

Sample &

Buy

UC1846, UC1847, UC2846 UC2847, UC3846, UC3847

SLUS352C – JANUARY 1997 – REVISED DECEMBER 2015

UCx846/7 Current Mode PWM Controller

Technical

Documents

Features 1

- Automatic Feedforward Compensation
- Programmable Pulse-by-Pulse Current Limiting
- Automatic Symmetry Correction in Push-Pull Configuration
- **Enhanced Load Response Characteristics**
- Parallel Operation Capability for Modular Power Systems
- Differential Current Sense Amplifier with Wide Common Mode Range
- **Double-Pulse Suppression**
- 500-mA (Peak) Totem-pole Outputs
- ±1% Band Gap Reference
- Undervoltage Lockout
- Soft-Start Capability
- Shutdown Terminal
- 500-kHz Operation

Applications 2

- **Telecommunication Power Converters**
- Industrial Power Converters

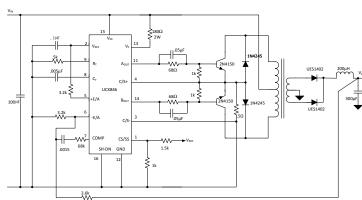
3 Description

Tools &

Software

The UC1846/7 family of control devices provides all of the necessary features to implement fixedfrequency, current-mode control schemes while maintaining a minimum external parts count. The superior performance of this technique can be measured in improved line regulation, enhanced load response characteristics, and a simpler, easier-todesign control loop. Topological advantages include inherent pulse-by-pulse current limiting capability, symmetry automatic correction for push-pull converters, and the ability to parallel power modules while maintaining equal current sharing.

Protection circuitry includes built-in undervoltage lockout and programmable current limit, in addition to soft-start capability. A shutdown function is also available, which can initiate either a complete shutdown with automatic restart or latch the supply off.


Other features include fully-latched operation, doublepulse suppression, deadline adjust capability, and a ±1% trimmed band gap reference.

The UC1846 features low outputs in the OFF state, while the UCx847 features high outputs in the OFF state.

Device Information("						
PART NUMBER	PACKAGE	BODY SIZE (NOM)				
UC1846	LCCC (20)	8.89 mm × 8.89 mm				
	CDIP (16)	6.92 mm × 19.56 mm				
	PLCC (20)	8.96 mm × 8.96 mm				
UC2846, UC3846	SOIC (16)	7.5 mm × 10.3 mm				
	PDIP (16)	6.35 mm × 19.3 mm				
	SOIC (16)	7.5 mm × 10.3 mm				
UC2847, UC3847	PDIP (16)	6.35 mm × 19.3 mm				

(1)

(1) For all available packages, see the orderable addendum at the end of the datasheet.

Block Diagram

Table of Contents

Feat	tures	1
Арр	lications	1
Des	cription	1
Rev	ision History	2
Pin	Configuration and Functions	3
Spe	cifications	4
6.1	Absolute Maximum Ratings	4
6.2	ESD Ratings	4
6.3	Recommended Operating Conditions	. 4
6.4	Thermal Information	4
6.5	Electrical Characteristics	5
6.6	Typical Characteristics	7
Deta	ailed Description	8
7.1	Overview	8
7.2	Functional Block Diagram	8
7.3	Feature Description	8
	App Des Rev Pin Spe 6.1 6.2 6.3 6.4 6.5 6.6 Deta 7.1 7.2	 6.2 ESD Ratings

	7.4	Device Functional Modes	10
8	App	lication and Implementation	11
	8.1	Application Information	11
	8.2	Typical Application	11
9	Pow	er Supply Recommendations	15
10	Lay	out	16
	10.1	Layout Guidelines	16
	10.2	Layout Example	16
11	Dev	ice and Documentation Support	17
	11.1	Related Links	17
	11.2	Community Resources	17
	11.3	Trademarks	17
	11.4	Electrostatic Discharge Caution	17
	11.5	Glossary	17
12		hanical, Packaging, and Orderable mation	17

4 Revision History

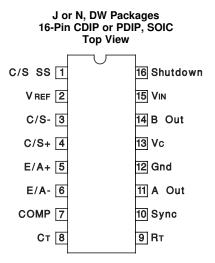
2

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Changes from Revision B (July 2010) to Revision C

Ch	from Revision A (February 2002) to Revision B Pag	е
•	ved soldering temperature	4
	ESD Ratings table, Feature Description section, Device Functional Modes, Application and Implementation n, Power Supply Recommendations section, Layout section, Device and Documentation Support section, and anical, Packaging, and Orderable Information section.	

