April 2001

SGS13N60UFD

IGBT

SGS13N60UFD

Ultra-Fast IGBT

FAIRCHILD SEMICONDUCTOR

General Description

Fairchild's UFD series of Insulated Gate Bipolar Transistors (IGBTs) provides low conduction and switching losses. The UFD series is designed for applications such as motor control and general inverters where high speed switching is a required feature.

Features

- · High speed switching
- Low saturation voltage : $V_{CE(sat)} = 2.1 \text{ V} @ I_C = 6.5 \text{A}$
- High input impedance
- CO-PAK, IGBT with FRD : t_{rr} = 37ns (typ.)

Application

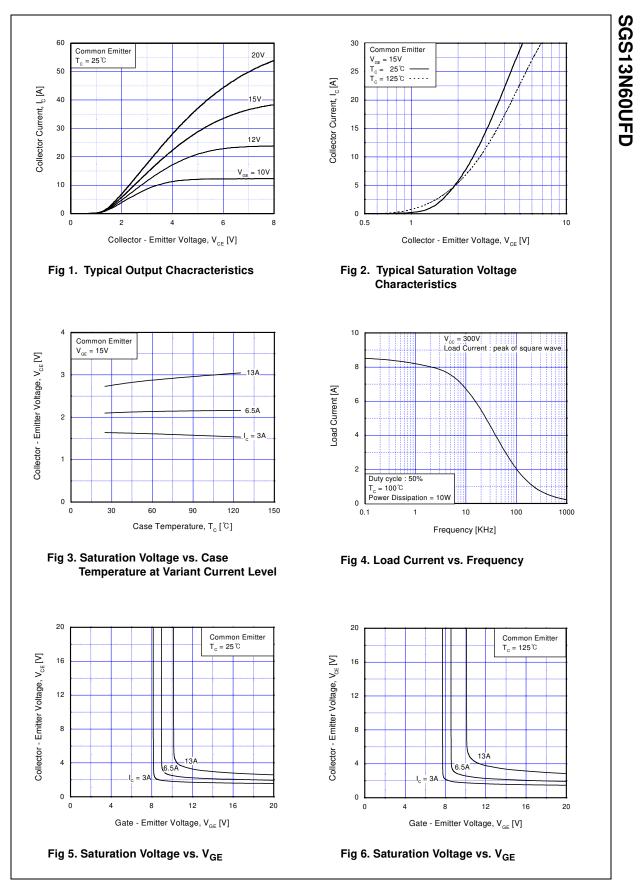
AC & DC Motor controls, general purpose inverters, robotics, servo controls

Absolute Maximum Ratings T_C = 25°C unless otherwise noted

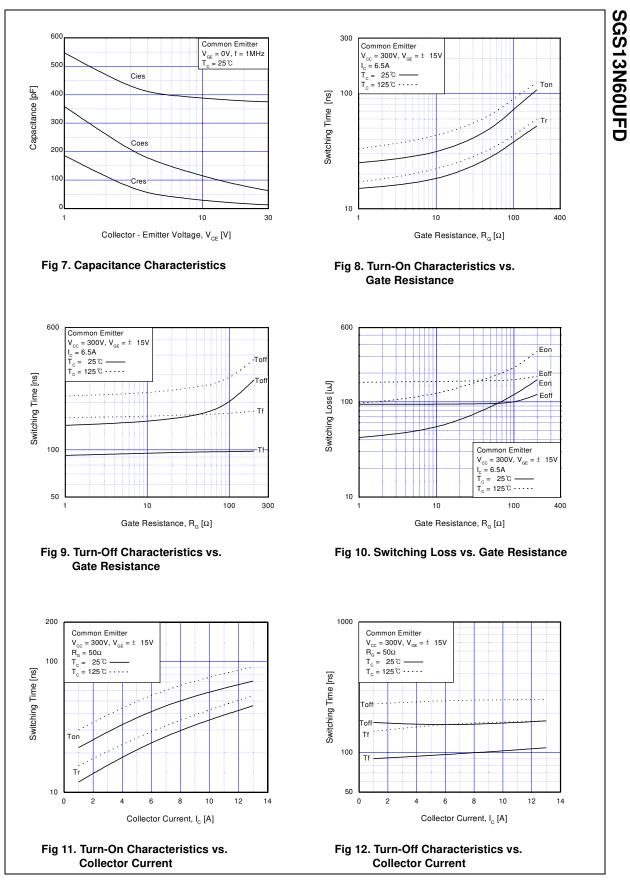
Symbol	Description Collector-Emitter Voltage		SGS13N60UFD	Units	
V _{CES}			600	V	
V _{GES}	Gate-Emitter Voltage		± 20	V	
	Collector Current	@ T _C = 25°C	13	А	
I _C	Collector Current	@ T _C = 100°C	6.5	А	
I _{CM (1)}	Pulsed Collector Current		52	A	
I _F	Diode Continuous Forward Current	@ T _C = 100°C	8	A	
I _{FM}	Diode Maximum Forward Current		56	A	
P _D	Maximum Power Dissipation	@ T _C = 25°C	45	W	
	Maximum Power Dissipation	@ T _C = 100°C	18	W	
TJ	Operating Junction Temperature		-55 to +150	°C	
T _{stg}	Storage Temperature Range		-55 to +150	°C	
TL	Maximum Lead Temp. for Soldering Purposes, 1/8" from Case for 5 Secon	ds	300	°C	

