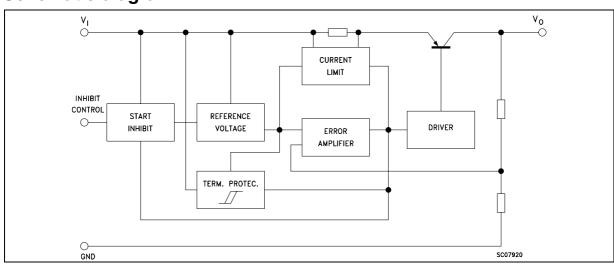
### LD2981 series


# Ultra low drop voltage regulators with inhibit Low ESR output capacitors compatible

#### **Feature summary**

- Stable with low ESR ceramic capacitors
- Ultra low dropout voltage (0.17V typ. at 100mA load, 7mV typ. at 1mA load)
- Very low quiescent current (80µA typ. at no load in on mode; max 1µA in off mode)
- Guaranteed output current up to 100mA
- Logic-controlled electronic shutdown
- Output voltage of 1.5; 1.8; 2.5; 3.0; 3.3; 3.6; 3.8; 5.0V
- Internal current and thermal limit
- ± 0.75% Tolerance output voltage available (A version)
- Output low noise voltage 160µVRMS
- Temperature range: -40 to 125°C
- Smallest package SOT23-5L and SOT-89
- Fast dynamic response to line and load changes

#### **Description**


The LD2981 series are 100mA fixed-output voltage regulator. The low drop-voltage and the



ultra low quiescent current make them suitable for low noise, low power applications and in battery powered systems.

The quiescent current in sleep mode is less than  $1\mu A$  when INHIBIT pin is pulled low. Shutdown Logic Control function is available on pin n.3 (TTL compatible). This means that when the device is used as local regulator, it is possible to put a part of the board in standby, decreasing the total power consumption. The LD2981 is designed to work with low ESR ceramic capacitor. Typical applications are in cellular phone, palmtop/laptop computer, personal digital assistant (PDA), personal stereo, camcorder and camera.

### **Schematic diagram**



July 2006 Rev. 12 1/22

### **Contents**

| 1 | Pin d | configuration                   | 3  |
|---|-------|---------------------------------|----|
| 2 | Maxi  | imum ratings                    | 4  |
| 3 | Турі  | cal application                 | 5  |
| 4 | Elec  | trical characteristics          | 6  |
| 5 | Турі  | cal performance characteristics | 10 |
| 6 | App   | lication notes                  | 13 |
|   | 6.1   | External capacitors             | 13 |
|   | 6.2   | Input capacitor                 | 13 |
|   | 6.3   | Output capacitor                | 13 |
|   | 6.4   | Important                       | 13 |
|   | 6.5   | Inhibit input operation         | 13 |
|   | 6.6   | Reverse current                 | 14 |
| 7 | Pack  | kage mechanical data            | 15 |
| 8 | Orde  | er code                         | 20 |
| ۵ | Revi  | ision history                   | 21 |

LD2981 series Pin configuration

# 1 Pin configuration

Figure 1. Pin connections (top view)

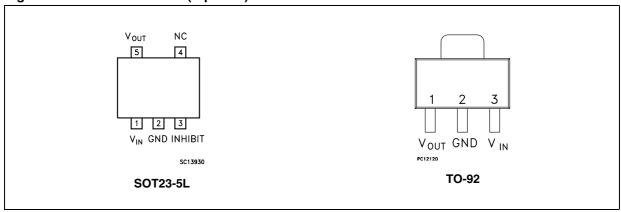



Table 1. Pin description

| Pin N°<br>SOT23-5L | Pin N°<br>SOT-89 | Symbol           | Name and Function                                                                                                                                                         |
|--------------------|------------------|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1                  | 3                | V <sub>IN</sub>  | Input port                                                                                                                                                                |
| 2                  | 2                | GND              | Ground pin                                                                                                                                                                |
| 3                  |                  | INHIBIT          | Control switch ON/OFF. Inhibit is not internally pulled-up; it cannot be left floating. Disable the device when connected to GND or to a positive voltage less than 0.18V |
| 4                  |                  | NC               | Not connected                                                                                                                                                             |
| 5                  | 1                | V <sub>OUT</sub> | Output port                                                                                                                                                               |

Table 2. Thermal data

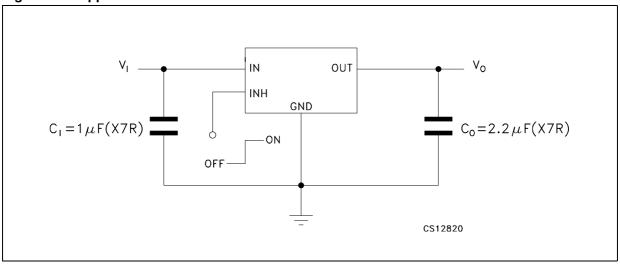
| Symbol            | Parameter                           | SOT23-5L | SOT-89 | Unit |
|-------------------|-------------------------------------|----------|--------|------|
| R <sub>thJC</sub> | Thermal resistance junction-case    | 81       | 15     | °C/W |
| R <sub>thJA</sub> | Thermal resistance junction-ambient | 255      | 110    | °C/W |

Maximum ratings LD2981 series

# 2 Maximum ratings

Table 3. Absolute maximum ratings

| Symbol           | Parameter                            | Value              | Unit |
|------------------|--------------------------------------|--------------------|------|
| V <sub>I</sub>   | DC Input voltage                     | -0.3 to 16         | V    |
| V <sub>INH</sub> | INHIBIT Input voltage                | -0.3 to 16         | V    |
| Io               | Output current                       | Internally limited |      |
| P <sub>D</sub>   | Power dissipation                    | Internally limited |      |
| T <sub>STG</sub> | Storage temperature range            | -55 to 150         | °C   |
| T <sub>OP</sub>  | Operating junction temperature range | -40 to 125         | °C   |


Note:

Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these condition is not implied.

LD2981 series Typical application

# 3 Typical application

Figure 2. Application circuit



Note: Inhibit Pin is not internally pulled-up then it must not be left floating. Disable the device when connected to GND or to a positive voltage less than 0.18V.

Electrical characteristics LD2981 series

### 4 Electrical characteristics

Table 4. Electrical characteristics for LD2981AB ( $T_J = 25^{\circ}\text{C}$ ,  $V_I = V_{O(\text{NOM})} + 1\text{V}$ ,  $C_I = 1\mu\text{F}(\text{X7R})$ ,  $C_O = 2.2\mu\text{F}(\text{X7R})$ ,  $I_O = 1\text{mA}$ ,  $V_{INH} = 2\text{V}$ , unless otherwise specified).