•	Updated Block Diagram	1



www.ti.com

Page

5 Pin Configuration and Functions

FN or FK Packages 20-Pin PLCC or LCCC Top View

_	3	2	1	20	19	
4			\cup			18
5						17
6						16
(7						15
8	~	40		40		14
	9	10	<u>11</u>	12	13	

Pin Functions

PIN						
DIL, SOIC NO.	PLCC, LCC NO.	NAME	I/O	DESCRIPTION		
1	2	C/S SS	-	Current limit/soft-start programming		
2	3	V _{REF}	0	5.1-V reference voltage output		
3	4	C/S –	I	Current sense comparator inverting input		
4	5	C/S +	-	Current sense comparator non-inverting input		
5	7	E/A +	-	Error amplifier inverting input		
6	8	E/A –	-	Error amplifier inverting input		
7	9	COMP	I/O	Error amplifier output and input to the PWM comparator		
8	10	CT	-	Oscillator frequency programming capacitor pin		
9	12	C _R		Oscillator frequency programming resistor pin		
10	13	Sync	I/O	Synchronization out from master controller or input of slave controller		
11	14	A Out	0	PWM drive signal output A, Pin11 and P14 are complementary		
12	15	GND	G	All signals are referenced to this node		
13	17	V _C	-	Bias supply input for output stage		
14	18	B Out	0	PWM drive signal output B, Pin11 and P14 are complementary		
15	19	V _{IN}	I	Bias supply input		
16	20	Shutdown		External shutdown signal input		
_	1, 6, 11, 16	N/C				

Copyright © 1997-2015, Texas Instruments Incorporated

SLUS352C - JANUARY 1997 - REVISED DECEMBER 2015

www.ti.com

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)⁽¹⁾

	MIN	МАХ	UNIT
Supply Voltage (Pin 15)		40	V
Collector Supply Voltage (Pin 13)		40	V
Output Current, Source or Sink (Pins 11, 14)		500	mA
Analog Inputs (Pins 3, 4, 5, 6, 16)	-0.3	+V _{IN}	V
Reference Output Current (Pin 2)		-30	mA
Sync Output Current (Pin 10)		-5	mA
Error Amplifier Output Current (Pin 7)		-5	mA
Soft Start Sink Current (Pin 1)		50	mA
Oscillator Charging Current (Pin 9)		5	mA
Power Dissipation at $T_A = 25^{\circ}C$		1000	mW
Power Dissipation at $T_{C} = 25^{\circ}C$		2000	mW
Storage temperature, T _{stg}	-65	150	°C

(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

6.2 ESD Ratings

			VALUE	UNIT
		Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 ⁽¹⁾	±2500	
$V_{(ESD)}$	Electrostatic discharge	Charged-device model (CDM), per JEDEC specification JESD22-C101 $^{\left(2\right) }$	±1500	V

(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

	MIN	NOM	MAX	UNIT
VREF terminal external capacitance	1		2.2	μF

6.4 Thermal Information

	SOIC) 16 PINS Junction-to-ambient thermal resistance 41.8 Junction-to-case (top) thermal resistance 28.5	846/7		
	THERMAL METRIC ⁽¹⁾	•	J or DW (CDIP or SOIC)	UNIT
		16 PINS	16 PINS	
$R_{\theta JA}$	Junction-to-ambient thermal resistance	41.8	73.1	°C/W
R _{0JC(top)}	Junction-to-case (top) thermal resistance	28.5	34.2	°C/W
$R_{\theta JB}$	Junction-to-board thermal resistance	21.8	38.0	°C/W
Ψ_{JT}	Junction-to-top characterization parameter	13.0	7.7	°C/W
Ψ_{JB}	Junction-to-board characterization parameter	21.7	37.4	°C/W
R _{0JC(bot)}	Junction-to-case (bottom) thermal resistance	N/A	N/A	°C/W

(1) For more information about traditional and new thermal metrics, see the *Semiconductor and IC Package Thermal Metrics* application report, SPRA953.

4

6.5 Electrical Characteristics

 $T_{A}=-55^{\circ}C \text{ to } +125^{\circ}C \text{ for UC1846/7}; -40^{\circ}C \text{ to } +85^{\circ}C \text{ for the UC2846/7}; \text{ and } 0^{\circ}C \text{ to } +70^{\circ}C \text{ for the UC3846/7}; V_{IN}=15 \text{ V}, R_{T}=10 \text{ k}, C_{T}=4.7 \text{ nF}, T_{A}=T_{J} \text{ (unless otherwise noted)}$

