

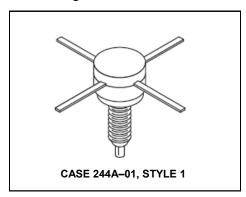
Rev. V1

Designed for use in high–gain, low–noise, ultra–linear, tuned and wideband amplifiers. Ideal for use in CATV, MATV, and instrumentation applications.

• Low noise figure —

NF = 3.0 dB (typ.) @ f = 500 MHz, Ic = 90 mA

High power gain —


GU(max) = 16.5 dB (typ.) @ f = 500 MHz

- Ion implanted
- All gold metal system
- High ft 5.5 GHz
- Low intermodulation distortion:

TB3 = -70 dBDIN = 125 dB μV

Nichrome emitter ballast resistors

Product Image

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector–Emitter Voltage	V _{CEO}	17	Vdc
Collector-Base Voltage	V _{CBO}	34	Vdc
Emitter-Base Voltage	V _{EBO}	2.5	Vdc
Collector Current — Continuous	Ic	200	mAdc
Total Device Dissipation @ T _C = 50°C Derate above T _C = 50°C	PD	5.0 33	Watts mW/°C
Storage Temperature Range	T _{stg}	- 65 to +150	°C
Junction Temperature	TJ	200	°C

ELECTRICAL CHARACTERISTICS (T_C = 25°C unless otherwise noted.)

Symbol		Тур	Max	Unit
V _{(BR)CEO}	17	_	_	Vdc
V _{(BR)CBO}	34	_	_	Vdc
V _{(BR)EBO}	2.5	_	_	Vdc
Ісво	_	_	50	μAdc
h _{FE}	50	_	200	_
	V(BR)CEO V(BR)CBO V(BR)EBO	V(BR)CEO 17 V(BR)CBO 34 V(BR)EBO 2.5 ICBO —	V(BR)CEO 17 — V(BR)CBO 34 — V(BR)EBO 2.5 — ICBO — —	V(BR)CEO 17 — — V(BR)CBO 34 — — V(BR)EBO 2.5 — — ICBO — 50

NOTE: (continued)

1. 300 μs pulse on Tektronix 576 or equivalent.

1

MRF587

The RF Line NPN Silicon High Frequency Transistor Noise Figure 3.0 dB@ 500MHz

Rev. V1

ELECTRICAL CHARACTERISTICS — **continued** ($T_C = 25$ °C unless otherwise noted.)

Characteristic	Symbol	Min	Тур	Max	Unit			
DYNAMIC CHARACTERISTICS								
Current-Gain — Bandwidth Product (2) (I _C = 90 mAdc, V _{CE} = 15 Vdc, f = 0.5 GHz)	f _T	_	5.5	_	GHz			
Collector–Base Capacitance (V _{CB} = 10 Vdc, I _E = 0, f = 1.0 MHz)	C _{cb}	_	1.7	2.2	pF			
FUNCTIONAL TESTS								
Narrowband — Figure 15 (I _C = 90 mA, V _{CC} = 15 V, f = 0.5 GHz) Noise Figure Power Gain at Optimum Noise Figure	NF G _{NF}	<u></u>	3.0 13	4.0	dB			
Broadband — Figure 16 (I _C = 90 mA, V _{CC} = 15 V, f = 0.3 GHz) Noise Figure Power Gain at Optimum Noise Figure	NF G _{NF}	_	6.3 11		dB			
Triple Beat Distortion (I _C = 50 mA, V_{CC} = 15 V, P_{Ref} = 50 dBmV) (I _C = 90 mA, V_{CC} = 15 V, P_{Ref} = 50 dBmV)	TB ₃	_	-70	_	dB			
DIN 45004 (I _C = 90 mA, V _{CC} = 15 V) (I _C = 90 mA, V _{CC} = 15 V)	DIN	_	125	_	dBμV			
Maximum Available Power Gain (3) (I _C = 90 mA, V _{CE} = 15 Vdc, f = 0.5 GHz)	G _{Umax}	_	16.5	_	dB			

NOTES:

2. Characterized on HP8542 Automatic Network Analyzer

3.
$$G_{Umax} = \frac{|S_21|^2}{(1-|S_{11}|^2)(1-|S_{22}|^2)}$$

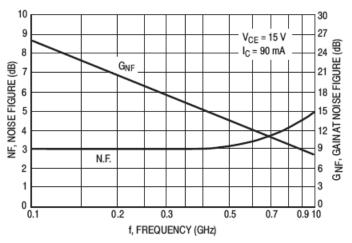


Figure 1. Typical Noise Figure and Associated Gain versus Frequency

Figure 2. Noise Figure versus Collector Current

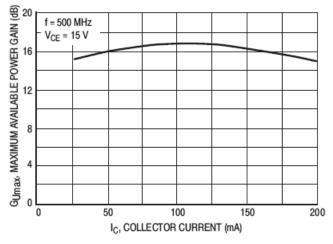


Figure 3. G_{Umax} versus Collector Current

Figure 4. Gain-Bandwidth Product versus Collector Current

Rev. V1

TYPICAL PERFORMANCE

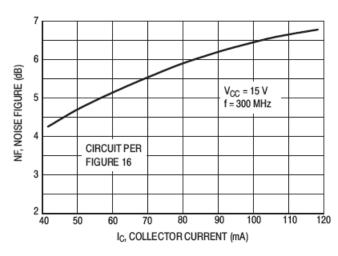


Figure 5. Broadband Noise Figure

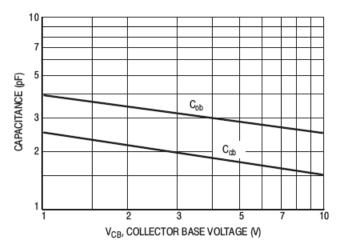


Figure 6. Junction Capacitance versus Voltage

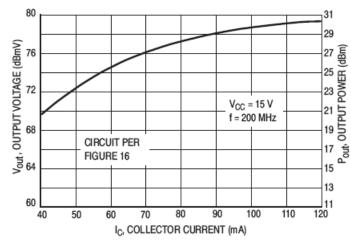


Figure 7. 1.0 dB Compression Point versus Collector Current

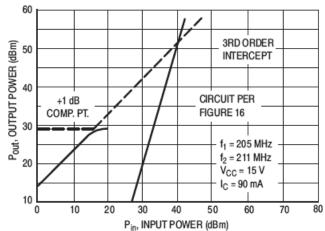


Figure 8. Third Order Intercept Point

Rev. V1

TYPICAL PERFORMANCE (continued)



Figure 9. Second Order Distortion versus Collector Current

Figure 10. Triple Beat Distortion versus Collector Current

Figure 11. 35-Channel X-Modulation Distortion versus Collector Current

Figure 12. DIN 45004B versus Collector Current

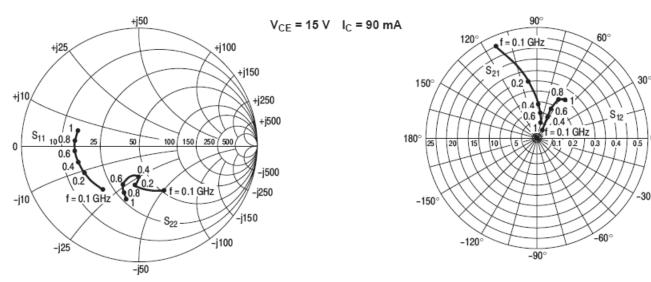


Figure 13. Input/Output Reflection Coefficient versus Frequency (GHz)

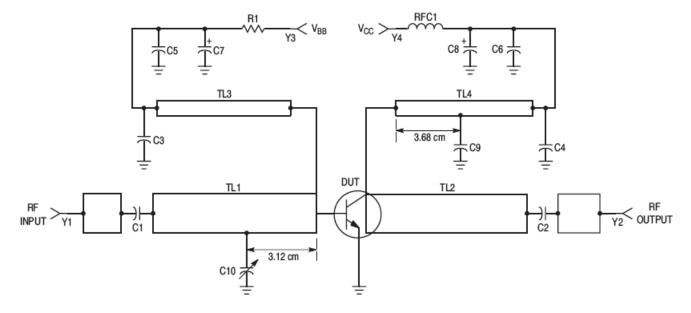
Figure 14. Forward/Reverse Transmission Coefficients versus Frequency (GHz)

