

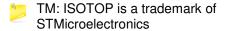
STPS160H100TV

High voltage power Schottky rectifier

Datasheet - production data

Features

- Negligible switching losses
- High junction temperature capability
- Low leakage current
- Good trade-off between leakage current and forward voltage drop
- Avalanche rated
- Low induction package
- Insulated package ISOTOP:
 - Insulated voltage: 2500 V_{RMS}
 - Capacitance: 45 pF


Description

High frequency dual Schottky rectifier designed for high frequency telecom, computer SMPS and other power converters.

Packaged in ISOTOP, this device is intended for use in medium voltage operation and in high frequency circuitries where low switching losses and low noise are required.

Table 1: Device summary

Symbol	Value
I _{F(AV)}	2 x 80 A
V_{RRM}	100 V
T _j (max.)	150 °C
V _F (max.)	0.68 V

Characteristics STPS160H100TV

1 Characteristics

Table 2: Absolute ratings (limiting values, per diode)

Symbol	Parameter	Value	Unit		
V_{RRM}	Repetitive peak reverse voltage			100	V
I _{F(RMS)}	Forward rms current			180	Α
I _{F(AV)}	Average forward current, δ = 0.5 T_C = 110 °C $Per diode$ Per device		80 160	Α	
I _{FSM}	Surge non repetitive forward current	t _p = 10 ms sinusoidal		1000	Α
I _{RRM}	Repetitive peak reverse current	t _p = 2 μs square f = 1 kHz		2	Α
I _{RSM}	Non repetitive peak reverse current t _p = 100 µs square		10	Α	
Parm	Repetitive peak avalanche power $t_p = 10 \mu s T_j = 125 °C$		5400	W	
T _{stg}	Storage temperature range			-55 to +150	°C
Tj	Maximum operating junction temperature ⁽¹⁾			150	°C

Notes:

Table 3: Thermal parameters

Symbol	Parameter Maximum values				
D	lunation to oppo	Per diode	0.9		
R _{th(j-c)} Junction to case	Junction to case	Total	0.5	°C/W	
R _{th(c)}	Coupling		0.14		

When the diodes 1 and 2 are used simultaneously:

 $\Delta \ T_{j} \ (\text{diode1}) = P_{(\text{diode1})} \ x \ R_{th(j\text{-}c) \ (\text{per diode})} \ + \ P_{(\text{diode2})} \ x \ R_{th(c)}$

 $^{^{(1)}(}dP_{tot}/dT_j) < (1/R_{th(j\text{-}a)}) \text{ condition to avoid thermal runaway for a diode on its own heatsink.}$

STPS160H100TV Characteristics

Table 4: Static electrical characteristics

Symbol	Parameter	Test conditions		Min.	Тур.	Max.	Unit
I _R ⁽¹⁾	1.(1)	T _j = 25 °C	V V	1		40	μΑ
IR''	Reverse leakage current	T _j = 125 °C	$V_R = V_{RRM}$	1	13	50	mA
		T _j = 25 °C	I _F = 60 A	ı		0.75	
		T _j = 125 °C		1	0.59	0.63	
V (2)	T _j = 25 °C	If = 80 A	1		0.80		
	Forward voltage drap	T _j = 125 °C	IF = 00 A	1	0.63	0.68	V
V F(-)	V _F ⁽²⁾ Forward voltage drop	T _j = 25 °C	I _F = 120 A	1		0.87	V
		T _j = 125 °C		1	0.69	0.74	
		T _j = 25 °C	1 160 4	-		0.92	
		T _j = 125 °C	I _F = 160 A	1	0.75	0.80	

Notes:

 $^{(1)}$ Pulse test: t_p = 5 ms, δ < 2%

 $^{(2)} Pulse$ test: t_p = 380 $\mu s, \, \delta < 2\%$

To evaluate the maximum conduction losses, use the following equation:

 $P = 0.56 \text{ x } I_{F(AV)} + 0.0015 \text{ x } I_{F^2(RMS)}$

Characteristics STPS160H100TV

1.1 Characteristics (curves)

10

0

20

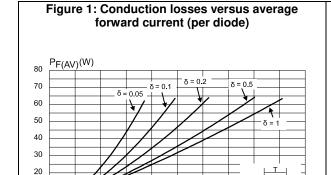


Figure 3: Normalized avalanche power derating versus pulse duration

60

80

100

40

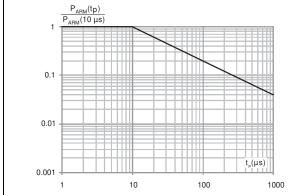


Figure 4: Relative variation of thermal impedance junction versus pulse duration (per diode)