PARAMETER	TEST CONDITIONS		C1846/7 C2846/7		U	C3846/7		UNIT
		MIN	ТҮР	МАХ	MIN	ТҮР	MAX	
REFERENCE								
Output Voltage	$T_{J} = 25^{\circ}C, I_{O} = 1 \text{ mA}$	5.05	5.10	5.15	5.00	5.10	5.20	V
Line Regulation	V _{IN} = 8 V to 40 V		5	20		5	20	mV
Load Regulation	$I_L = 1 \text{ mA to } 10 \text{ mA}$		3	15		3	15	mV
Temperature Stability	Over Operating Range, ⁽¹⁾		0.4			0.4		mV/°C
Total Output Variation	Line, Load, and Temperature ⁽¹⁾	5.00		5.20	4.95		5.25	V
Output Noise Voltage	10 Hz ≤ f ≤10 kHz, T _J = 25°C ⁽¹⁾		100			100		μV
Long Term Stability	T _J = 125°C, 1000 Hrs ⁽¹⁾		5			5		mV
Short Circuit Output Current	V _{REF} = 0 V	-10	-45		-10	-45		mA
OSCILLATOR								
Initial Accuracy	$T_J = 25^{\circ}C$	39	43	47	39	43	47	kHz
Voltage Stability	V _{IN} =8 V to 40 V		-1%	2%		-1%	2%	
Temperature Stability	Over Operating Range ⁽¹⁾		-1%			-1%		
Sync Output High Level		3.9	4.35		3.9	4.35		V
Sync Output Low Level			2.3	2.5		2.3	2.5	V
Sync Input High Level	Pin 8 = 0 V	3.9			3.9			V
Sync Input Low Level	Pin 8 = 0 V			2.5			2.5	V
Sync Input Current	Sync Voltage = 3.9 V, Pin 8 = 0 V		1.3	1.5		1.3	1.5	mA
ERROR AMPLIFIER								
Input Offset Voltage			0.5	5		0.5	10	mV
Input Bias Current			-0.6	-1		-0.6	-2	μA
Input Offset Current			40	250		40	250	nA
Common Mode Range	$V_{IN} = 8 V$ to 40 V	0		V _{IN} - 2 V	0		V _{IN} - 2 V	V
Open Loop Voltage Gain	$\Delta V_{O} = 1.2$ to 3 V, V _{CM} = 2 V	80	105		80	105		dB
Unity Gain Bandwidth	$T_{\rm J} = 25^{\circ}C^{(1)}$	0.7	1.0		0.7	1.0		MHz
CMRR		75	100		75	100		dB
PSRR	V _{IN} = 8 V to 40 V	80	105		80	105		dB
Output Sink Current	$V_{ID} = -15 \text{ mV to } -5 \text{ V},$ $V_{PIN7} = 1.2 \text{ V}$	2	6		2	6		mA
Output Source Current	$V_{ID} = 15 \text{ mV to } -5 \text{ V},$ $V_{PIN7} = 2.5 \text{ V}$	-0.4	-0.5		-0.4	-0.5		mA
High Level Output Voltage	R _L = (Pin 7) 15 kΩ	4.3	4.6		4.3	4.6		V
Low Level Output Voltage	R _L = (Pin 7) 15 kΩ		0.7	1		0.7	1	V
CURRENT SENSE AMPLIFIE	R			i				
Amplifier Gain	$V_{PIN 3} = 0 V, Pin 1$ Open ⁽²⁾ , ⁽³⁾	2.5	2.75	3.0	2.5	2.75	3.0	V

(1) These parameters, although ensured over the recommended operating conditions, are not 100% tested in production.

(2) Parameter measured at trip point of latch with VPIN 5 = VREF, VPIN 6 = 0 V.

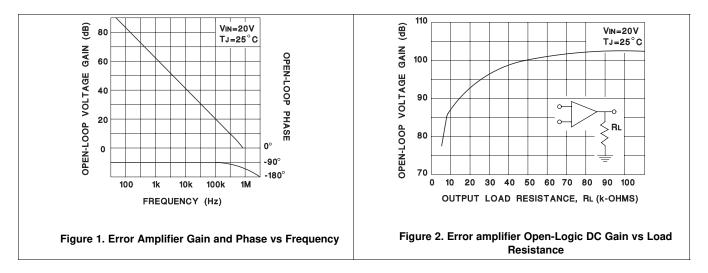
(3) Amplifier gain defined as: $G = \Delta V_{PIN7} / \Delta V_{PIN4}$; $V_{PIN4} = 0$ to 1.0 V

Electrical Characteristics (continued)

 $T_{A}=-55^{\circ}C \text{ to }+125^{\circ}C \text{ for UC1846/7; }-40^{\circ}C \text{ to }+85^{\circ}C \text{ for the UC2846/7; and }0^{\circ}C \text{ to }+70^{\circ}C \text{ for the UC3846/7; }V_{IN}=15 \text{ V, }R_{T}=10 \text{ k, }C_{T}=4.7 \text{ nF, }T_{A}=T_{J} \text{ (unless otherwise noted)}$