Notes: (1) Repetitive rating : Pulse width limited by max. junction temperature

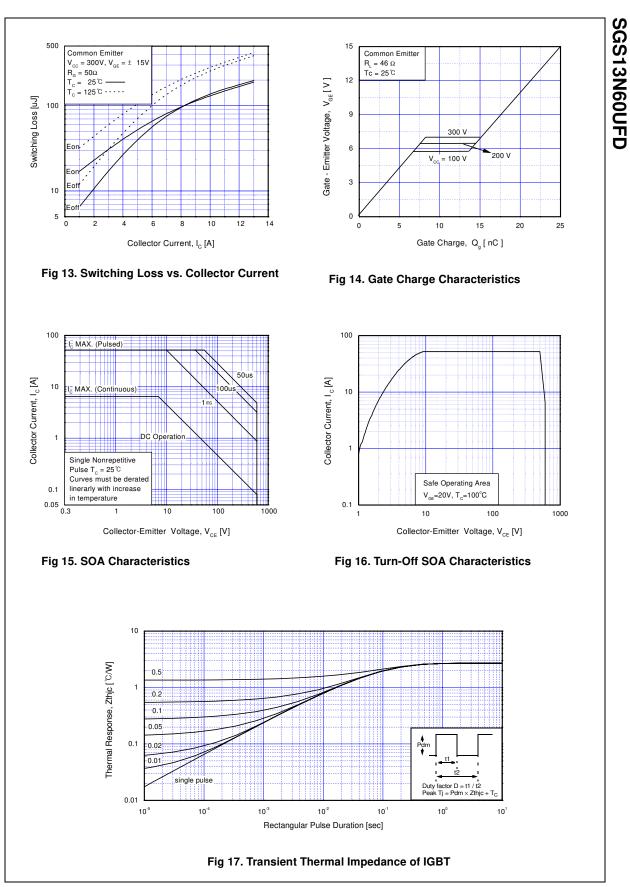
Thermal Characteristics

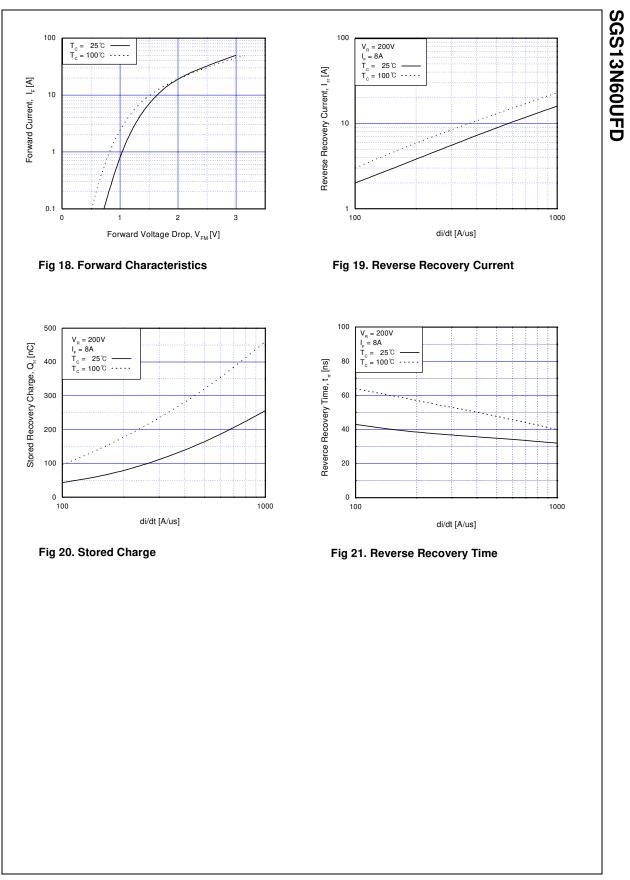

Symbol	Parameter	Тур.	Max.	Units
R _{0JC} (IGBT)	Thermal Resistance, Junction-to-Case		2.7	°C/W
R _{0JC} (DIODE)	Thermal Resistance, Junction-to-Case		1.7	°C/W
$R_{ extsf{ heta}JA}$	Thermal Resistance, Junction-to-Ambient		62.5	°C/W