| $\begin{array}{c} V_{OP} \\ V_{OP} \\ Output \ voltage \\ \hline \\ V_{O} \\ \hline \\ \hline \\ \hline \\ V_{O} \\ \hline \\ \hline \\ V_{O} \\ \hline \\ \hline \\ \hline \\ \hline \\ V_{O} \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ V_{O} \\ \hline \\ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Symbol         | Parameter               | Test conditions                                              | Min.  | Тур.  | Max.  | Unit         |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-------------------------|--------------------------------------------------------------|-------|-------|-------|--------------|--|
| Vo Output voltage Io = 1 to 100 mA<br>Io = 1 to 100 mA, T <sub>J</sub> = -40 to 125°C 2.475 2.525 V   Vo Output voltage Io = 1 mA<br>Io = 1 to 100 mA 2.828 2.85 2.872 V   Vo Output voltage Io = 1 to 100 mA<br>Io = 1 to 100 mA 2.822 2.878 V   Vo Output voltage Io = 1 to 100 mA<br>Io = 1 to 100 mA 2.977 3 3.023   Vo Output voltage Io = 1 to 100 mA<br>Io = 1 to 100 mA 2.970 3.030 V   Vo Output voltage Io = 1 to 100 mA 2.970 3.030 V   Vo Output voltage Io = 1 to 100 mA 3.168 3.232 V   Vo Output voltage Io = 1 to 100 mA 3.168 3.232 V   Vo Output voltage Io = 1 to 100 mA 3.267 3.33 V   Vo Output voltage Io = 1 to 100 mA 3.267 3.333 V   Vo Output voltage Io = 1 to 100 mA 3.564 3.636 V   Vo Output voltag                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $V_{OP}$       | Operating input voltage |                                                              | 2.5   |       | 16    | V            |  |
| Vo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                |                         | I <sub>O</sub> = 1 mA                                        | 2.481 | 2.5   | 2.518 |              |  |
| $V_{O} \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $V_{O}$        | Output voltage          | I <sub>O</sub> = 1 to 100 mA                                 | 2.475 |       | 2.525 | V            |  |
| $\begin{array}{c} V_O \\ V_O \\ \hline \\ \hline \\ \hline \\ V_O \\ \hline \\ \hline \\ \hline \\ V_O \\ \hline \\ \hline \\ \hline \\ \hline \\ V_O \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ V_O \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ V_O \\ \hline \\ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                |                         | $I_O = 1$ to 100 mA, $T_J = -40$ to 125°C                    | 2.437 |       | 2.562 |              |  |
| Vo Output voltage Io = 1 to 100 mA, T <sub>J</sub> = -40 to 125°C 2.779 2.921   Vo Output voltage Io = 1 mA 2.977 3 3.023   Vo Io = 1 to 100 mA 2.970 3.030 V   Vo Output voltage Io = 1 to 100 mA 2.925 3.075   Vo Output voltage Io = 1 to 100 mA 3.168 3.232 V   Vo Output voltage Io = 1 to 100 mA, T <sub>J</sub> = -40 to 125°C 3.12 3.28 3.28   Vo Output voltage Io = 1 to 100 mA 3.267 3.333 V   Vo Output voltage Io = 1 to 100 mA 3.564 3.636 V   Vo Output voltage Io = 1 to 100 mA 3.564 3.636 V   Vo Output voltage Io = 1 to 100 mA 3.711 3.8 3.829   Vo Output voltage Io = 1 to 100 mA 3.762 3.838 V   Vo Output voltage Io = 1 to 100 mA 3.96 4.04 V   Vo <t< td=""><td></td><td></td><td>I<sub>O</sub> = 1 mA</td><td>2.828</td><td>2.85</td><td>2.872</td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                |                         | I <sub>O</sub> = 1 mA                                        | 2.828 | 2.85  | 2.872 |              |  |
| VO Output voltage Io = 1 mA   2.977   3   3.023   3.033   V   Io = 1 to 100 mA   Io = 1 to 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $V_{O}$        | Output voltage          | I <sub>O</sub> = 1 to 100 mA                                 | 2.822 |       | 2.878 | V            |  |
| Vo Output voltage Io = 1 to 100 mA 2.970 3.030 V   Io = 1 to 100 mA, T <sub>J</sub> = -40 to 125°C 2.925 3.075   Vo Output voltage Io = 1 to 100 mA 3.176 3.2 3.224   Vo Output voltage Io = 1 to 100 mA 3.168 3.232 V   Vo Output voltage Io = 1 mA 3.275 3.3 3.225   Vo Output voltage Io = 1 to 100 mA 3.267 3.333 V   Vo Output voltage Io = 1 to 100 mA 3.573 3.6 3.627   Vo Output voltage Io = 1 to 100 mA 3.573 3.6 3.627   Vo Output voltage Io = 1 to 100 mA 3.573 3.6 3.636 V   Vo Output voltage Io = 1 to 100 mA 3.771 3.8 3.829   Vo Output voltage Io = 1 to 100 mA 3.762 3.705 3.838 V   Vo Output voltage Io = 1 to 100 mA 3.96 4.04 V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                |                         | $I_O = 1$ to 100 mA, $T_J = -40$ to 125°C                    | 2.779 |       | 2.921 |              |  |
| $\begin{array}{c} & \begin{array}{c} & \end{array}{c} & \begin{array}{c} & \end{array}{c} & \end{array}{c} & \end{array}{c} & \end{array}{c} & \end{array}{c} & 3.075 \end{array} \end{array} \end{array} \end{array}} \end{array}} \end{array}} \end{array}} \\ V_{O} \end{array} \\ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} & \end{array}{c} & \end{array}{c} & \end{array}{c} & 3.075 \end{array} \end{array}} \end{array}} \end{array}} \end{array}} \\ \end{array}} \\ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} & \begin{array}{c} & \begin{array}{c} & \begin{array}{c} & \begin{array}{c} & & \begin{array}{c} & \begin{array}{c} & \begin{array}{c} & \begin{array}{c} & \begin{array}{c} & \\ & \end{array}{c} & \end{array}{c} & \end{array}{c} & 3.075 \end{array}} \end{array}} \end{array}} \end{array}} \end{array}} \end{array}} \\ \end{array}} \\ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} & \\ & \end{array}{c} & \end{array}{c} & \end{array}} \end{array}} \end{array}} \end{array}} \\ \end{array}} \\ \begin{array}{c} \begin{array}{c} \begin{array}{c} & \begin{array}{c} & \begin{array}{c} & \begin{array}{c} & \\ & \end{array}{c} & \end{array}{c} & \end{array}{c} & 3.075 \end{array}} \end{array}} \end{array}} \end{array}} \end{array}} \\ \end{array}} \\ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} & \begin{array}{c} & \begin{array}{c} & \begin{array}{c} & \\ & \end{array}{c} & \end{array}{c} & \end{array}} \end{array}} \end{array}} \\ \end{array}} \\ \begin{array}{c} \begin{array}{c} \begin{array}{c} & \begin{array}{c} & \\ & \end{array}{c} & \end{array}{c} & \end{array}{c} & \end{array}} \end{array}} \end{array}} \end{array}} \\ \end{array}} \\ \begin{array}{c} \begin{array}{c} \begin{array}{c} & \begin{array}{c} & \\ & \end{array}{c} & \end{array}} \end{array}} \end{array}} \\ \end{array}} \\ \begin{array}{c} \begin{array}{c} \begin{array}{c} & \begin{array}{c} & \begin{array}{c} & \\ & \end{array}{c} & \end{array}} \end{array}} \end{array}} \\ \end{array}} \\ \begin{array}{c} \begin{array}{c} \begin{array}{c} & \begin{array}{c} & \begin{array}{c} & \\ & \end{array}{c} & \end{array}} \end{array}} \end{array}} \end{array}} \\ \end{array}} \\ \begin{array}{c} \begin{array}{c} \begin{array}{c} & \begin{array}{c} & \\ & \end{array}{c} & \end{array}} \end{array}} \end{array}} \end{array}} \\ \end{array}} \\ \begin{array}{c} \begin{array}{c} \begin{array}{c} & \begin{array}{c} & \\ & \end{array}} \end{array}} \end{array}} \end{array}} \\ \end{array}} \\ \begin{array}{c} \begin{array}{c} \begin{array}{c} & \begin{array}{c} & \\ & \end{array}} \end{array}} \end{array}} \\ \end{array}} \\ \begin{array}{c} \begin{array}{c} \begin{array}{c} & \begin{array}{c} & \\ & \end{array}} \end{array}} \end{array}} \end{array}} \\ \end{array}} \\ \begin{array}{c} \begin{array}{c} \begin{array}{c} & \begin{array}{c} & \\ & \end{array}} \end{array}} \end{array}} \end{array}} \\ \end{array}} \\ \begin{array}{c} \begin{array}{c} \begin{array}{c} & \begin{array}{c} & \\ & \end{array}} \end{array}} \end{array}} \end{array}} \\ \end{array}} \\ \end{array}} \\ \begin{array}{c} \begin{array}{c} & \begin{array}{c} & \\ & \end{array}} \end{array}} \end{array}\\ \end{array}} \\ \end{array}} \\ \begin{array}{c} \begin{array}{c} & \begin{array}{c} & \\ & \end{array}} \end{array}} \end{array}\\ \end{array}} \\ \end{array}} \\ \begin{array}{c} \begin{array}{c} \\ & \end{array}} \end{array}\\ \end{array}} \end{array}$ } \begin{array}{c} \begin{array}{c} & \begin{array}{c} & \\ & \end{array}} \end{array}} \end{array}} \\ \end{array}} \\ \end{array}} \begin{array}{c} \begin{array}{c} & \begin{array}{c} & \\ & \end{array}} \end{array}\\ \end{array}} \end{array}} \\ \end{array}} \begin{array}{c} \begin{array}{c} & \begin{array}{c} & \\ & \end{array}} \end{array}} \end{array}} \\ \begin{array}{c} \begin{array}{c} & \\ & \end{array}} \end{array}\\ \end{array}} \\ \end{array} \end{array}} \begin{array}{c} \begin{array}{c} \\ & \end{array}\\ \end{array}} \end{array}} \begin{array}{c} \begin{array}{c} & \\ & \end{array}\\ \end{array}} \end{array}\\ \end{array}} \end{array}} \begin{array}{c} \begin{array}{c} \\ & \end{array}} \end{array}\\ \end{array}} \begin{array}{c} \\ \end{array}\\ \end{array}} \begin{array}{c} \begin{array}{c} \\ & \end{array}\\ \end{array}} \end{array} |                |                         | I <sub>O</sub> = 1 mA                                        | 2.977 | 3     | 3.023 |              |  |
| $\begin{array}{c} V_O \\ V_O \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $V_{O}$        | Output voltage          | I <sub>O</sub> = 1 to 100 mA                                 | 2.970 |       | 3.030 | V            |  |
| Vo Output voltage Io = 1 to 100 mA (Io = 1 to 100 mA) 3.168 (Io = 1 to 100 mA) 3.232 (Io = 1 to 100 mA) 3.232 (Io = 1 to 100 mA) 3.288 (Io = 1 to 100 mA) 3.288 (Io = 1 to 100 mA) 3.275 (Io = 1 to 100 mA) 3.275 (Io = 1 to 100 mA) 3.267 (Io = 1 to 100 mA) 3.264 (Io = 1 to 100 mA) 3.269 (Io = 1 to 100 mA) 3.271 (Io = 1 to 100 mA) 3.262 (Io = 1 to 100 mA) 4.262 (Io = 1 to 100 mA) 4.262 (Io = 1 to 100 mA) <td></td> <td></td> <td><math>I_O = 1</math> to 100 mA, <math>T_J = -40</math> to 125°C</td> <td>2.925</td> <td></td> <td>3.075</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                |                         | $I_O = 1$ to 100 mA, $T_J = -40$ to 125°C                    | 2.925 |       | 3.075 |              |  |
| $\begin{array}{c}   I_{O} = 1 \text{ to } 100 \text{ mA, } T_{J} = -40 \text{ to } 125^{\circ}\text{C} & 3.12 & 3.28 \\   I_{O} = 1 \text{ mA} & 3.275 & 3.3 & 3.325 \\   I_{O} = 1 \text{ to } 100 \text{ mA} & 3.267 & 3.33 & 3.325 \\   I_{O} = 1 \text{ to } 100 \text{ mA} & 3.267 & 3.333 & V \\   I_{O} = 1 \text{ to } 100 \text{ mA, } T_{J} = -40 \text{ to } 125^{\circ}\text{C} & 3.217 & 3.383 \\   I_{O} = 1 \text{ mA} & 3.573 & 3.6 & 3.627 \\   I_{O} = 1 \text{ mA} & 3.573 & 3.6 & 3.627 \\   I_{O} = 1 \text{ to } 100 \text{ mA} & 3.564 & 3.636 & V \\   I_{O} = 1 \text{ to } 100 \text{ mA, } T_{J} = -40 \text{ to } 125^{\circ}\text{C} & 3.510 & 3.690 \\   I_{O} = 1 \text{ mA} & 3.771 & 3.8 & 3.829 \\   I_{O} = 1 \text{ mA} & 3.771 & 3.8 & 3.829 \\   I_{O} = 1 \text{ mA} & 3.762 & 3.838 & V \\   I_{O} = 1 \text{ to } 100 \text{ mA, } T_{J} = -40 \text{ to } 125^{\circ}\text{C} & 3.705 & 3.895 \\   I_{O} = 1 \text{ mA} & 3.97 & 4 & 4.03 \\   I_{O} = 1 \text{ to } 100 \text{ mA, } T_{J} = -40 \text{ to } 125^{\circ}\text{C} & 3.9 & 4.1 \\   I_{O} = 1 \text{ to } 100 \text{ mA, } T_{J} = -40 \text{ to } 125^{\circ}\text{C} & 3.9 & 4.1 \\   I_{O} = 1 \text{ to } 100 \text{ mA, } T_{J} = -40 \text{ to } 125^{\circ}\text{C} & 3.9 & 4.1 \\   I_{O} = 1 \text{ to } 100 \text{ mA, } T_{J} = -40 \text{ to } 125^{\circ}\text{C} & 4.582 & 4.817 \\   I_{O} = 1 \text{ to } 100 \text{ mA, } T_{J} = -40 \text{ to } 125^{\circ}\text{C} & 4.582 & 4.817 \\   I_{O} = 1 \text{ to } 100 \text{ mA, } T_{J} = -40 \text{ to } 125^{\circ}\text{C} & 4.729 & 4.971 \\   I_{O} = 1 \text{ to } 100 \text{ mA, } T_{J} = -40 \text{ to } 125^{\circ}\text{C} & 4.729 & 4.971 \\   I_{O} = 1 \text{ to } 100 \text{ mA, } T_{J} = -40 \text{ to } 125^{\circ}\text{C} & 4.875 & 5.125 \\   I_{O} = 1 \text{ to } 100 \text{ mA, } T_{J} = -40 \text{ to } 125^{\circ}\text{C} & 4.875 & 5.125 \\   I_{O} = 1 \text{ to } 100 \text{ mA, } T_{J} = -40 \text{ to } 125^{\circ}\text{C} & 4.875 & 5.125 \\   I_{O} = 1 \text{ to } 100 \text{ mA, } T_{J} = -40 \text{ to } 125^{\circ}\text{C} & 4.875 & 5.125 \\   I_{O} = 1 \text{ to } 100 \text{ mA, } T_{J} = -40 \text{ to } 125^{\circ}\text{C} & 4.875 & 5.125 \\   I_{O} = 1 \text{ to } 100 \text{ mA, } T_{J} = -40 \text{ to } 125^{\circ}\text{C} & 4.875 & 5.125 \\   I_{O} = 1 \text{ to } 100 \text{ mA, } T_{J} = -40 \text{ to } 125^{\circ}\text{C} & 4.875 & 5.125 \\   I_{O} = 1 \text{ to } 100 \text{ mA, } T_{J} = -40 \text{ to } 125^{\circ}\text{C} & 4.875 & 5.125 \\   I_{O} = 1 \text{ to }$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                |                         | I <sub>O</sub> = 1 mA                                        | 3.176 | 3.2   | 3.224 |              |  |
| $\begin{array}{c} V_O \\ \text{Output voltage} \\ \hline \\ V_O \\ \text{Output voltage} \\ \hline \\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $V_{O}$        | Output voltage          | I <sub>O</sub> = 1 to 100 mA                                 | 3.168 |       | 3.232 | V            |  |
| $\begin{array}{c} V_O \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                |                         | $I_O = 1$ to 100 mA, $T_J = -40$ to 125°C                    | 3.12  |       | 3.28  |              |  |
| $\begin{array}{c} I_{O} = 1 \text{ to } 100 \text{ mA, } T_{J} = -40 \text{ to } 125^{\circ}\text{C} & 3.217 & 3.383 \\ I_{O} = 1 \text{ mA} & 3.573 & 3.6 & 3.627 \\ I_{O} = 1 \text{ to } 100 \text{ mA} & 3.564 & 3.636 & 3.636 \\ I_{O} = 1 \text{ to } 100 \text{ mA} & 3.564 & 3.636 & 3.690 \\ I_{O} = 1 \text{ to } 100 \text{ mA, } T_{J} = -40 \text{ to } 125^{\circ}\text{C} & 3.510 & 3.690 \\ I_{O} = 1 \text{ mA} & 3.771 & 3.8 & 3.829 \\ I_{O} = 1 \text{ to } 100 \text{ mA} & 3.762 & 3.838 & V \\ I_{O} = 1 \text{ to } 100 \text{ mA} & 3.762 & 3.838 & V \\ I_{O} = 1 \text{ to } 100 \text{ mA, } T_{J} = -40 \text{ to } 125^{\circ}\text{C} & 3.705 & 3.895 \\ I_{O} = 1 \text{ to } 100 \text{ mA, } T_{J} = -40 \text{ to } 125^{\circ}\text{C} & 3.9 & 4.04 \\ I_{O} = 1 \text{ to } 100 \text{ mA, } T_{J} = -40 \text{ to } 125^{\circ}\text{C} & 3.9 & 4.1 \\ I_{O} = 1 \text{ mA} & 4.664 & 4.7 & 4.735 \\ I_{O} = 1 \text{ to } 100 \text{ mA, } T_{J} = -40 \text{ to } 125^{\circ}\text{C} & 4.582 & 4.817 \\ I_{O} = 1 \text{ to } 100 \text{ mA, } T_{J} = -40 \text{ to } 125^{\circ}\text{C} & 4.582 & 4.817 \\ V_{O} & \text{Output voltage} & I_{O} = 1 \text{ mA} & 4.801 & 4.899 \\ I_{O} = 1 \text{ to } 100 \text{ mA, } T_{J} = -40 \text{ to } 125^{\circ}\text{C} & 4.729 & 4.971 \\ I_{O} = 1 \text{ to } 100 \text{ mA, } T_{J} = -40 \text{ to } 125^{\circ}\text{C} & 4.729 & 4.971 \\ I_{O} = 1 \text{ mA} & 4.962 & 5 & 5.038 \\ I_{O} = 1 \text{ to } 100 \text{ mA, } T_{J} = -40 \text{ to } 125^{\circ}\text{C} & 4.875 & 5.125 \\ \hline V_{O} & \text{Output voltage} & I_{O} = 1 \text{ to } 100 \text{ mA, } T_{J} = -40 \text{ to } 125^{\circ}\text{C} & 4.875 & 5.125 \\ \hline V_{O} & \text{Intersequiation} & V_{O(NOM)} + 1 < V_{IN} < 16 \text{ V}, I_{O} = 1 \text{ mA} & 0.0003 & 0.014 \\ \hline V_{O} & \text{Voltage} & V$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                         | I <sub>O</sub> = 1 mA                                        | 3.275 | 3.3   | 3.325 |              |  |
| $\begin{array}{c} V_O \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $V_{O}$        | Output voltage          | I <sub>O</sub> = 1 to 100 mA                                 | 3.267 |       | 3.333 | V            |  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                |                         | $I_O = 1$ to 100 mA, $T_J = -40$ to 125°C                    | 3.217 |       | 3.383 |              |  |
| $\begin{array}{c} I_{O} = 1 \text{ to } 100 \text{ mA, } T_{J} = -40 \text{ to } 125^{\circ}\text{C} & 3.510 & 3.690 \\ \hline \\ I_{O} = 1 \text{ mA} & 3.771 & 3.8 & 3.829 \\ \hline \\ I_{O} = 1 \text{ to } 100 \text{ mA} & 3.762 & 3.838 \\ \hline \\ I_{O} = 1 \text{ to } 100 \text{ mA} & 3.762 & 3.838 \\ \hline \\ I_{O} = 1 \text{ to } 100 \text{ mA, } T_{J} = -40 \text{ to } 125^{\circ}\text{C} & 3.705 & 3.895 \\ \hline \\ V_{O} & \text{Output voltage} & I_{O} = 1 \text{ to } 100 \text{ mA} & 3.97 & 4 & 4.03 \\ \hline \\ I_{O} = 1 \text{ to } 100 \text{ mA} & 3.96 & 4.04 \\ \hline \\ I_{O} = 1 \text{ to } 100 \text{ mA} & 3.96 & 4.04 \\ \hline \\ I_{O} = 1 \text{ to } 100 \text{ mA} & 4.664 & 4.7 & 4.735 \\ \hline \\ I_{O} = 1 \text{ mA} & 4.664 & 4.7 & 4.735 \\ \hline \\ I_{O} = 1 \text{ to } 100 \text{ mA} & 4.653 & 4.747 \\ \hline \\ V_{O} & \text{Output voltage} & I_{O} = 1 \text{ to } 100 \text{ mA} & 4.813 & 4.85 & 4.887 \\ \hline \\ V_{O} & \text{Output voltage} & I_{O} = 1 \text{ to } 100 \text{ mA} & 4.801 & 4.899 \\ \hline \\ I_{O} = 1 \text{ to } 100 \text{ mA} & 4.801 & 4.899 \\ \hline \\ V_{O} & \text{Output voltage} & I_{O} = 1 \text{ mA} & 4.962 & 5 & 5.038 \\ \hline \\ I_{O} = 1 \text{ to } 100 \text{ mA} & 4.950 & 5.050 \\ \hline \\ I_{O} = 1 \text{ to } 100 \text{ mA} & 7{J} = -40 \text{ to } 125^{\circ}\text{C} & 4.875 \\ \hline \\ I_{O} = 1 \text{ to } 100 \text{ mA} & 4.950 & 5.050 \\ \hline \\ I_{O} = 1 \text{ to } 100 \text{ mA} & 7{J} = -40 \text{ to } 125^{\circ}\text{C} & 4.875 \\ \hline \\ I_{O} = 1 \text{ to } 100 \text{ mA} & 4.950 & 5.050 \\ \hline \\ I_{O} = 1 \text{ to } 100 \text{ mA} & 7{J} = -40 \text{ to } 125^{\circ}\text{C} & 4.875 \\ \hline \\ I_{O} = 1 \text{ to } 100 \text{ mA} & 7{J} = -40 \text{ to } 125^{\circ}\text{C} & 4.875 \\ \hline \\ I_{O} = 1 \text{ to } 100 \text{ mA} & 7{J} = -40 \text{ to } 125^{\circ}\text{C} & 4.875 \\ \hline \\ I_{O} = 1 \text{ to } 100 \text{ mA} & 7{J} = -40 \text{ to } 125^{\circ}\text{C} & 4.875 \\ \hline \\ I_{O} = 1 \text{ to } 100 \text{ mA} & 7{J} = -40 \text{ to } 125^{\circ}\text{C} & 4.875 \\ \hline \\ I_{O} = 1 \text{ to } 100 \text{ mA} & 7{J} = -40 \text{ to } 125^{\circ}\text{C} & 4.875 \\ \hline \\ I_{O} = 1 \text{ to } 100 \text{ mA} & 7{J} = -40 \text{ to } 125^{\circ}\text{C} & 4.875 \\ \hline \\ I_{O} = 1 \text{ to } 100 \text{ mA} & 7{J} = -40 \text{ to } 125^{\circ}\text{C} & 4.875 \\ \hline \\ I_{O} = 1 \text{ to } 100 \text{ mA} & 7{J} = -40 \text{ to } 125^{\circ}\text{C} & 4.875 \\ \hline \\ I_{O} = 1 \text{ to } 100 \text{ mA} & 7{J} = -40 \text{ to } 125^{\circ}\text{C} & 4.875 \\ \hline \\ I_{O} = 1  t$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                |                         | I <sub>O</sub> = 1 mA                                        | 3.573 | 3.6   | 3.627 |              |  |
| $\begin{array}{c} V_O \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $V_{O}$        | Output voltage          | I <sub>O</sub> = 1 to 100 mA                                 | 3.564 |       | 3.636 | V            |  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                |                         | $I_O = 1$ to 100 mA, $T_J = -40$ to 125°C                    | 3.510 |       | 3.690 |              |  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                |                         | I <sub>O</sub> = 1 mA                                        | 3.771 | 3.8   | 3.829 |              |  |
| $\begin{array}{c} V_O \\ V_O \\ \hline \\ V_O \\ \\ V_O \\ \hline \\ V_O \\ \\ V_O \\ \hline \\ V_O \\ \hline \\ \\ V_O \\ \hline \\ V_O \\ \\ V_O \\ \hline \\ \\ V_O \\ \\ V_O$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $V_{O}$        | Output voltage          | I <sub>O</sub> = 1 to 100 mA                                 | 3.762 |       | 3.838 | V            |  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                |                         | $I_O = 1$ to 100 mA, $T_J = -40$ to 125°C                    | 3.705 |       | 3.895 |              |  |
| $\begin{array}{c} I_{O} = 1 \text{ to } 100 \text{ mA, } T_{J} = -40 \text{ to } 125^{\circ}\text{C} & 3.9 & 4.1 \\ \hline V_{O} & \text{Output voltage} & I_{O} = 1 \text{ mA} & 4.664 & 4.7 & 4.735 \\ \hline I_{O} = 1 \text{ to } 100 \text{ mA} & 4.653 & 4.747 & V \\ \hline I_{O} = 1 \text{ to } 100 \text{ mA, } T_{J} = -40 \text{ to } 125^{\circ}\text{C} & 4.582 & 4.817 \\ \hline V_{O} & \text{Output voltage} & I_{O} = 1 \text{ mA} & 4.813 & 4.85 & 4.887 \\ \hline I_{O} = 1 \text{ mA} & 4.801 & 4.899 & V \\ \hline I_{O} = 1 \text{ to } 100 \text{ mA, } T_{J} = -40 \text{ to } 125^{\circ}\text{C} & 4.729 & 4.971 \\ \hline V_{O} & \text{Output voltage} & I_{O} = 1 \text{ mA} & 4.962 & 5 & 5.038 \\ \hline V_{O} & \text{Output voltage} & I_{O} = 1 \text{ to } 100 \text{ mA, } T_{J} = -40 \text{ to } 125^{\circ}\text{C} & 4.875 & 5.125 \\ \hline \hline AV_{O} & \text{Line regulation} & V_{O(NOM)} + 1 < V_{IN} < 16 \text{ V, } I_{O} = 1 \text{ mA} & 0.003 & 0.014 \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                |                         | I <sub>O</sub> = 1 mA                                        | 3.97  | 4     | 4.03  |              |  |
| $\begin{array}{c} V_O \\ V_O \\ \hline \\ V_O \\ \\ V_O \\ \hline \\ V_O \\ \\ V_O \\ \hline \\ \\ V_O \\ \hline \\ V_O \\ \hline \\ V_O \\ \hline \\ V_O \\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $V_{O}$        | Output voltage          | I <sub>O</sub> = 1 to 100 mA                                 | 3.96  |       | 4.04  | V            |  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                |                         | $I_O = 1$ to 100 mA, $T_J = -40$ to 125°C                    | 3.9   |       | 4.1   |              |  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                |                         | I <sub>O</sub> = 1 mA                                        | 4.664 | 4.7   | 4.735 |              |  |
| $\begin{array}{c} V_O \\ \\ V_O \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $V_{O}$        | Output voltage          | I <sub>O</sub> = 1 to 100 mA                                 | 4.653 |       | 4.747 | V            |  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                |                         | $I_O = 1$ to 100 mA, $T_J = -40$ to 125°C                    | 4.582 |       | 4.817 |              |  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                |                         | I <sub>O</sub> = 1 mA                                        | 4.813 | 4.85  | 4.887 |              |  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $V_{O}$        | Output voltage          | I <sub>O</sub> = 1 to 100 mA                                 | 4.801 |       | 4.899 | V            |  |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                |                         | $I_O = 1$ to 100 mA, $T_J = -40$ to 125°C                    | 4.729 |       | 4.971 |              |  |
| $I_O = 1 \text{ to } 100 \text{ mA}, T_J = -40 \text{ to } 125^{\circ}\text{C}$ 4.875 5.125 $V_{O(NOM)} + 1 < V_{IN} < 16 \text{ V}, I_O = 1 \text{ mA}$ 0.003 0.014 %/\(\text{V}\)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                |                         | I <sub>O</sub> = 1 mA                                        | 4.962 | 5     | 5.038 |              |  |
| $V_{O(NOM)} + 1 < V_{IN} < 16 \text{ V}, I_{O} = 1 \text{ mA}$ 0.003 0.014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $V_{O}$        | Output voltage          | I <sub>O</sub> = 1 to 100 mA                                 | 4.950 |       | 5.050 | V            |  |
| $\Delta V_{\circ}$ I indirection 1 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                |                         | $I_O = 1$ to 100 mA, $T_J = -40$ to 125°C                    | 4.875 |       | 5.125 |              |  |
| $T_{\rm J}$ = -40 to 125°C 0.032                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ۸۱/            | Line regulation         | $V_{O(NOM)} + 1 < V_{IN} < 16 \text{ V}, I_O = 1 \text{ mA}$ |       | 0.003 | 0.014 | 0/ /\ /      |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\Delta v_{O}$ | Line regulation         | T <sub>J</sub> = -40 to 125°C                                |       |       | 0.032 | 7o/ <b>V</b> |  |