PARAMETER	TEST CONDITIONS		C1846/7 C2846/7		UC	23846/7		UNIT
		MIN	ТҮР	MAX	MIN	ТҮР	MAX	
Maximum Differential Input Signal (V _{PIN 4} -V _{PIN 3})	Pin 1 Open ⁽²⁾ ; R _L (Pin 7) = 15 kW	1.1	1.2		1.1	1.2		V
Input Offset Voltage	$V_{PIN 1} = 0.5 V, Pin 7 Open^{(2)}$		5	25		5	25	mV
CMRR	V _{CM} = 1 V to 12 V	60	83		60	83		dB
PSRR	$V_{IN} = 8 V \text{ to } 40 V$	60	84		60	84		dB
Input Bias Current	$V_{\text{PIN 1}} = 0.5 \text{ V}, \text{ Pin 7}$ Open ⁽²⁾		-2.5	-10		-2.5	-10	μA
Input Offset Current	$V_{\text{PIN 1}} = 0.5 \text{ V}, \text{ Pin 7}$ Open ⁽²⁾		0.08	1		0.08	1	μA
Input Common Mode Range		0		V _{IN} -3	0		V _{IN} -3	V
Delay to Outputs	$T_{\rm J} = 25^{\circ}C^{(1)}$		200	500		200	500	ns
CURRENT LIMIT ADJUST								
Current Limit Offset	$V_{PIN 3} = 0 V, V_{PIN 4} = 0 V, Pin 7 Open^{(2)}$	0.45	0.5	0.55	0.45	0.5	0.55	V
Input Bias Current	$V_{PIN 5} = V_{REF}, V_{PIN 6}$ $= 0 V$		-10	-30		-10	-30	μA
SHUTDOWN TERMINAL								
Threshold Voltage		250	350	400	250	350	400	mV
Input Voltage Range		0		V _{IN}	0		V _{IN}	V
Minimum Latching Current (I _{PIN1})		⁽⁴⁾ 3.0	1.5		3.0	1.5		mA
Maximum Latching Current (I _{PIN1})			⁽⁵⁾ 1.5	0.8		1.5	0.8	mA
Delay to Outputs	$T_J = 25^{\circ}C^{(1)}$		300	600		300	600	ns
OUTPUT								
Collector-Emitter Voltage		40			40			V
Collector Leakage Current	$V_{\rm C} = 40 \ V^{(6)}$			200			200	μA
Output Low Loval	I _{SINK} = 20 mA		0.1	0.4		0.1	0.4	v
Output Low Level	I _{SINK} = 100 mA		0.4	2.1		0.4	2.1	v
Output Lligh Loval	I _{SOURCE} = 20 mA	13	13.5		13	13.5		v
Output High Level	I _{SOURCE} = 100 mA	12	13.5		12	13.5		v
Rise Time	$C_{L} = 1 \text{ nF}, T_{J} = 25^{\circ}C$		50	300		50	300	ns
Fall Time	$C_{L} = 1 \text{ nF}, T_{J} = 25^{\circ}C$		50	300		50	300	ns
UNDERVOLTAGE LOCKOUT	T I							
Start-Up Threshold			7.7	8.0		7.7	8.0	V
Threshold Hysteresis			0.75			0.75		V
TOTAL STANDBY CURRENT	Г							
Supply Current			17	21		17	21	mA

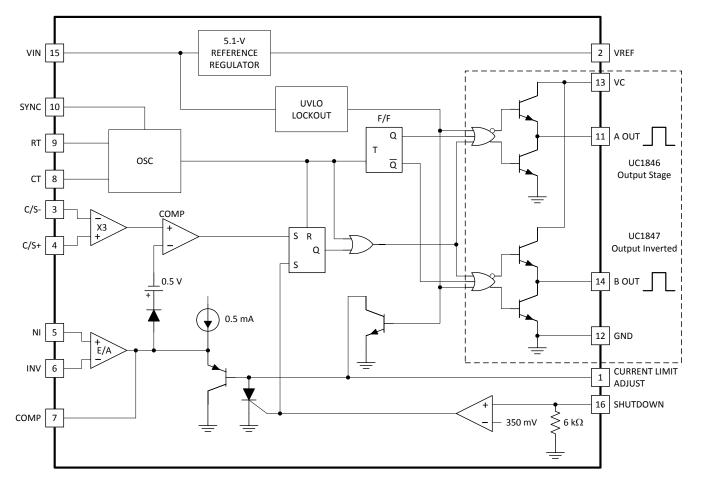
(4) Current into Pin 1 ensured to latch circuit in shutdown state.


(5) Current into Pin 1 ensured not to latch circuit in shutdown state.

(6) Applies to UC1846/UC2846/UC3846 only due to polarity of outputs.

7

6.6 Typical Characteristics


TEXAS INSTRUMENTS

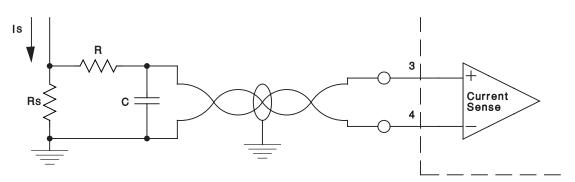
7 Detailed Description

7.1 Overview

The UCx846/7 family of control devices provides the necessary features to implement off-line or DC-to-DC fixedfrequency, current-mode control schemes with a minimal external parts count. Internally implemented circuits include under-voltage lockout featuring start-up current less than 1 mA, a precision reference trimmed for accuracy at the error amplifier input, logic to insure latched operation, a PWM comparator which also provides current limit control, and a totem pole output stage designed to source or sink high-peak current. The output stage, suitable for driving either N-Channel MOSFETs or bipolar transistor switches, is low in the off state.

7.2 Functional Block Diagram

7.3 Feature Description


7.3.1 Current Sense Amplifier

The current sense amplifier may be used in a variety of ways to sense peak switch current for comparison with an error voltage. Referring to *Functional Block Diagram*, maximum swing on the inverting input of the PWM comparator is limited to approximately 3.5 V by the internal regulated supply. Accordingly, for a fixed gain of 3, maximum differential voltages must be kept below 1.2 V at the current sense inputs.