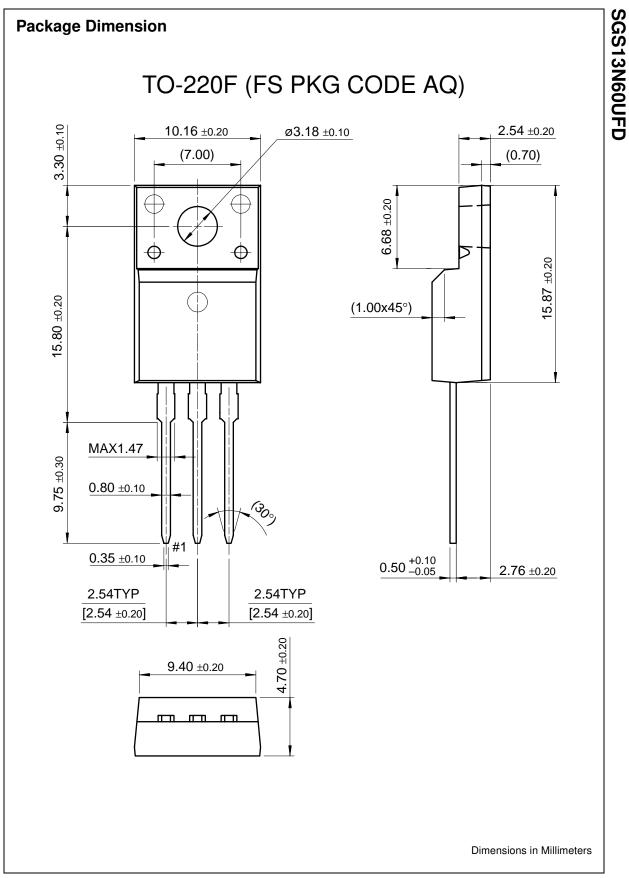
Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Units
Off Cha	racteristics					
BV _{CES}	Collector-Emitter Breakdown Voltage	$V_{GE} = 0V, I_{C} = 250uA$	600			V
∆B _{VCES} / ∆T _J	Temperature Coeff. of Breakdown Voltage	V _{GE} = 0V, I _C = 1mA		0.6		V/∘C
CES	Collector Cut-off Current	$V_{CE} = V_{CES}, V_{GE} = 0V$			250	μA
GES	G-E Leakage Current	$V_{GE} = V_{GES}, V_{CE} = 0V$			± 100	nA
On Chai	racteristics					
/ _{GE(th)}	G-E Threshold Voltage	$I_{C} = 6.5 \text{mA}, V_{CE} = V_{GE}$	3.5	4.5	6.5	V
	Collector to Emitter	$I_{\rm C} = 6.5 {\rm A}, V_{\rm GE} = 15 {\rm V}$		2.1	2.6	V
/ _{CE(sat)}	Saturation Voltage	I _C = 13A, V _{GE} = 15V		2.6		V
)ynami [,] _{ies}	c Characteristics Input Capacitance	V - 20V V - 0V		375		pF
Soes	Output Capacitance	− V _{CE} = 30V _, V _{GE} = 0V, f = 1MHz		63		pF
Pres	Reverse Transfer Capacitance			13		pF
Switchir	ng Characteristics					
	ng Characteristics Turn-On Delay Time			20		ns
d(on) r	Turn-On Delay Time Rise Time	-		27		ns
d(on) r d(off)	Turn-On Delay Time Rise Time Turn-Off Delay Time	V _{CC} = 300 V, I _C = 6.5A,		27 70	 130	ns ns
d(on) d(off)	Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time	$R_{G} = 50\Omega, V_{GE} = 15V,$		27 70 97	 130 150	ns ns ns
d(on) d(off)	Turn-On Delay TimeRise TimeTurn-Off Delay TimeFall TimeTurn-On Switching Loss			27 70 97 85	 130 150 	ns ns ns µJ
d(on) d(off) on off	Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-On Switching Loss Turn-Off Switching Loss	$R_{G} = 50\Omega, V_{GE} = 15V,$	 	27 70 97 85 95	 130 150 	ns ns ns µJ µJ
d(on) d(off) on off ts	Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss	$R_{G} = 50\Omega, V_{GE} = 15V,$	 	27 70 97 85 95 180	 130 150 270	ns ns ns μJ μJ μJ
d(on) d(off) on off ts d(on)	Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Turn-On Delay Time	$R_{G} = 50\Omega, V_{GE} = 15V,$	 	27 70 97 85 95 180 30	 130 150 270 	ns ns ns μJ μJ μJ ns