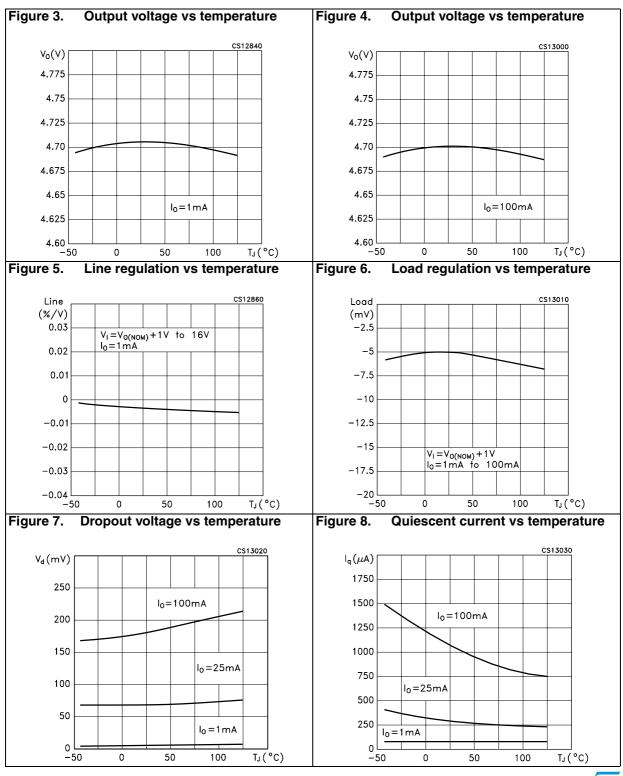
Table 4. Electrical characteristics for LD2981AB ( $T_J = 25^{\circ}\text{C}$ ,  $V_I = V_{O(\text{NOM})} + 1\text{V}$ ,  $C_I = 1\mu\text{F}(\text{X7R})$ ,  $C_O = 2.2\mu\text{F}(\text{X7R})$ ,  $I_O = 1\text{mA}$ ,  $V_{\text{INH}} = 2\text{V}$ , unless otherwise specified).