8

Feature Description (continued)

A small RC filter may be required in some applications to reduce switch transients. Differential input allows remote, noise free sensing.

Figure 3. Current Sense Amplifier Connection

7.3.2 Oscillator

By implementing the oscillator using all NPN transistors, the UCx846/7 achieves excellent temperature stability and waveform clarity at frequencies in excess of 1 MHz.

Referring to Figure 4, an external resistor R_T is used to generate a constant current into a capacitor C_T to produce a linear sawtooth waveform. Oscillator frequency may be approximated by selecting R_T and C_T such that:

$$f_{OSC} = \frac{2.2}{R_T C_T}$$
(1)

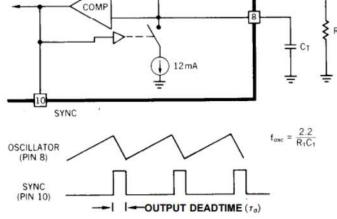


Figure 4. Oscillator Circuit

7.4 Device Functional Modes

7.4.1 Current Limit

One of the most attractive features of a current-mode converter is the ability to limit peak-switch currents on a pulse-by-pulse basis by simply limiting the error voltage to a maximum value.

7.4.2 Shutdown

The shutdown circuit was designed to provide a fast acting general purpose shutdown port for use in implementing both protection circuitry and remote shutdown functions. The circuit may be divided into an input section consisting of a comparator with a 350-mV temperature compensated offset, and an output section consisting of a three transistor latch. Shutdown is accomplished by applying a signal greater than 350 mV to pin 16, causing the output latch to fire, and setting the PWM latch to provide an immediate signal to the outputs.

8 Application and Implementation

NOTE

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

8.1 Application Information

The UCx846/7 family of control devices provides all of the necessary features to implement fixed frequency, current mode control schemes while maintaining a minimum external parts count. The superior performance of this technique can be measured in improved line regulation, enhanced load response characteristics, and a simpler, easier to design control loop. Topological advantages include inherent pulse-by-pulse current limiting capability, automatic symmetry correction for push-pull converters. Protection circuitry includes undervoltage lockout and programmable current limit in addition to soft-start capability. A shutdown function is also available which initiates either a complete shutdown with automatic restart or latch the supply off.

8.2 Typical Application

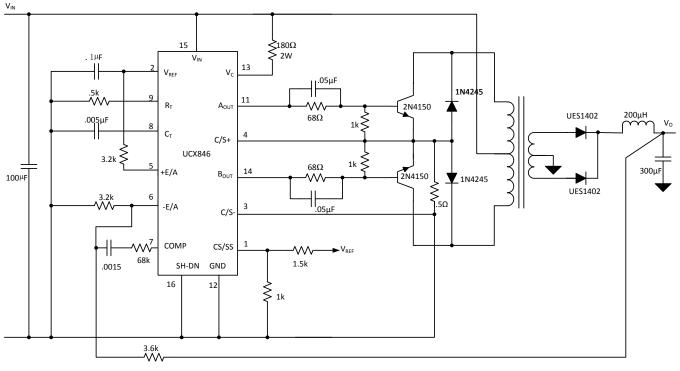


Figure 5. Typical Application Diagram

8.2.1 Design Requirements

Table 1 shows the design parameters for this application.

Table 1. Design Parameters

DESIGN PARAMETER	TARGET VALUE
Typical efficiency	85%
Switching frequency	880 kHz
Pulse by pulse current limit threshold	1 A

Copyright © 1997–2015, Texas Instruments Incorporated

Product Folder Links: UC1846 UC1847 UC2846 UC2847 UC3846 UC3847

VREF

7) Comp

0.5mA

12

8.2.2 Detailed Design Procedure

This section details the design procedure based on the design requirements.

8.2.2.1 Design Switching Frequency

Output deadtime is determined by the external capacitor, C_T, according to the formula:

$$Td(\mu s) = 145 C_{T}(\mu F) \left| \frac{ID}{ID - \frac{3.6}{RT(k\Omega)}} \right|$$

Г

where

• ID = Oscillator discharge current at 25°C; typically is 7.5.

VREF

Zs

5

6

ZF

For large values of R_T : rd (µs) ≈145CT (µF).

Oscillator frequency is approximated by the formula:

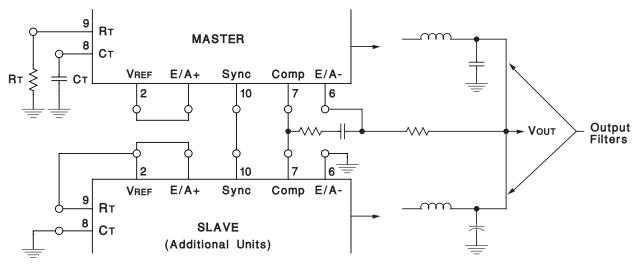
$$fT(kHz) \approx \frac{2.2}{(R_T(k\Omega) \times C_T(\mu F))}$$

8.2.2.2 Error Amplifier Output Configuration

Error Amplifier can source up to 0.5mA.

Figure 6. Error Amplifier Output Configuration

IF < 0.5mA


TEXAS INSTRUMENTS

(3)

(2)

8.2.2.3 Parallel Operation Configuration

Slaving allows parallel operation of two or more units with equal current sharing.