d(on) d(off) on off ts d(on)	Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Turn-On Delay Time Rise Time	$R_G = 50\Omega$, $V_{GE} = 15V$, Inductive Load, $T_C = 25^{\circ}C$	 	27 70 97 85 95 180 30 32	 130 150 270 	ns ns μJ μJ μJ ns ns
d(on) d(off) on off ts d(on) d(off)	Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Turn-On Delay Time Rise Time Turn-Off Delay Time Turn-Off Delay Time	$R_G = 50\Omega$, $V_{GE} = 15V$, Inductive Load, $T_C = 25^{\circ}C$ $V_{CC} = 300 \text{ V}$, $I_C = 6.5\text{A}$,	 	27 70 97 85 95 180 30 32 85	 130 150 270 200	ns ns μJ μJ μJ ns ns ns
d(on) d(off) on off ts d(on) d(off)	Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Turn-On Delay Time Rise Time Turn-Off Delay Time Rise Time Turn-Off Delay Time Fall Time	$R_{G} = 50\Omega, V_{GE} = 15V,$ Inductive Load, $T_{C} = 25^{\circ}C$ $V_{CC} = 300 V, I_{C} = 6.5A,$ $R_{G} = 50\Omega, V_{GE} = 15V,$	 	27 70 97 85 95 180 30 32 85 168	 130 150 270 	ns ns μJ μJ ns ns ns ns ns
d(on) d(off) on off ts d(on) d(off) d(off)	Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-On Switching Loss Total Switching Loss Total Switching Loss Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-Off Delay Time Fall Time Turn-On Switching Loss	$R_G = 50\Omega$, $V_{GE} = 15V$, Inductive Load, $T_C = 25^{\circ}C$ $V_{CC} = 300 \text{ V}$, $I_C = 6.5\text{A}$,	 	27 70 97 85 95 180 30 32 85 168 180	 130 150 270 270 200 250 	ns ns μJ μJ ns ns ns ns ns μJ
d(on) d(off) on off ts d(on) d(off) on off	Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-Off Delay Time Fall Time Turn-Off Delay Time Fall Time Turn- On Switching Loss Turn- Off Switching Loss	$R_{G} = 50\Omega, V_{GE} = 15V,$ Inductive Load, $T_{C} = 25^{\circ}C$ $V_{CC} = 300 V, I_{C} = 6.5A,$ $R_{G} = 50\Omega, V_{GE} = 15V,$	 	27 70 97 85 95 180 30 32 85 168 180 165	 130 150 270 270 200 250 	ns ns μJ μJ μJ ns ns ns ns ns μJ