| Symbol            | Parameter                 | Test conditions                                                 | Min. | Тур. | Max. | Unit          |  |
|-------------------|---------------------------|-----------------------------------------------------------------|------|------|------|---------------|--|
|                   |                           | I <sub>O</sub> = 0                                              |      | 80   | 100  |               |  |
|                   | Quiescent current         | I <sub>O</sub> = 0, T <sub>J</sub> = -40 to 125°C               |      |      | 150  |               |  |
|                   |                           | I <sub>O</sub> = 1 mA                                           |      | 100  | 150  |               |  |
| ΙQ                |                           | I <sub>O</sub> = 1 mA, T <sub>J</sub> = -40 to 125°C            |      |      | 200  |               |  |
|                   | ON MODE                   | I <sub>O</sub> = 25 mA                                          |      | 250  | 400  |               |  |
|                   |                           | I <sub>O</sub> = 25 mA, T <sub>J</sub> = -40 to 125°C           |      |      | 800  | μA            |  |
|                   |                           | I <sub>O</sub> = 100 mA                                         |      | 1000 | 1300 |               |  |
|                   |                           | I <sub>O</sub> = 100 mA, T <sub>J</sub> = -40 to 125°C          |      |      | 2600 |               |  |
|                   | OFF MODE                  | V <sub>INH</sub> < 0.3 V                                        |      |      | 0.8  |               |  |
|                   | OFF MODE                  | V <sub>INH</sub> < 0.15 V, T <sub>J</sub> = -40 to 125°C        |      |      | 2    |               |  |
|                   |                           | I <sub>O</sub> = 0                                              |      | 1    | 3    | mV            |  |
|                   | Durant allows (Alabard)   | I <sub>O</sub> = 0, T <sub>J</sub> = -40 to 125°C               |      |      | 5    |               |  |
|                   |                           | I <sub>O</sub> = 1mA                                            |      | 7    | 10   |               |  |
| V                 |                           | I <sub>O</sub> = 1mA, T <sub>J</sub> = -40 to 125°C             |      |      | 15   |               |  |
| V <sub>DROP</sub> | Dropout voltage (Note: 1) | I <sub>O</sub> = 25mA                                           |      | 70   | 100  |               |  |
|                   |                           | I <sub>O</sub> = 25mA, T <sub>J</sub> = -40 to 125°C            |      |      | 150  | 1             |  |
|                   |                           | I <sub>O</sub> = 100mA                                          |      | 180  | 250  | 1             |  |
|                   |                           | I <sub>O</sub> = 100mA, T <sub>J</sub> = -40 to 125°C           |      |      | 375  |               |  |
| I <sub>SC</sub>   | Short circuit current     | $R_L = 0$                                                       |      | 150  |      | mA            |  |
| SVR               | Supply voltage rejection  | $C_{O} = 10 \mu F, f = 1 KHz$                                   |      | 63   |      | dB            |  |
| V <sub>INH</sub>  | Inhibit input logic low   | LOW = Output OFF, T <sub>J</sub> = -40 to 125°C                 |      |      | 0.18 | V             |  |
| V <sub>INL</sub>  | Inhibit input logic high  | HIGH = Output ON, T <sub>J</sub> = -40 to 125°C                 | 1.6  |      |      | V             |  |
| ı                 | Inhibit input current     | V <sub>INH</sub> = 0V, T <sub>J</sub> = -40 to 125°C            |      | 0    | -1   |               |  |
| I <sub>INH</sub>  | minon input current       | V <sub>INH</sub> = 5V, T <sub>J</sub> = -40 to 125°C            |      | 5    | 15   | μA            |  |
| e <sub>N</sub>    | Output noise voltage      | $B_W = 300 \text{ Hz to } 50 \text{ KHz}, C_O = 10 \mu\text{F}$ |      | 160  |      | $\mu V_{RMS}$ |  |
| T <sub>SHDN</sub> | Thermal shutdown          |                                                                 |      | 170  |      | °C            |  |

