

TinyLogic UHS Dual 2-Input OR Gate

NC7WZ32

Description

The NC7WZ32 is a dual 2–Input OR Gate from **onsemi**'s Ultra High Speed Series of TinyLogic. The device is fabricated with advanced CMOS technology to achieve ultra high speed with high output drive while maintaining low static power dissipation over a very broad V_{CC} operating range. The device is specified to operate over the 1.65 V to 5.5 V V_{CC} range. The inputs and output are high impedance when V_{CC} is 0 V. Inputs tolerate voltages up to 6.5 V independent of V_{CC} operating voltage.

Features

- Space Saving US8 Surface Mount Package
- MicroPakTM Pb-Free Leadless Package
- Ultra High Speed: $t_{PD} = 2.4$ ns Typ. into 50 pF at 5 V V_{CC}
- High Output Drive: ±24 mA at 3 V V_{CC}
- Broad V_{CC} Operating Range: 1.65 V to 5.5 V
- Matches the Performance of LCX when Operated at 3.3 V V_{CC}
- Power Down High Impedance Inputs / Output
- Overvoltage Tolerant Inputs Facilitate 5 V to 3 V Translation
- Proprietary Noise / EMI Reduction Circuitry Implemented
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

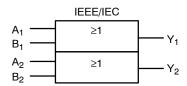


Figure 1. Logic Symbol

MARKING DIAGRAMS



UQFN8 1.6X1.6, 0.5P CASE 523AY

US8 CASE 846AN

N5, WZ32 = Specific Device Code

KK = 2-Digit Lot Run Traceability Code
XY = 2-Digit Date Code Format
Z = Assembly Plant Code
A = Assembly Location
L = Wafer Lot Number
YW = Assembly Start Week

ORDERING INFORMATION

See detailed ordering, marking and shipping information in the package dimensions section on page 5 of this data sheet.

Connection Diagrams

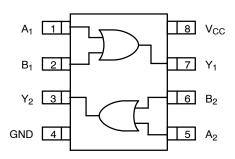


Figure 2. Connection Diagram (Top View)

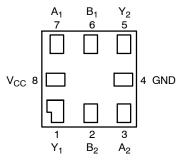
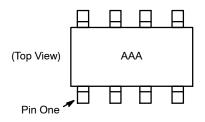



Figure 4. Pad Assignments for MicroPak (Top Thru View)

AAA represents Product Code Top Mark - see ordering code

NOTE: Orientation of Top Mark determines Pin One location. Read the top product code mark left to right, Pin One is the lower left pin (see diagram).

Figure 3. Pin One Orientation Diagram

PIN DESCRIPTIONS

Pin Names	Description
A _n , B _n	Inputs
Y _n	Output

FUNCTION TABLE (Y = A + B)

Inp	Output	
Α	В	Υ
L	L	L
L	Н	Н
Н	L	Н
Н	Н	Н

H = HIGH Logic Level L = LOW Logic Level

NC7WZ32

ABSOLUTE MAXIMUM RATINGS

Symbol	Parame	Min	Max	Unit	
V _{CC}	Supply Voltage	Supply Voltage			V
V _{IN}	DC Input Voltage		-0.5	6.5	V
V _{OUT}	DC Output Voltage		-0.5	6.5	V
I _{IK}	DC Input Diode Current	V _{IN} < 0 V	-	-50	mA
I _{OK}	DC Output Diode Current	V _{OUT} < 0 V	-	-50	mA
I _{OUT}	DC Output Current	-	±50	mA	
I _{CC} / I _{GND}	DC V _{CC} / GND Current	-	±100	mA	
T _{STG}	Storage Temperature		-65	+150	°C
TJ	Junction Temperature under Bias		-	150	°C
T_L	Junction Lead Temperature (Soldering, 10 Seconds)		-	260	°C
P _D	Power Dissipation in Still Air US8		-	500	mW
		MicroPak-8	-	539	

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

RECOMMENDED OPERATING CONDITIONS

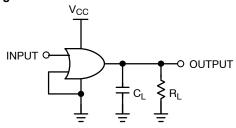
Symbol		Parameter	Min	Max	Unit
V _{CC}	Supply Voltage Operating		1.65	5.5	V
	Supply Voltage Data Rete	ntion	1.5	5.5	
V _{IN}	Input Voltage		0	5.5	V
V _{OUT}	Output Voltage		0	V _{CC}	V
T _A	Operating Temperature		-40	+85	°C
t _r , t _f	Input Rise and Fall Time V _{CC} = 1.80 V ±0.15 V, 2.5 V ±0.2 V		0	20	ns/V
		V _{CC} = 3.3 V ±0.3 V	0	10	
	$V_{CC} = 5.0 \text{ V} \pm 0.5 \text{ V}$		0	5	
$\theta_{\sf JA}$	Thermal Resistance US8		-	250	°C/W
		MicroPak-8	-	232	1