d(on) r d(off) f on off ts d(on) r d(off) f on f on f on f ts d(off) f f on f ts d(off) f ts d(off) f ts d(off) f f ts d(off) f f f f f f f f f f f f f	Turn-On Delay TimeRise TimeTurn-Off Delay TimeFall TimeTurn-On Switching LossTurn-Off Switching LossTotal Switching LossTurn-On Delay TimeRise TimeTurn-Off Delay TimeFall TimeTurn-Off Switching LossTurn-Off Switching LossTurn-Off Switching LossTurn-Off Switching LossTurn- Off Switching LossTotal Switching LossTotal Switching LossTotal Switching Loss	$R_{G} = 50\Omega, V_{GE} = 15V,$ Inductive Load, $T_{C} = 25^{\circ}C$ $V_{CC} = 300 V, I_{C} = 6.5A,$ $R_{G} = 50\Omega, V_{GE} = 15V,$ Inductive Load, $T_{C} = 125^{\circ}C$	 	27 70 97 85 95 180 30 32 85 168 180	 130 150 270 270 200 250 500	zn sn sn Lμ Lμ Lμ Sn sn sn sn Lμ Lμ
d(on) r d(off) on off off ts d(on) r d(off) f on f on f off on ts d(on) f on f on on on on on on on on on on	Turn-On Delay TimeRise TimeTurn-Off Delay TimeFall TimeTurn-On Switching LossTurn-Off Switching LossTotal Switching LossTurn-On Delay TimeRise TimeTurn-Off Delay TimeFall TimeTurn-Off Delay TimeFall TimeTurn-Off Switching LossTurn- On Switching LossTurn- Off Switching LossTotal Switching LossTotal Switching LossTotal Switching LossTotal Gate Charge	$R_{G} = 50\Omega, V_{GE} = 15V,$ Inductive Load, $T_{C} = 25^{\circ}C$ $V_{CC} = 300 V, I_{C} = 6.5A,$ $R_{G} = 50\Omega, V_{GE} = 15V,$ Inductive Load, $T_{C} = 125^{\circ}C$ $V_{CE} = 300 V, I_{C} = 6.5A,$		27 70 97 85 95 180 30 32 85 168 180 165 345 25	 130 150 270 270 250 250 500 35	ns ns µJ µJ ms ns ns ns ns ns µJ µJ µJ nC
d(on) r	Turn-On Delay TimeRise TimeTurn-Off Delay TimeFall TimeTurn-On Switching LossTurn-Off Switching LossTotal Switching LossTurn-On Delay TimeRise TimeTurn-Off Delay TimeFall TimeTurn-Off Switching LossTurn-Off Switching LossTurn-Off Switching LossTurn-Off Switching LossTurn- Off Switching LossTotal Switching LossTotal Switching LossTotal Switching Loss	$R_{G} = 50\Omega, V_{GE} = 15V,$ Inductive Load, $T_{C} = 25^{\circ}C$ $V_{CC} = 300 V, I_{C} = 6.5A,$ $R_{G} = 50\Omega, V_{GE} = 15V,$ Inductive Load, $T_{C} = 125^{\circ}C$	 	27 70 97 85 95 180 30 32 85 168 180 165 345	 130 150 270 270 200 250 500	zn sn sn Lμ Lμ Lμ Sn sn sn sn Lμ Lμ