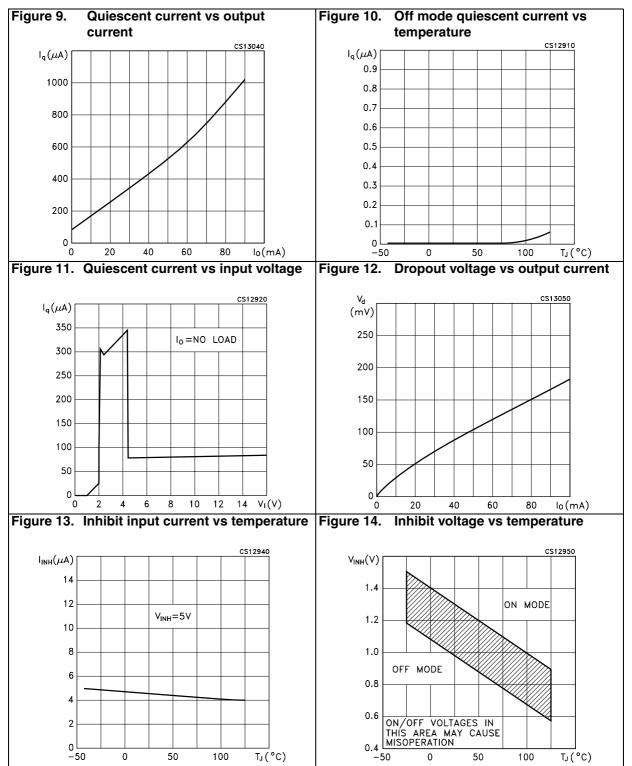
Note: 1 For  $V_O$  < 2.5V dropout voltage can be calculated according to the minimum input voltage in full temperature range.