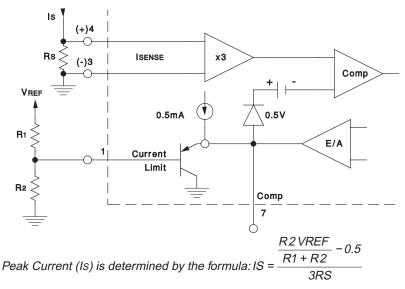
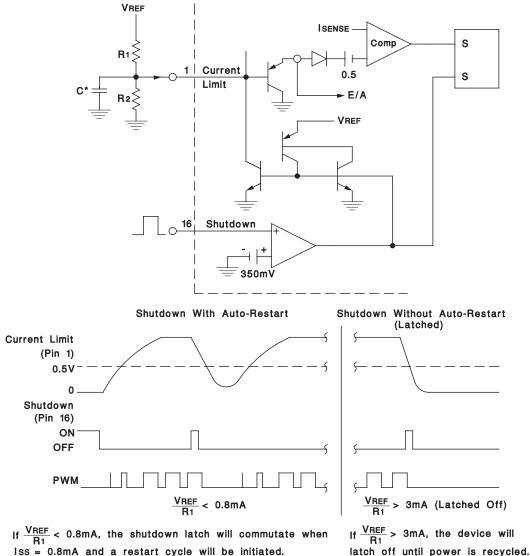
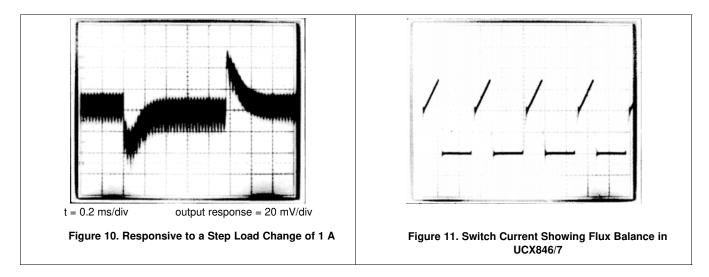



Figure 8. Pulse by Pulse Current Limiting

8.2.2.5 Soft-Start and Shutdown, Restart Function Design



Iss = 0.8mA and a restart cycle will be initiated.

Figure 9. Soft-Start and Shutdown, Restart Functions

8.2.3 Application Curves

9 Power Supply Recommendations

The VIN power terminal for the device requires the placement of low esr noise-decoupling capacitance as directly as possible from the VIN terminal to the GND terminal. Ceramic capacitors with stable dielectric characteristics over temperature are recommended, such as X7R or better.

The VC power terminal for the device requires the placement of resistance as directly as possible from the VC terminal to the VIN terminal.

10 Layout

10.1 Layout Guidelines

- Place a low ESR and ESL decoupling capacitor C_{REF} in the 1-μF to 2.2-μF range, preferably ceramic, from VREF pin to GND.
- The EA+ is a non-inverting input, the EA- is an inverting input and the COMP is the output of the error amplifier. Place resistor and capacitor series network between EA+ pin and COMP pin, and reduce the trace of resistor and capacitor series network as much as possible.
- Place a low ESR and ESL capacitor C_T , preferably ceramic, from CT pin to GND, and place C_T close to UCx846/7 as much as possible.
- Place a resistor R_T from RT pin to GND, and place R_T close to UCx846/7 as much as possible.

10.2 Layout Example

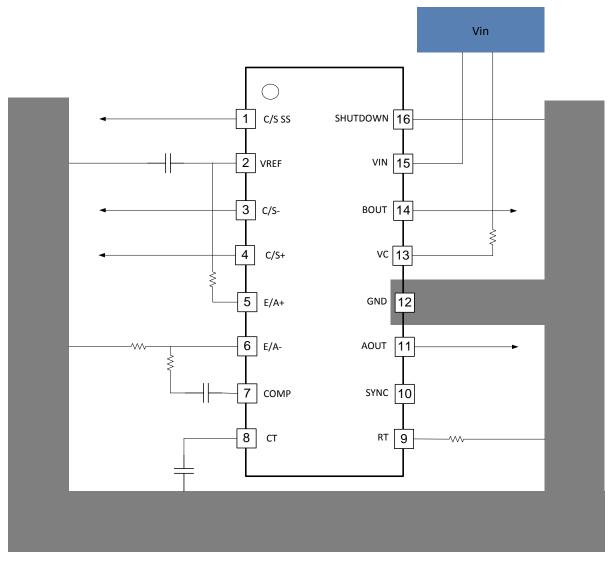


Figure 12. UCx84x Layout Example

Product Folder Links: UC1846 UC1847 UC2846 UC2847 UC3846 UC3847

11 Device and Documentation Support

11.1 Related Links

The table below lists quick access links. Categories include technical documents, support and community resources, tools and software, and quick access to sample or buy.