Electrical Characteristics of DIODE $T_{C} = 25^{\circ}C$ unless otherwise noted

Symbol	Parameter	Test Condi	Min.	Тур.	Max.	Units	
M	Diode Forward Voltage	1 94	$T_{C} = 25^{\circ}C$		1.4	1.7	v
V _{FM}	Didde Forward Voltage	I _F = 8A	$T_{C} = 100^{\circ}C$		1.3		v
+	Diode Reverse Recovery Time		$T_{C} = 25^{\circ}C$		37	55	
t _{rr}	Didde Reverse Recovery Time		$T_{C} = 100^{\circ}C$		55		ns
1	Diode Peak Reverse Recovery	I _F = 8A,	$T_{C} = 25^{\circ}C$		3.5	5.0	^
Irr	Current	di/dt = 200A/μs	$T_{C} = 100^{\circ}C$		4.5		A
0	Diede Deverse Desevery Charge		$T_{C} = 25^{\circ}C$		65	138	nC
Q _{rr}	Diode Reverse Recovery Charge		$T_{C} = 100^{\circ}C$		124		


SGS13N60UFD




SGS13N60UFD Rev. A

SGS13N60UFD Rev. A

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACEx™	FAST [®]	PACMAN™	SuperSOT™-3
Bottomless™	FASTr™	POP™	SuperSOT™-6
CoolFET™	GlobalOptoisolator™	PowerTrench [®]	SuperSOT™-8
CROSSVOLT™	GTO™	QFET™	SyncFET™
DenseTrench™	HiSeC™	QS™	TinyLogic™
DOME™	ISOPLANAR™	QT Optoelectronics [™]	UHC™
EcoSPARK™	LittleFET™	Quiet Series™	UltraFET [®]
E ² CMOS™	MicroFET™	SLIENT SWITCHER [®]	VCX™
EnSigna™	MICROWIRE™	SMART START™	
FACT™	OPTOLOGIC™	Star* Power™	
FACT Quiet Series™	OPTOPLANAR™	Stealth™	

DISCLAIMER

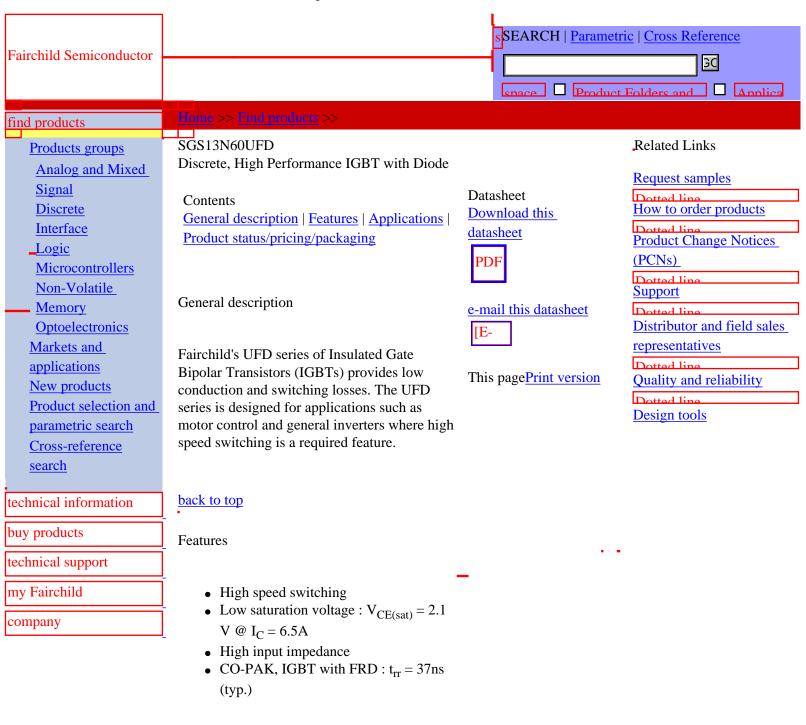
FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.


2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.

Product Folder - Fairchild P/N SGS13N60UFD - Discrete, High Performance IGBT with Diode

back to top

Applications

• AC & DC Motor controls, general purpose inverters, robotics, servo controls

back to top

Product status/pricing/packaging

Product	Product status	Pricing*	Package type	Leads	Packing method
SGS13N60UFDTU	Full Production	\$1.31	<u>TO-220F</u>	3	RAIL

* 1,000 piece Budgetary Pricing

back to top

<u>Home</u> | <u>Find products</u> | <u>Technical information</u> | <u>Buy products</u> | <u>Support</u> | <u>Company</u> | <u>Contact us</u> | <u>Site index</u> | <u>Privacy policy</u>

© Copyright 2002 Fairchild Semiconductor