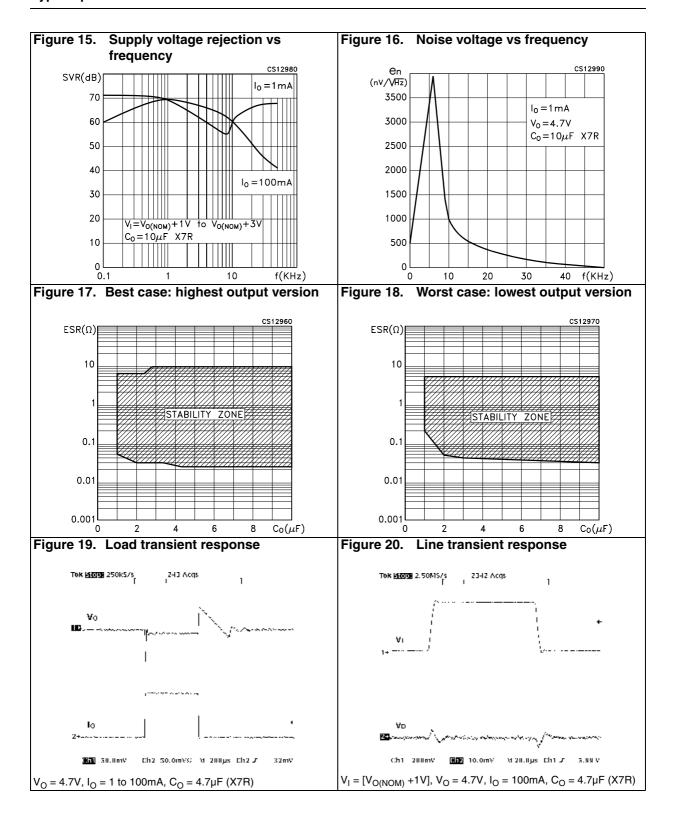
Table 5.Electrical characteristics for LD2981C ( $T_j = 25^{\circ}C$ ,  $V_l = V_{O(NOM)} + 1V$ ,  $C_l = 1\mu F(X7R)$ ,  $C_O = 2.2\mu F(X7R)$ ,  $I_O = 1mA$ ,  $V_{INH} = 2V$ , unless otherwise specified)

| Symbol          | Parameter               | Test conditions                                             | Min.  | Тур. | Max.  | Unit |
|-----------------|-------------------------|-------------------------------------------------------------|-------|------|-------|------|
| V <sub>OP</sub> | Operating input voltage |                                                             | 2.5   |      | 16    | V    |
|                 |                         | I <sub>O</sub> = 1 mA                                       | 1.478 | 1.5  | 1.522 |      |
| Vo              | Output voltage          | I <sub>O</sub> = 1 to 100 mA                                | 1.470 |      | 1.530 | V    |
|                 |                         | $I_O = 1$ to 100 mA, $T_J = -40$ to 125°C                   | 1.445 |      | 1.555 |      |
|                 |                         | I <sub>O</sub> = 1 mA                                       | 1.777 | 1.8  | 1.822 |      |
| Vo              | Output voltage          | I <sub>O</sub> = 1 to 100 mA                                | 1.764 |      | 1.836 | V    |
|                 |                         | $I_O = 1$ to 100 mA, $T_J = -40$ to 125°C                   | 1.737 |      | 1.863 |      |
|                 |                         | I <sub>O</sub> = 1 mA                                       | 2.468 | 2.5  | 2.531 |      |
| Vo              | Output voltage          | I <sub>O</sub> = 1 to 100 mA                                | 2.45  |      | 2.55  | V    |
|                 |                         | $I_O = 1$ to 100 mA, $T_J = -40$ to 125°C                   | 2.412 |      | 2.587 |      |
|                 |                         | I <sub>O</sub> = 1 mA                                       | 2.814 | 2.85 | 2.885 |      |
| Vo              | Output voltage          | I <sub>O</sub> = 1 to 100 mA                                | 2.793 |      | 2.907 | V    |
|                 |                         | $I_O = 1$ to 100 mA, $T_J = -40$ to 125°C                   | 2.75  |      | 2.949 |      |
|                 |                         | I <sub>O</sub> = 1 mA                                       | 2.962 | 3    | 3.037 |      |
| Vo              | Output voltage          | I <sub>O</sub> = 1 to 100 mA                                | 2.94  |      | 3.06  | V    |
|                 |                         | $I_O = 1$ to 100 mA, $T_J = -40$ to 125°C                   | 2.895 |      | 3.105 |      |
|                 |                         | I <sub>O</sub> = 1 mA                                       | 3.16  | 3.2  | 3.24  |      |
| Vo              | Output voltage          | I <sub>O</sub> = 1 to 100 mA                                | 3.136 |      | 3.264 | V    |
|                 |                         | $I_O = 1$ to 100 mA, $T_J = -40$ to 125°C                   | 3.088 |      | 3.312 |      |
|                 |                         | I <sub>O</sub> = 1 mA                                       | 3.258 | 3.3  | 3.341 |      |
| Vo              | Output voltage          | I <sub>O</sub> = 1 to 100 mA                                | 3.234 |      | 3.366 | V    |
|                 |                         | I <sub>O</sub> = 1 to 100 mA, T <sub>J</sub> = -40 to 125°C | 3.184 |      | 3.415 |      |
|                 |                         | I <sub>O</sub> = 1 mA                                       | 3.555 | 3.6  | 3.645 |      |
| Vo              | Output voltage          | I <sub>O</sub> = 1 to 100 mA                                | 3.528 |      | 3.672 | V    |
|                 |                         | I <sub>O</sub> = 1 to 100 mA, T <sub>J</sub> = -40 to 125°C | 3.474 |      | 3.726 |      |
|                 |                         | I <sub>O</sub> = 1 mA                                       | 3.752 | 3.8  | 3.847 |      |
| Vo              | Output voltage          | I <sub>O</sub> = 1 to 100 mA                                | 3.724 |      | 3.876 | V    |
|                 |                         | I <sub>O</sub> = 1 to 100 mA, T <sub>J</sub> = -40 to 125°C | 3.667 |      | 3.933 |      |
|                 |                         | I <sub>O</sub> = 1 mA                                       | 3.95  | 4    | 4.05  |      |
| Vo              | Output voltage          | I <sub>O</sub> = 1 to 100 mA                                | 3.92  |      | 4.08  | V    |
|                 |                         | $I_O = 1$ to 100 mA, $T_J = -40$ to 125°C                   | 3.86  |      | 4.14  |      |
|                 |                         | I <sub>O</sub> = 1 mA                                       | 4.641 | 4.7  | 4.758 |      |
| Vo              | Output voltage          | I <sub>O</sub> = 1 to 100 mA                                | 4.606 |      | 4.794 | V    |
|                 |                         | $I_O = 1$ to 100 mA, $T_J = -40$ to 125°C                   | 4.535 |      | 4.864 |      |
|                 |                         | I <sub>O</sub> = 1 mA                                       | 4.789 | 4.85 | 4.91  |      |
| Vo              | Output voltage          | I <sub>O</sub> = 1 to 100 mA                                | 4.753 |      | 4.947 | V    |
|                 |                         | $I_O = 1$ to 100 mA, $T_J = -40$ to 125°C                   | 4.68  |      | 5.019 |      |


Table 5. Electrical characteristics for LD2981C ( $T_j = 25^{\circ}\text{C}$ ,  $V_l = V_{O(NOM)} + 1\text{V}$ ,  $C_l = 1\mu\text{F}(X7\text{R})$ ,  $C_O = 2.2\mu\text{F}(X7\text{R})$ ,  $I_O = 1\text{mA}$ ,  $V_{INH} = 2\text{V}$ , unless otherwise specified)

| Symbol            | Parameter                          | Test conditions                                                 | Min.  | Тур.  | Max.  | Unit          |
|-------------------|------------------------------------|-----------------------------------------------------------------|-------|-------|-------|---------------|
|                   |                                    | I <sub>O</sub> = 1 mA                                           | 4.937 | 5     | 5.062 |               |
| Vo                | Output voltage                     | I <sub>O</sub> = 1 to 100 mA                                    | 4.9   |       | 5.1   | V             |
|                   |                                    | I <sub>O</sub> = 1 to 100 mA, T <sub>J</sub> = -40 to 125°C     | 4.825 |       | 5.175 |               |
| ΔV <sub>O</sub>   | Line regulation                    | $V_{O(NOM)} + 1 < V_{IN} < 16 \text{ V}, I_O = 1 \text{ mA}$    |       | 0.003 | 0.014 | %/V           |
| ΔνΟ               | Line regulation                    | T <sub>J</sub> = -40 to 125°C                                   |       |       | 0.032 | /o/ <b>V</b>  |
|                   |                                    | I <sub>O</sub> = 0                                              |       | 80    | 100   |               |
|                   |                                    | I <sub>O</sub> = 0, T <sub>J</sub> = -40 to 125°C               |       |       | 150   |               |
|                   |                                    | I <sub>O</sub> = 1 mA                                           |       | 100   | 150   |               |
|                   | Quiescent current                  | I <sub>O</sub> = 1 mA, T <sub>J</sub> = -40 to 125°C            |       |       | 200   |               |
| 1.                | ON MODE                            | I <sub>O</sub> = 25 mA                                          |       | 250   | 400   |               |
| IQ                |                                    | I <sub>O</sub> = 25 mA, T <sub>J</sub> = -40 to 125°C           |       |       | 800   | μA            |
|                   |                                    | I <sub>O</sub> = 100 mA                                         |       | 1000  | 1300  |               |
|                   |                                    | I <sub>O</sub> = 100 mA, T <sub>J</sub> = -40 to 125°C          |       |       | 2600  |               |
|                   | OFF MODE                           | V <sub>INH</sub> < 0.3 V                                        |       |       | 0.8   |               |
|                   | OIT WODE                           | V <sub>INH</sub> < 0.15 V, T <sub>J</sub> = -40 to 125°C        |       |       | 2     |               |
|                   |                                    | I <sub>O</sub> = 0                                              |       | 1     | 3     |               |
|                   |                                    | I <sub>O</sub> = 0, T <sub>J</sub> = -40 to 125°C               |       |       | 5     |               |
|                   |                                    | I <sub>O</sub> = 1 mA                                           |       | 7     | 10    |               |
| V                 | Dropout voltage ( <i>Note: 1</i> ) | I <sub>O</sub> = 1 mA, T <sub>J</sub> = -40 to 125°C            |       |       | 15    | mV            |
| $V_{DROP}$        | Diopout voitage (Note: 1)          | I <sub>O</sub> = 25 mA                                          |       | 70    | 100   | 1110          |
|                   |                                    | I <sub>O</sub> = 25 mA, T <sub>J</sub> = -40 to 125°C           |       |       | 150   |               |
|                   |                                    | I <sub>O</sub> = 100 mA                                         |       | 180   | 250   |               |
|                   |                                    | I <sub>O</sub> = 100 mA, T <sub>J</sub> = -40 to 125°C          |       |       | 375   |               |
| I <sub>SC</sub>   | Short circuit current              | R <sub>L</sub> = 0                                              |       | 150   |       | mA            |
| SVR               | Supply voltage rejection           | $C_O = 10\mu F$ , $f = 1KHz$                                    |       | 63    |       | dB            |
| V <sub>INH</sub>  | Inhibit input logic low            | LOW = Output OFF, T <sub>J</sub> = -40 to 125°C                 |       |       | 0.18  | V             |
| V <sub>INL</sub>  | Inhibit input logic high           | HIGH = Output ON, T <sub>J</sub> = -40 to 125°C                 | 1.6   |       |       | V             |
| l                 | Inhibit input current              | V <sub>INH</sub> = 0V, T <sub>J</sub> = -40 to 125°C            |       | 0     | -1    | μF            |
| I <sub>INH</sub>  | minor input current                | V <sub>INH</sub> = 5V, T <sub>J</sub> = -40 to 125°C            |       | 5     | 15    | μ'            |
| e <sub>N</sub>    | Output noise voltage               | $B_W = 300 \text{ Hz to } 50 \text{ KHz}, C_O = 10 \mu\text{F}$ |       | 160   |       | $\mu V_{RMS}$ |
| T <sub>SHDN</sub> | Thermal shutdown                   |                                                                 |       | 170   |       | °C            |


Note: 1 For  $V_O$  < 2.5V dropout voltage can be calculated according to the minimum input voltage in full temperature range.


### 5 Typical performance characteristics

 $(T_J = 25^{\circ}C, V_I = V_{O(NOM)} + 1V, C_I = 1\mu F(X7R), C_O = 2.2\mu F(X7R), V_{INH} = 2V$ , unless otherwise specified).



.





LD2981 series Application notes

### 6 Application notes

#### 6.1 External capacitors

Like any low-dropout regulator, the LD2981 requires external capacitors for regulator stability. This capacitor must be selected to meet the requirements of minimum capacitance and equivalent series resistance. We suggest to solder input and output capacitors as close as possible to the relative pins.

#### 6.2 Input capacitor

An input capacitor whose value is  $1\mu F$  is required with the LD2981 (amount of capacitance can be increased without limit). This capacitor must be located a distance of not more than 0.5" from the input pin of the device and returned to a clean analog ground. Any good quality ceramic, tantalum or film capacitors can be used for this capacitor.

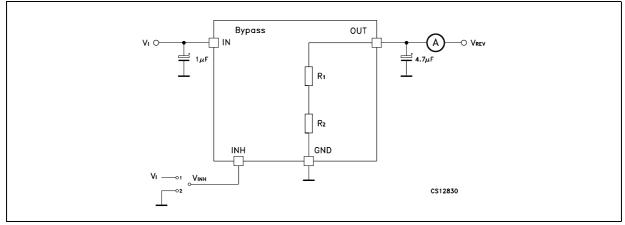
#### 6.3 Output capacitor

The LD2981 is designed specifically to work with ceramic output capacitors. It may also be possible to use Tantalum capacitors, but these are not as attractive for reasons of size and cost. By the way, the output capacitor must meet both the requirement for minimum amount of capacitance and ESR (equivalent series resistance) value. The *Figure 3.* and *Figure 4.* show the allowable ESR range as a function of the output capacitance. These curves represent the stability region over the full temperature and  $I_O$  range. Due to the different loop gain, the stability improves for higher output versions and so the suggested minimum output capacitor value, if low ESR ceramic type is used, is  $1\mu F$  for output voltages equal or major than 3.8V,  $2.2\mu F$  for output voltages from 2.85 to 3.3V, and  $3.3\mu F$  for the other versions. However, if an output capacitor lower than the suggested one is used, it's possible to make stable the regulator adding a resistor in series to the capacitor (see Figure 1 & Figure 2 to choose the right value according to the used version and keeping in account that the ESR of ceramic capacitors has been measured @ 100KHz).

### 6.4 Important

The output capacitor must maintain its ESR in the stable region over the full operating temperature to assure stability. Also, capacitor tolerance and variation with temperature must be considered to assure the minimum amount of capacitance is provided at all times. This capacitor should be located not more than 0.5" from the output pin of the device and returned to a clean analog ground.

### 6.5 Inhibit input operation

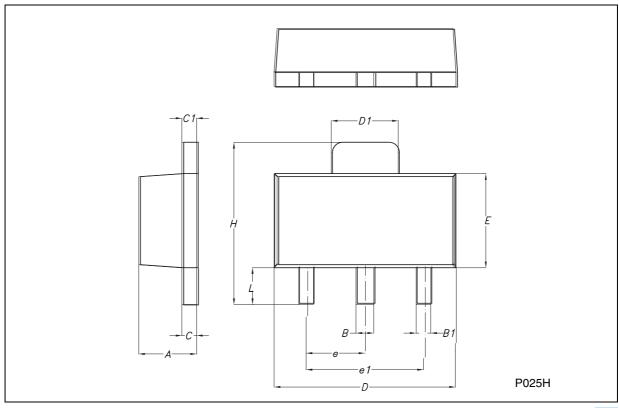

The inhibit pin can be used to turn OFF the regulator when pulled low, so drastically reducing the current consumption down to less than  $1\mu A.$  When the inhibit feature is not used, this pin must be tied to  $V_I$  to keep the regulator output ON at all times. To assure proper operation, the signal source used to drive the inhibit pin must be able to swing above and below the specified thresholds listed in the electrical characteristics section under  $V_{IH}$   $V_{IL}.$  Any slew rate can be used to drive the inhibit.

Application notes LD2981 series

#### 6.6 Reverse current

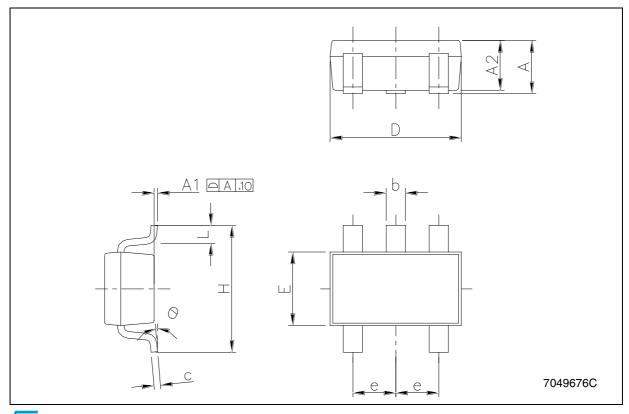
The power transistor used in the LD2981 has not an inherent diode connected between the regulator input and output. If the output is forced above the input, no current will flow from the output to the input across the series pass transistor. When a  $V_{REV}$  voltage is applied on the output, the reverse current measured, according to the test circuit in *Figure 21*., flows to the GND across the two feedback resistors. This current typical value is  $160\mu A$ .  $R_1$  and  $R_2$  resistors are implanted type; typical values are, respectively,  $42.6~K\Omega$  and  $51.150~K\Omega$ 

Figure 21. Reverse current test circuit



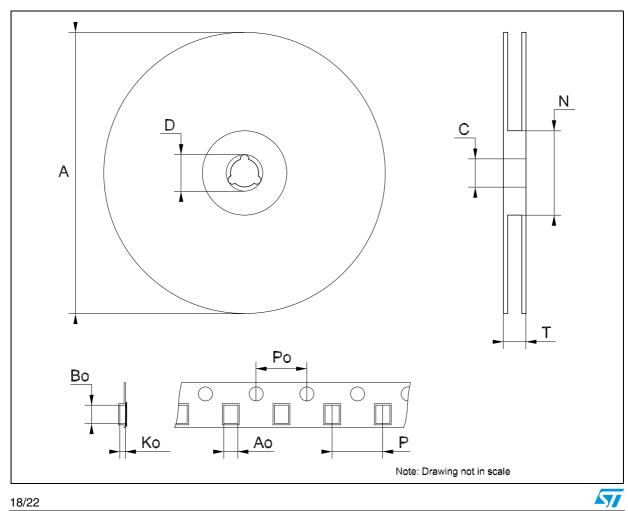

# 7 Package mechanical data

In order to meet environmental requirements, ST offers these devices in ECOPACK<sup>®</sup> packages. These packages have a Lead-free second level interconnect. The category of second Level Interconnect is marked on the package and on the inner box label, in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering conditions are also marked on the inner box label. ECOPACK is an ST trademark. ECOPACK specifications are available at: www.st.com.


#### **SOT-89 MECHANICAL DATA**

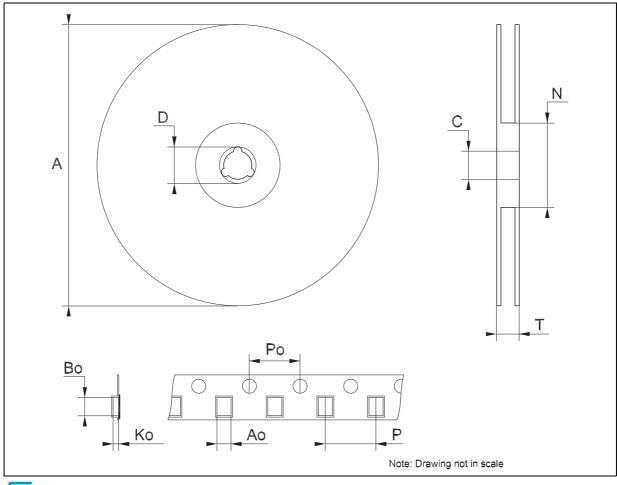
| DIM. | mm.  |     |      | mils  |      |       |
|------|------|-----|------|-------|------|-------|
|      | MIN. | ТҮР | MAX. | MIN.  | TYP. | MAX.  |
| Α    | 1.4  |     | 1.6  | 55.1  |      | 63.0  |
| В    | 0.44 |     | 0.56 | 17.3  |      | 22.0  |
| B1   | 0.36 |     | 0.48 | 14.2  |      | 18.9  |
| С    | 0.35 |     | 0.44 | 13.8  |      | 17.3  |
| C1   | 0.35 |     | 0.44 | 13.8  |      | 17.3  |
| D    | 4.4  |     | 4.6  | 173.2 |      | 181.1 |
| D1   | 1.62 |     | 1.83 | 63.8  |      | 72.0  |
| Е    | 2.29 |     | 2.6  | 90.2  |      | 102.4 |
| е    | 1.42 |     | 1.57 | 55.9  |      | 61.8  |
| e1   | 2.92 |     | 3.07 | 115.0 |      | 120.9 |
| Н    | 3.94 |     | 4.25 | 155.1 |      | 167.3 |
| L    | 0.89 |     | 1.2  | 35.0  |      | 47.2  |




#### **SOT23-5L MECHANICAL DATA**

| DIM. | mm.  |      |      | mils  |      |       |
|------|------|------|------|-------|------|-------|
|      | MIN. | TYP  | MAX. | MIN.  | TYP. | MAX.  |
| А    | 0.90 |      | 1.45 | 35.4  |      | 57.1  |
| A1   | 0.00 |      | 0.10 | 0.0   |      | 3.9   |
| A2   | 0.90 |      | 1.30 | 35.4  |      | 51.2  |
| b    | 0.35 |      | 0.50 | 13.7  |      | 19.7  |
| С    | 0.09 |      | 0.20 | 3.5   |      | 7.8   |
| D    | 2.80 |      | 3.00 | 110.2 |      | 118.1 |
| E    | 1.50 |      | 1.75 | 59.0  |      | 68.8  |
| е    |      | 0.95 |      |       | 37.4 |       |
| Н    | 2.60 |      | 3.00 | 102.3 |      | 118.1 |
| L    | 0.10 |      | 0.60 | 3.9   |      | 23.6  |




| Tape & Reel SOT23-xL | . MECHANICAL | <b>DATA</b> |
|----------------------|--------------|-------------|
|----------------------|--------------|-------------|

| DIM  | mm.  |      |      |       |       |        |
|------|------|------|------|-------|-------|--------|
| DIM. | MIN. | TYP  | MAX. | MIN.  | TYP.  | MAX.   |
| А    |      |      | 180  |       |       | 7.086  |
| С    | 12.8 | 13.0 | 13.2 | 0.504 | 0.512 | 0.519  |
| D    | 20.2 |      |      | 0.795 |       |        |
| N    | 60   |      |      | 2.362 |       |        |
| Т    |      |      | 14.4 |       |       | 0.567  |
| Ao   | 3.13 | 3.23 | 3.33 | 0.123 | 0.127 | 0.131  |
| Во   | 3.07 | 3.17 | 3.27 | 0.120 | 0.124 | 0.128  |
| Ko   | 1.27 | 1.37 | 1.47 | 0.050 | 0.054 | 0.0.58 |
| Po   | 3.9  | 4.0  | 4.1  | 0.153 | 0.157 | 0.161  |
| Р    | 3.9  | 4.0  | 4.1  | 0.153 | 0.157 | 0.161  |



Tape & Reel SOT89 MECHANICAL DATA

| DIM. | mm.  |      |      | inch  |       |       |
|------|------|------|------|-------|-------|-------|
|      | MIN. | TYP  | MAX. | MIN.  | TYP.  | MAX.  |
| Α    |      |      | 180  |       |       | 7.086 |
| С    | 12.8 | 13.0 | 13.2 | 0.504 | 0.512 | 0.519 |
| D    | 20.2 |      |      | 0.795 |       |       |
| N    | 60   |      |      | 2.362 |       |       |
| Т    |      |      | 14.4 |       |       | 0.567 |
| Ao   | 4.70 | 4.80 | 4.90 | 0.185 | 0.189 | 0.193 |
| Во   | 4.30 | 4.40 | 4.50 | 0.169 | 0.173 | 0.177 |
| Ko   | 1.70 | 1.80 | 1.90 | 0.067 | 0.071 | 0.075 |
| Po   | 3.9  | 4.0  | 4.1  | 0.153 | 0.157 | 0.161 |
| Р    | 7.9  | 8.0  | 8.1  | 0.311 | 0.315 | 0.319 |



Order code LD2981 series

### 8 Order code

Table 6. Order code

| AB Ve         | ersion                       | C Ve         | Output voltage              |       |
|---------------|------------------------------|--------------|-----------------------------|-------|
| SOT23-5L      | SOT-89                       | SOT23-5L     | SOT-89                      |       |
|               |                              | LD2981CM15TR |                             | 1.5 V |
|               |                              | LD2981CM18TR | LD2981CU18TR                | 1.8 V |
| LD2981ABM25TR | LD2981ABU25TR <sup>(1)</sup> | LD2981CM25TR | LD2981CU25TR <sup>(1)</sup> | 2.5 V |
| LD2981ABM30TR | LD2981ABU30TR <sup>(1)</sup> | LD2981CM30TR | LD2981CU30TR <sup>(1)</sup> | 3.0 V |
| LD2981ABM33TR | LD2981ABU33TR                | LD2981CM33TR | LD2981CU33TR                | 3.3 V |
| LD2981ABM36TR | LD2981ABU36TR <sup>(1)</sup> | LD2981CM36TR | LD2981CU36TR <sup>(1)</sup> | 3.6 V |
| LD2981ABM38TR | LD2981ABU38TR <sup>(1)</sup> | LD2981CM38TR | LD2981CU38TR <sup>(1)</sup> | 3.8 V |
| LD2981ABM50TR | LD2981ABU50TR                | LD2981CM50TR | LD2981CU50TR                | 5.0 V |

<sup>1.</sup> Available on request.

LD2981 series Revision history

# 9 Revision history

Table 7. Revision history

| Date        | Revision                                          | Changes |
|-------------|---------------------------------------------------|---------|
| 25-Jul-2006 | 12 Order Codes has been updated and new template. |         |

#### Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2006 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