PARTS	PRODUCT FOLDER	SAMPLE & BUY	TECHNICAL DOCUMENTS	TOOLS & SOFTWARE	SUPPORT & COMMUNITY
UC1846	Click here	Click here	Click here	Click here	Click here
UC1847	Click here	Click here	Click here	Click here	Click here
UC2846	Click here	Click here	Click here	Click here	Click here
UC2847	Click here	Click here	Click here	Click here	Click here
UC3846	Click here	Click here	Click here	Click here	Click here
UC3847	Click here	Click here	Click here	Click here	Click here

Table 2. Related Links

11.2 Community Resources

The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

TI E2E[™] Online Community *TI's Engineer-to-Engineer (E2E) Community.* Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers.

Design Support *TI's Design Support* Quickly find helpful E2E forums along with design support tools and contact information for technical support.

11.3 Trademarks

E2E is a trademark of Texas Instruments.

All other trademarks are the property of their respective owners.

11.4 Electrostatic Discharge Caution

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

11.5 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.

12 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

17-Dec-2015

PACKAGING INFORMATION

Orderable Device	Status	Package Type	•	Pins	•	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
	(1)		Drawing		Qty	(2)	(6)	(3)		(4/5)	
5962-86806012A	ACTIVE	LCCC	FK	20	1	TBD	POST-PLATE	N / A for Pkg Type	-55 to 125	5962- 86806012A UC1846L/ 883B	Samples
5962-8680601EA	ACTIVE	CDIP	J	16	1	TBD	A42	N / A for Pkg Type	-55 to 125	5962-8680601EA UC1846J/883B	Samples
UC1846J	ACTIVE	CDIP	J	16	1	TBD	A42	N / A for Pkg Type	-55 to 125	UC1846J	Samples
UC1846J/80257	OBSOLETE	CDIP	J	16		TBD	Call TI	Call TI	-55 to 125		
UC1846J/80364	OBSOLETE	CDIP	J	16		TBD	Call TI	Call TI	-55 to 125		
UC1846J/80619	OBSOLETE	CDIP	J	16		TBD	Call TI	Call TI	-55 to 125		
UC1846J883B	ACTIVE	CDIP	J	16	1	TBD	A42	N / A for Pkg Type	-55 to 125	5962-8680601EA UC1846J/883B	Samples
UC1846L883B	ACTIVE	LCCC	FK	20	1	TBD	POST-PLATE	N / A for Pkg Type	-55 to 125	5962- 86806012A UC1846L/ 883B	Samples
UC1847J	OBSOLETE	CDIP	J	16		TBD	Call TI	Call TI	-55 to 125		
UC1847J883B	OBSOLETE	CDIP	J	16		TBD	Call TI	Call TI	-55 to 125		
UC1847L	OBSOLETE	LCCC	FK	20		TBD	Call TI	Call TI	-55 to 125		
UC1847L883B	OBSOLETE	LCCC	FK	20		TBD	Call TI	Call TI	-55 to 125		
UC2846DW	ACTIVE	SOIC	DW	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	UC2846DW	Samples
UC2846DWG4	ACTIVE	SOIC	DW	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	UC2846DW	Samples
UC2846DWTR	ACTIVE	SOIC	DW	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	UC2846DW	Samples
UC2846DWTR/81265	OBSOLETE	SOIC	DW	16		TBD	Call TI	Call TI			
UC2846DWTR/81265G4	OBSOLETE	SOIC	DW	16		TBD	Call TI	Call TI			
UC2846DWTRG4	ACTIVE	SOIC	DW	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	UC2846DW	Samples
UC2846J	ACTIVE	CDIP	J	16	1	TBD	A42	N / A for Pkg Type	-40 to 85	UC2846J	Samples

PACKAGE OPTION ADDENDUM

17-Dec-2015

Orderable Device	Status	Package Type		Pins		Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
	(1)		Drawing		Qty	(2)	(6)	(3)		(4/5)	
UC2846N	ACTIVE	PDIP	Ν	16	25	Green (RoHS & no Sb/Br)	CU NIPDAU	N / A for Pkg Type	-40 to 85	UC2846N	Samples
UC2846NG4	ACTIVE	PDIP	Ν	16	25	Green (RoHS & no Sb/Br)	CU NIPDAU	N / A for Pkg Type	-40 to 85	UC2846N	Samples
UC2846QTR	ACTIVE	PLCC	FN	20	1000	Green (RoHS & no Sb/Br)	CU SN	Level-2-260C-1 YEAR	-40 to 85	UC2846Q	Samples
UC2847DW	ACTIVE	SOIC	DW	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	UC2847DW	Samples
UC2847DWG4	ACTIVE	SOIC	DW	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	UC2847DW	Samples
UC2847N	LIFEBUY	PDIP	N	16	25	Green (RoHS & no Sb/Br)	CU NIPDAU	N / A for Pkg Type	-40 to 85	UC2847N	
UC3846DW	ACTIVE	SOIC	DW	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	0 to 70	UC3846DW	Samples
UC3846DWG4	ACTIVE	SOIC	DW	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	0 to 70	UC3846DW	Samples
UC3846DWTR	ACTIVE	SOIC	DW	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	0 to 70	UC3846DW	Samples
UC3846DWTRG4	ACTIVE	SOIC	DW	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	0 to 70	UC3846DW	Samples
UC3846N	ACTIVE	PDIP	N	16	25	Green (RoHS & no Sb/Br)	CU NIPDAU	N / A for Pkg Type	0 to 70	UC3846N	Samples
UC3846NG4	ACTIVE	PDIP	N	16	25	Green (RoHS & no Sb/Br)	CU NIPDAU	N / A for Pkg Type	0 to 70	UC3846N	Samples
UC3846Q	ACTIVE	PLCC	FN	20	46	Green (RoHS & no Sb/Br)	CU SN	Level-2-260C-1 YEAR	0 to 70	UC3846Q	Samples
UC3846QTR	ACTIVE	PLCC	FN	20	1000	Green (RoHS & no Sb/Br)	CU SN	Level-2-260C-1 YEAR	0 to 70	UC3846Q	Samples
UC3847DW	ACTIVE	SOIC	DW	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	0 to 70	UC3847DW	Samples
UC3847J	OBSOLETE	CDIP	J	16		TBD	Call TI	Call TI	0 to 70		
UC3847N	LIFEBUY	PDIP	N	16	25	Green (RoHS & no Sb/Br)	CU NIPDAU	N / A for Pkg Type	0 to 70	UC3847N	

⁽¹⁾ The marketing status values are defined as follows: **ACTIVE:** Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

PACKAGE OPTION ADDENDUM

www.ti.com

17-Dec-2015

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. **PREVIEW:** Device has been announced but is not in production. Samples may or may not be available. **OBSOLETE:** TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. **Pb-Free (RoHS Exempt):** This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

⁽⁵⁾ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

(6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF UC1846, UC1847, UC2846, UC2846M, UC3846, UC3846M, UC3847 :

• Catalog: UC3846, UC3847, UC2846, UC3846M, UC3846

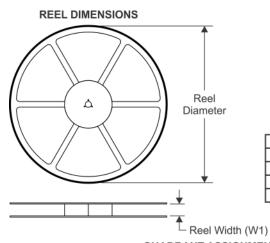
- Enhanced Product: UC1846-EP, UC1846-EP
- Military: UC2846M, UC1846, UC1847

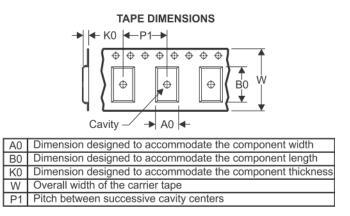
PACKAGE OPTION ADDENDUM

17-Dec-2015

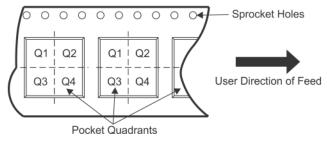
• Space: UC1846-SP, UC1846-SP

NOTE: Qualified Version Definitions:


- Catalog TI's standard catalog product
- Enhanced Product Supports Defense, Aerospace and Medical Applications
- Military QML certified for Military and Defense Applications
- Space Radiation tolerant, ceramic packaging and qualified for use in Space-based application


PACKAGE MATERIALS INFORMATION

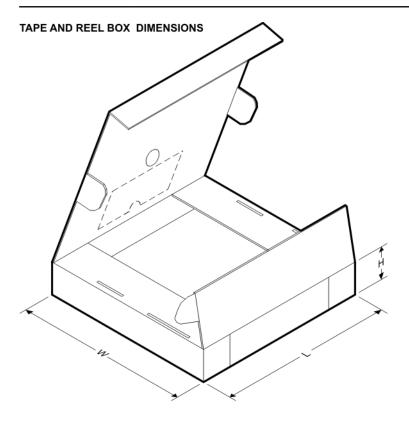
www.ti.com


Texas Instruments

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*	۶AII	dimensions	are	nominal	


Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
UC2846DWTR	SOIC	DW	16	2000	330.0	16.4	10.75	10.7	2.7	12.0	16.0	Q1

TEXAS INSTRUMENTS

www.ti.com

PACKAGE MATERIALS INFORMATION

6-May-2015

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
UC2846DWTR	SOIC	DW	16	2000	367.0	367.0	38.0

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products		Applications	
Audio	www.ti.com/audio	Automotive and Transportation	www.ti.com/automotive
Amplifiers	amplifier.ti.com	Communications and Telecom	www.ti.com/communications
Data Converters	dataconverter.ti.com	Computers and Peripherals	www.ti.com/computers
DLP® Products	www.dlp.com	Consumer Electronics	www.ti.com/consumer-apps
DSP	dsp.ti.com	Energy and Lighting	www.ti.com/energy
Clocks and Timers	www.ti.com/clocks	Industrial	www.ti.com/industrial
Interface	interface.ti.com	Medical	www.ti.com/medical
Logic	logic.ti.com	Security	www.ti.com/security
Power Mgmt	power.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video
RFID	www.ti-rfid.com		
OMAP Applications Processors	www.ti.com/omap	TI E2E Community	e2e.ti.com
Wireless Connectivity	www.ti.com/wirelessconne	ctivity	

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2016, Texas Instruments Incorporated