Rev. V1

V _{CE}	lc	f	S ₁₁		S ₂₁		S ₁₂		S ₂₂	
(Volts)	(mA)	(MHz)	S ₁₁	∠ φ	S ₂₁	∠ ф	S ₁₂	∠ ф	S ₂₂	∠ φ
5.0	30	100 200 400 600 800 1000	0.56 0.58 0.60 0.64 0.67 0.70	-131 -159 -178 170 162 155	16.45 9.42 5.00 3.61 2.92 2.55	113 98 86 76 67 58	0.04 0.06 0.08 0.11 0.14 0.17	45 49 55 56 55 54	0.49 0.38 0.35 0.38 0.41 0.44	-91 -116 -132 -138 -144 -152
	60	100 200 400 600 800 1000	0.53 0.56 0.59 0.63 0.66 0.69	-141 -164 178 169 161 155	17.89 10.05 5.31 3.82 3.09 2.67	110 97 85 76 67 58	0.04 0.05 0.09 0.12 0.15 0.18	50 55 60 59 57 55	0.47 0.39 0.38 0.40 0.44 0.47	-102 -126 -141 -146 -153 -160
	90	100 200 400 600 800 1000	0.52 0.56 0.59 0.63 0.66 0.69	-145 -166 177 168 161 155	18.26 10.20 5.38 3.86 3.12 2.70	109 96 85 76 67 58	0.04 0.05 0.09 0.12 0.15 0.19	52 57 62 60 58 55	0.47 0.39 0.39 0.41 0.45 0.48	-106 -130 -144 -149 -155 -162
10	30	100 200 400 600 800 1000	0.53 0.53 0.55 0.59 0.62 0.65	-122 -153 175 173 165 158	18.36 10.63 5.71 4.16 3.37 2.95	115 100 87 78 68 59	0.04 0.05 0.08 0.10 0.13 0.15	48 51 57 58 57 55	0.50 0.36 0.33 0.35 0.39 0.42	-75 -96 -112 -119 -127 -136
	60	100 200 400 600 800 1000	0.49 0.51 0.53 0.58 0.60 0.63	-132 -158 -178 171 164 157	20.19 11.54 6.12 4.43 3.58 3.12	112 99 87 78 68 60	0.03 0.05 0.08 0.11 0.14 0.16	51 57 61 60 59 57	0.46 0.35 0.33 0.36 0.40 0.44	-85 -107 -123 -129 -136 -144
	90	100 200 400 600 800 1000	0.48 0.50 0.53 0.57 0.60 0.63	-135 -160 -179 171 164 157	20.82 11.77 6.22 4.50 3.64 3.18	111 98 86 78 68	0.03 0.05 0.08 0.11 0.14 0.17	53 59 63 62 59	0.45 0.34 0.33 0.36 0.41 0.44	-88 -111 -126 -131 -139 -147

(continued)

Table 1. Common-Emitter S-Parameters



V _{CE}	Ic	f	s	11	S ₂₁		S ₁₂		S ₂₂	
(Volts)	(mA)	(MHz)	S ₁₁	∠ ф	S ₂₁	∠ ф	S ₁₂	∠ ф	S ₂₂	∠ ф
15	30	100	0.49	-112	20.34	118	0.04	54	0.51	-52
		200	0.52	-145	11.51	101	0.05	56	0.36	-77
		400	0.48	-164	6.12	87	0.09	63	0.32	-74
		600	0.52	-174	4.19	75	0.12	62	0.32	-90
		800	0.53	177	3.29	68	0.16	61	0.38	-90
		1000	0.53	168	2.76	61	0.20	56	0.47	-90
	60	100	0.45	-122	22.14	115	0.03	56	0.45	-60
		200	0.49	-150	12.24	99	0.05	60	0.33	-86
		400	0.45	-166	6.45	86	0.09	65	0.30	-83
		600	0.50	-175	4.42	75	0.13	63	0.32	-99
		800	0.51	177	3.47	68	0.16	61	0.38	-98
		1000	0.51	168	2.91	62	0.20	55	0.46	-96
	90	100	0.44	-127	22.76	114	0.03	58	0.43	-62
		200	0.48	-152	12.44	98	0.05	62	0.32	-89
		400	0.44	-167	6.55	85	0.09	66	0.29	-85
		600	0.50	-176	4.47	75	0.13	64	0.32	-102
		800	0.51	176	3.51	69	0.17	61	0.38	-100
		1000	0.51	168	2.95	62	0.20	55	0.46	-98

Table 1. Common-Emitter S-Parameters (continued)

Rev. V1

C1, C2 - 470 pF Chip (Ceramic)

C3, C4 - 0.018 µF Chip Capacitor

C5, C6 - 0.1 µF Mylar

C7, C8 - 1.0 µF, 25 Vdc Electrolytic

C9 - 91 pF Mini-Unelco (C9 Taped 3.68 cm from Collector Connection on TL4 as shown)

C10 — 35-45 pF Johanson Ceramic Capacitor, JMC 5801 or Equivalent (C10 Taped 3.12 cm from Base Connection on TL1)

R1 — 2.7 kΩ, 1-1/2 W

RFC1 - 0.15 µH Molded Choke

TL1, TL2 — Z_0 = 26 Ω , 0.0625 TFG as shown in

Photomaster

TL3, TL4 — $\lambda/4$ Microstrip, $Z_0 = 100 \Omega$

Y1, Y2 - N-Type Connection (Female)

Y3, Y4 — BNC-Type Connector (Female)