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

1. Unused inputs must be held HIGH or LOW. They may not float.

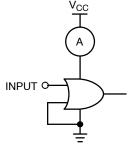
NC7WZ32

DC ELECTICAL CHARACTERISTICS


					T _A = +25°C			T _A = -40	to +85°C	
Symbol	Parameter	Co	nditions	V _{CC} (V)	Min	Тур	Max	Min	Max	Unit
V _{IH}	H HIGH Level Input Voltage			1.65 to 1.95	0.65 V _{CC}	-	-	0.65 V _{CC}	_	V
				2.3 to 5.5	0.7 V _{CC}	-	-	0.7 V _{CC}	_	
V _{IL}	LOW Level Input			1.65 to 1.95	-	-	0.35 V _{CC}	_	0.35 V _{CC}	V
	Voltage			2.3 to 5.5	-	-	0.3 V _{CC}	_	0.3 V _{CC}	
V _{OH}	HIGH Level Output	$V_{IN} = V_{IH}$	I _{OH} = -100 μA	1.65	1.55	1.65	-	1.55	_	V
	Voltage	or V _{IL} ,		2.3	2.2	2.3	-	2.2	_	1
				3.0	2.9	3.0	-	2.9	_	1
				4.5	4.4	4.5	-	4.4	_	1
			I _{OH} = -4 mA	1.65	1.29	1.52	-	1.29	_	1
			I _{OH} = -8 mA	2.3	1.9	2.15	-	1.9	_	1
			I _{OH} = -16 mA	3.0	2.4	2.80	-	2.4	_	1
			I _{OH} = -24 mA	3.0	2.3	2.68	-	2.3	_	
			$I_{OH} = -32 \text{ mA}$	4.5	3.8	4.20	-	3.8	_	
V _{OL}	L LOW Level Output $V_{IN} = V_{IH}$ or V_{IL} ,	$V_{IN} = V_{IH}$	I _{OL} = 100 μA	1.65	-	0.0	0.1	_	0.1	V
		or v _{IL} ,		2.3	-	0.0	0.1	-	0.1	
				3.0	-	0.0	0.1	-	0.1	
				4.5	-	0.0	0.1	-	0.1	
			I _{OL} = 4 mA	1.65	-	0.08	0.24	_	0.24	
			I _{OL} = 8 mA	2.3	_	0.10	0.3	_	0.3	1
			I _{OL} = 16 mA	3.0	_	0.15	0.4	_	0.4	1
			I _{OL} = 24 mA	3.0	_	0.22	0.55	_	0.55	1
			I _{OL} = 32 mA	4.5	-	0.22	0.55	_	0.55	
I _{IN}	Input Leakage Current	V _{IN} = 5.5	V _{IN} = 5.5 V, GND		-	_	±0.1	-	±1	μΑ
l _{OFF}	Power Off Leakage Current	V _{IN} or V _{OUT} = 5.5 V		0.0	-	_	1	-	10	μΑ
I _{CC}	Quiescent Supply Current	V _{IN} = 5.5 \	/, GND	1.65 to 5.5	-	_	1	-	10	μΑ

AC ELECTRICAL CHARACTERISTICS

				T _A = +25°C			T _A = -40 to +85°C		
Symbol	Parameter	Conditions	V _{CC} (V)	Min	Тур	Max	Min	Max	Unit
t _{PLH} , t _{PHL}	Propagation Delay	C _L = 15 pF,	1.8 ±0.15	-	5.8	10.5	-	11	ns
	(Figure 5, 7)	$R_L = 1 M\Omega$	2.5 ±0.2	-	3.5	5.8	-	6.2	
			3.3 ±0.3	-	2.6	3.9	-	4.3	
			5.0 ±0.5	-	1.8	3.1	-	3.3	
		C _L = 50 pF,	3.3 ±0.3	-	3.2	4.8	-	5.2	
		$R_L = 500 \Omega$	5.0 ±0.5	-	2.4	3.7	-	4.0	
C _{IN}	Input Capacitance		0	-	2.5	-	-	-	pF
	Power Dissipation Capacitance	(Note 2)	3.3	-	14	-	-	-	pF
	(Figure 6)		5.0	-	18	-	-	-	


C_{PD} is defined as the value of the internal equivalent capacitance which is derived from dynamic operating current consumption (I_{CCD}) at no output loading and operating at 50% duty cycle. (see Figure 6) C_{PD} is related to I_{CCD} dynamic operating current by the expression: I_{CCD} = (C_{PD}) (V_{CC}) (f_{IN}) + (I_{CC}static).