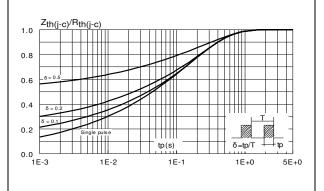


Figure 5: Reverse leakage current versus reverse voltage applied (typical values, per diode)

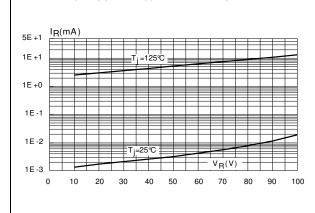
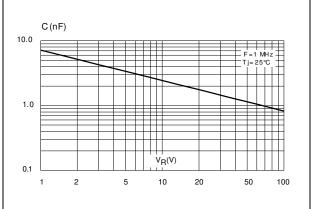



Figure 6: Junction capacitance versus reverse voltage applied (typical values, per diode)

577

STPS160H100TV Characteristics

Figure 7: Forward voltage drop versus forward current (maximum values, per diode)

Package information STPS160H100TV

2 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: **www.st.com**. ECOPACK® is an ST trademark.

• Epoxy meets UL94, V0

Cooling method: by conduction (C)
Recommended torque value: 1.3 N·m
Maximum torque value: 1.5 N·m

STMicroelectronics strongly recommends the use of the screws delivered with this product.

The use of any other screws is entirely at the user's own risk and will invalidate the warranty.

STPS160H100TV Package information

2.1 ISOTOP package information

Figure 8: ISOTOP package outline

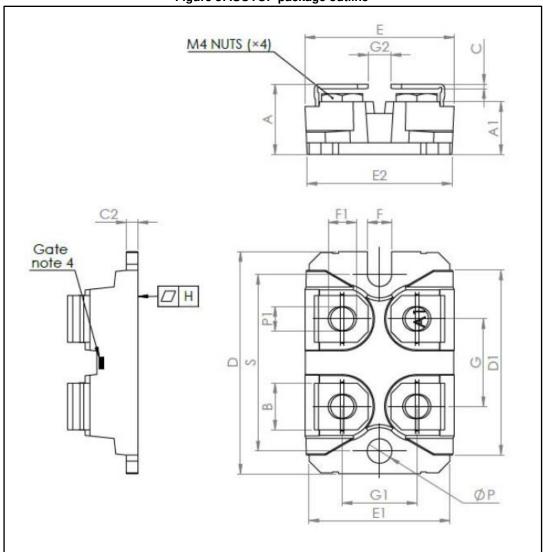


Table 5: ISOTOP package mechanical data

	Dimensions				
Ref.	Millimeters		Inches		
	Min.	Max.	Min.	Max.	
Α	11.80	12.20	0.460	0.480	
A1	8.90	9.10	0.350	0.358	
В	7.80	8.20	0.307	0.323	
С	0.75	0.85	0.030	0.033	
C2	1.95	2.05	0.077	0.081	
D	37.80	38.20	1.488	1.504	
D1	31.50	31.70	1.240	1.248	
Е	25.15	25.50	0.990	1.004	
E1	23.85	24.15	0.939	0.951	
E2	24.80		0.976		
G	14.90	15.10	0.587	0.594	
G1	12.60	12.80	0.496	0.504	
G2	3.50	4.30	0.138	0.169	
F	4.10	4.30	0.161	0.169	
F1	4.60	5	0.181	0.197	
Н	-0.05	0.1	-0.002	0.004	
Diam P	4	4.30	0.157	0.169	
P1	4	4.40	0.157	0.173	
S	30.10	30.30	1.185	1.193	

STPS160H100TV Ordering information

3 Ordering information

Table 6: Ordering information

Order code	Marking	Package	Weight	Base qty.	Delivery mode
STPS160H100TV	STPS160H100TV	ISOTOP	27 g (without screws)	10 (with screws)	Tube

4 Revision history

Table 7: Document revision history

Date	Revision	Changes
Jul-2003	3a	Last release.
06-Jun-2017	4	Updated Section 2.1: "ISOTOP package information".
24-Nov-2017	5	Updated Table 5: "ISOTOP package mechanical data".

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2017 STMicroelectronics - All rights reserved