Board Material — 0.0625'' Thick Glass Teflon $\varepsilon_r = 2.5$

Figure 15. Narrowband Test Fixture Schematic 500 MHz

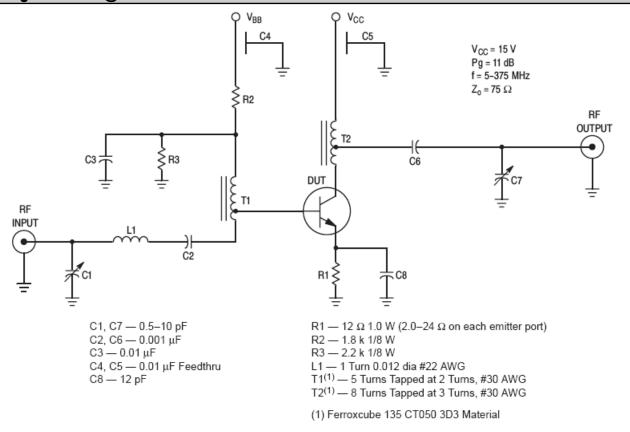


Figure 16. Broadband Test Circuit Schematic

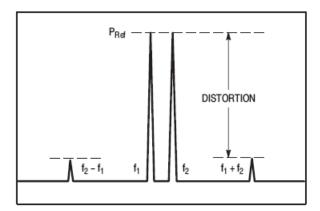


Figure 17. Second Order Distortion Test

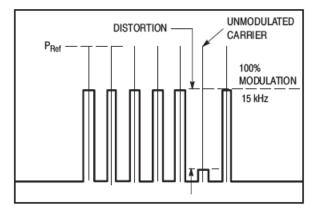


Figure 19. Cross Modulation Distortion Test

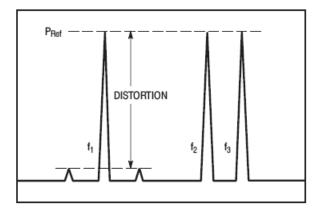


Figure 18. Triple Beat Distortion Test

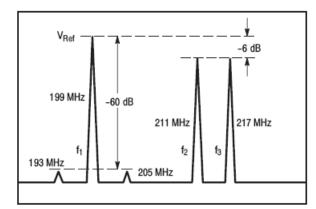
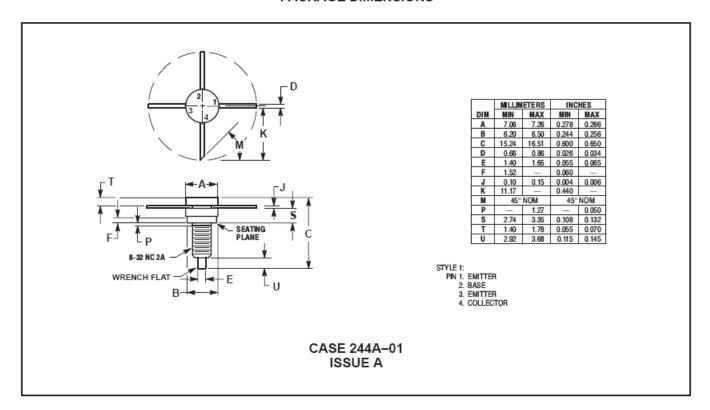



Figure 20. DIN 45004B Intermodulation Test

Rev. V1

PACKAGE DIMENSIONS

MRF587

The RF Line NPN Silicon High Frequency Transistor Noise Figure 3.0 dB@ 500MHz

Rev. V1

M/A-COM Technology Solutions Inc. All rights reserved.

Information in this document is provided in connection with M/A-COM Technology Solutions Inc ("MACOM") products. These materials are provided by MACOM as a service to its customers and may be used for informational purposes only. Except as provided in MACOM's Terms and Conditions of Sale for such products or in any separate agreement related to this document, MACOM assumes no liability whatsoever. MACOM assumes no responsibility for errors or omissions in these materials. MACOM may make changes to specifications and product descriptions at any time, without notice. MACOM makes no commitment to update the information and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to its specifications and product descriptions. No license, express or implied, by estoppels or otherwise, to any intellectual property rights is granted by this document.

THESE MATERIALS ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF MACOM PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, CONSEQUENTIAL OR INCIDENTAL DAMAGES, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. MACOM FURTHER DOES NOT WARRANT THE ACCURACY OR COMPLETENESS OF THE INFORMATION, TEXT, GRAPHICS OR OTHER ITEMS CONTAINED WITHIN THESE MATERIALS. MACOM SHALL NOT BE LIABLE FOR ANY SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVENUES OR LOST PROFITS, WHICH MAY RESULT FROM THE USE OF THESE MATERIALS.

MACOM products are not intended for use in medical, lifesaving or life sustaining applications. MACOM customers using or selling MACOM products for use in such applications do so at their own risk and agree to fully indemnify MACOM for any damages resulting from such improper use or sale.