AC Loading and Waveforms

 C_L includes load and stray capacitance Input PRR = 1.0 MHz, $t_W = 500 \ \text{ns}$

Figure 5. AC Test Circuit

 $\begin{aligned} & \text{Input} = \text{AC Waveforms; } t_r = t_f = 1.8 \text{ ns;} \\ & \text{PRR} = 10 \text{ MHz; } \text{Duty Cycle} = 50\%. \end{aligned}$

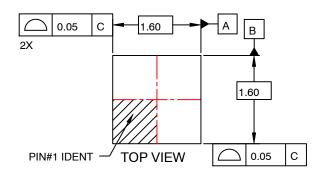
Figure 6. I_{CCD} Test Circuit

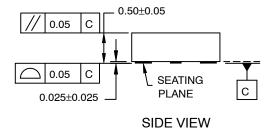
$t_{r} = 3 \text{ ns} \qquad t_{f} = 3 \text{ ns} \qquad V_{CC}$ $10\% \qquad 50\% \qquad 50\% \qquad 10\% \qquad GND$ $0UTPUT \qquad 50\% \qquad 50\% \qquad V_{OH}$

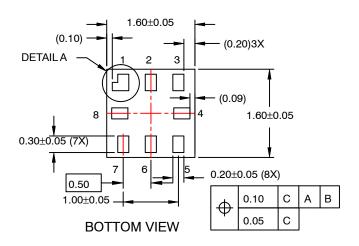
Figure 7. AC Waveforms

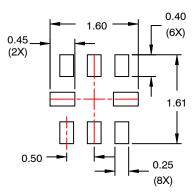
ORDERING INFORMATION

Order Number	Top Mark	Package	Shipping [†]
NC7WZ32K8X	WZ32	8-Lead US8, JEDEC MO-187, Variation CA	3000 / Tape & Reel
NC7WZ32K8X-L22236	WZ32	3.1 mm Wide	3000 / Tape & Reel
NC7WZ32L8X	N5	8-Lead MicroPak, 1.6 mm Wide	5000 / Tape & Reel
NC7WZ32L8X-L22185	N5	(Pb-Free)	5000 / Tape & Reel

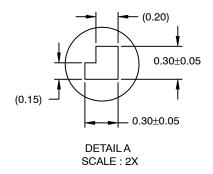

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.


MicroPak is trademark of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries.


^{3.} Pb-Free package per JEDEC J-STD-020B.


UQFN8 1.6X1.6, 0.5PCASE 523AY
ISSUE O

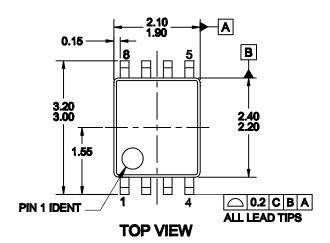
DATE 31 AUG 2016

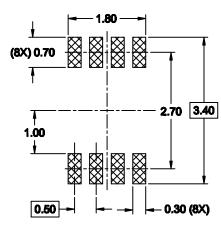


RECOMMENDED LAND PATTERN

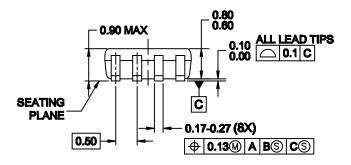
NOTES:

- A. PACKAGE CONFORMS TO JEDEC MO-255 VARIATION UAAD.
- B. DIMENSIONS ARE IN MILLIMETERS.
- C. DIMENSIONS AND TOLERANCES PER ASME Y14.5M, 2009.
- D. LAND PATTERN RECOMMENDATION IS EXISTING INDUSTRY LAND PATTERN.

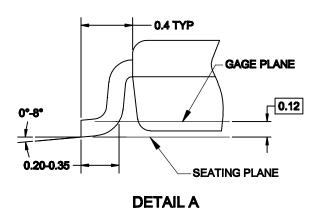


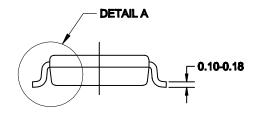

DOCUMENT NUMBER:	98AON13591G	Electronic versions are uncontrolled except when accessed directly from Printed versions are uncontrolled except when stamped "CONTROLLED (
DESCRIPTION:	UQFN8 1.6X1.6, 0.5P		PAGE 1 OF 1

ON Semiconductor and a re trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.


US8 CASE 846AN ISSUE O

DATE 31 DEC 2016


RECOMMENDED LAND PATTERN



NOTES:

- A. CONFORMS TO JEDEC REGISTRATION MO-187
- **B. DIMENSIONS ARE IN MILLIMETERS.**
- C. DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH, AND TIE BAR EXTRUSIONS.
- D. DIMENSIONS AND TOLERANCES PER ANSI Y14.5M, 1994.

SIDE VIEW

DOCUMENT NUMBER:	98AON13778G	Electronic versions are uncontrolled except when accessed directly from the Document Reposi Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	US8		PAGE 1 OF 1	

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems. or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales