Copyright 2021 © Embedded Artists AB

1MW M.2 Module (EAR00315) Datasheet

- Wi-Fi 5, 802.11 a/b/g/n/ac
- Bluetooth 5.0 BR/EDR/LE
- SDIO 3.0 interface, SDR100@200MHz
- Chipset: Infineon/Cypress CYW43455

Get Up-and-Running Quickly and Start Developing Your Application On Day 1!

Embedded Artists AB

Rundelsgatan 14 211 36 Malmö Sweden

https://www.EmbeddedArtists.com

Copyright 2021 © Embedded Artists AB. All rights reserved.

No part of this publication may be reproduced, transmitted, transcribed, stored in a retrieval system, or translated into any language or computer language, in any form or by any means, electronic, mechanical, magnetic, optical, chemical, manual or otherwise, without the prior written permission of Embedded Artists AB.

Disclaimer

Embedded Artists AB makes no representation or warranties with respect to the contents hereof and specifically disclaim any implied warranties or merchantability or fitness for any particular purpose. The information has been carefully checked and is believed to be accurate, however, no responsibility is assumed for inaccuracies.

Information in this publication is subject to change without notice and does not represent a commitment on the part of Embedded Artists AB.

Feedback

We appreciate any feedback you may have for improvements on this document.

Trademarks

All brand and product names mentioned herein are trademarks, services marks, registered trademarks, or registered service marks of their respective owners and should be treated as such.

Table of Contents

1	Document Information	4
1.1	Revision History	4
2	Introduction	5
2.1	Benefits of Using an M.2 Module to get Wi-Fi/BT Connectivity	5
2.2	More M.2 Related Information	5
2.3	ESD Precaution and Handling	6
2.4	Product Compliance	6
3	Specification	7
3.1	Power Up Sequence	8
3.2	External Sleep Clock	8
3.3	Mechanical Dimensions	9
3.4	M.2 Pinning	10
3.5	VDDIO Override Feature	15
3.6	VDD-SDIO and JTAG Interface Control	15
3.7	SDIO Interface	16
3.8	Test Points	17
3.9	Current Consumption Measurements	18
4	Antenna	19
4.1	Mounting and Clearance	19
4.2	Overriding PCB Trace Antenna	20
4.3	On-board Trace Antenna Performance	21
4.3 4.3	1 1MW M.2 Module Mounted on iMX OEM Carrier Board1 1MW M.2 Module Standalone	21 25
5	Errata	27
5.1	Audio Interface - PCM CLK Not Connected Correctly	27
6	Software and Support	28
6.1	Software Driver	28
6.2	Support	28
7	Regulatory	29
7.1	European Union Regulatory Compliance	29
8	Disclaimers	30
8.1	Definition of Document Status	31

1 Document Information

This document applies to the following products.

Product Name	Type Number	Type Number Murata Module		Product Status
1MW M.2 Module, rev B	EAR00315	LBEE5HY1MW-230	CYW43455	Production
1MW M.2 Module, rev A	EAR00315	LBEE5HY1MW-230	CYW43455	Obsolete
1MW M.2 Module, rev PA5	EAR00315	LBEE5HY1MW-230	CYW43455	Obsolete

1.1 Revision History

Revision	Date	Description	
PA1	2019-04-16	First version.	
PA2	2019-08-29	Added some clarifications and corrected polarity of BT_DEV_WAKE (pin 42)	
PA3	2019-10-04	Added information about BT_CLK errata	
PA4	2021-01-03	Updated Figure 6 (using an external antenna)	
PA5	2021-10-05	Updated document format	

2 Introduction

This document is a datasheet that specifies and describes the *1MW M.2 module* mainly from a hardware point of view.

The main component in the design is Murata's 1MW module (full part number: LBEE5HY1MW-230), which in turn is based on the Infineon/Cypress CYW43455 chipset. The 1MW module enable Wi-Fi, Bluetooth and Bluetooth Low Energy (LE) communication.

There are multiple application areas for the 1MW M.2 Module:

- Industrial and building automation
- Asset management
- IoT applications
- Smart home: Voice assist device, smart printer, smart speaker, home automation gateway, and IP camera
- Retail/POS
- Healthcare and medical devices
- Smart city

2.1 Benefits of Using an M.2 Module to get Wi-Fi/BT Connectivity

There are several benefit to use an *M.2 module* to add connectivity to an embedded design:

- Drop-in, certified solution!
- Modular and flexible approach to evaluate different Wi-Fi/BT solutions with different tradeoffs around performance, cost, power consumption, longevity, etc.
- Access to maintained software drivers (Linux and WICED) with responsive support from Murata.
- Supported by Embedded Artists' Developer's Kits for i.MX RT/6/7/8 development, including advanced debugging support on carrier boards
- One component to buy, instead of 40+
- No RF expertise is required
- Developed in close collaboration with Murata

2.2 More M.2 Related Information

For more information about the M.2 standard and Embedded Artists' adaptation, see: M.2 Primer

For more general information about the M.2 standard, see: https://en.wikipedia.org/wiki/M.2

The official M.2 specification (PCI Express M.2 Specification) is available from: www.pcisig.com

2.3 ESD Precaution and Handling

Please note that the M.2 module come without any case/box and all components are exposed for finger touches – and therefore extra attention must be paid to ESD (electrostatic discharge) precaution, for example use of static-free workstation and grounding strap. Only qualified personnel shall handle the product.

Make it a habit always to first touch the mounting hole (which is grounded) for a few seconds with both hands before touching any other parts of the boards. That way, you will have the same potential as the board and therefore minimize the risk for ESD.

In general touch as little as possible on the boards in order to minimize the risk of ESD damage. The only reasons to touch the board are when mounting/unmounting it on a carrier board.

Note that Embedded Artists does not replace modules that have been damaged by ESD.

2.4 Product Compliance

Visit Embedded Artists' website at http://www.embeddedartists.com/product_compliance for up to date information about product compliances such as CE, RoHS2, Conflict Minerals, REACH, etc.

3 Specification

This chapter lists some of the more important characteristics of the M.2 module, but it is not a full specification of performance and timing. The main component in the design is Murata's 1MW module (full part number: LBEE5HY1MW), which in turn is based around Cypress CYW43455 chipset.

For a full specification, see Murata's 1MW Module (LBEE5HY1MW) product page: https://wireless.murata.com/eng/type-1mw.html and the LBEE5HY1MW datasheet: https://wireless.murata.com/datasheet?/RFM/data/type1mw.pdf

Module / Chipset	
Murata module	LBEE5HY1MW-230
Chipset	Infineon (former Cypress) CYW43455

Wi-Fi	
Standards	802.11a/b/g/n/ac, Wi-Fi 5
Network	AP and STA dual mode
Frequency	2.4GHz and 5 GHz band
Data rates	11, 54, 65, 150, 433 Mbps
Host interface	SDIO 3.0, SDR12@24MHz, SDR25@50MHz, SDR50@100MHz, SDR100@200MHz, DDR50@50MHz

Bluetooth	
Standards	5.0 BR/EDR/LE
Power Class	Class 1
Host interface	4-wire UART@3MBaud
Audio interface	PCM for audio

Powering			
Supply voltage to M.2 module	Min	Тур	Max
	0.0V minimum	3.3V	3.6V
Note: Do not exceed minimum or maximum voltage. Module will be permanently damaged above this limit!	3.1V operating 3.2V RF specification		Note that LBEE5HY1MW module specification is 4.2V, but other components on the M.2 module limits the maximum voltage
Receive mode current (WLAN)	130 mA typical max		Note that current consumption varies widely between different operational modes.
Transmit mode current (WLAN)	420 mA typical max		Note that current consumption varies widely between different operational modes.

Environmental Specification		
Operational Temperature	-20 to +75 degrees Celsius	Functionally ok, but specification is derated at temperature extremes
Storage Temperature	-40 to +85 degrees Celsius	
Relative Humidity (RH), operating and storage	10 - 90% non-condensing	

3.1 Power Up Sequence

The supply voltage shall not rise (10 - 90%) faster than 40 microseconds and not slower than 100 milliseconds.

Signals WL_REG_ON or BT_REG_ON must be held low for at least 700 microseconds after supply voltage has reached specification level before pulled high. 2 clock cycles of the 32.678kHz clock must also have passed before any of the signals is pulled high. These clock cycles will typically occur during the 700 microseconds but if the clock signal has a long delay during power-up, the 700 microsecond period can be extended.

3.2 External Sleep Clock

The sleep clock signals can be applied to a powered and unpowered M.2 module.

Clock Specification	
Frequency	32.768 kHz
Frequency accuracy	±200 ppm
Duty cycle	30 - 70%
Clock jitter	<10000 ppm
Voltage level	3.3V logic, according to M.2 standard

3.3 Mechanical Dimensions

The M.2 module is of type: 2230-S3-E according to the M.2 nomenclature. This means width 22 mm, length 30mm (without trace antenna), top side component height 1.5 mm and key-E connector. The table below lists the different dimensions and weight.

M.2 Module Dimension	Value (±0.15 mm)	Unit
Width	22	mm
Height, with pcb trace antenna Height, without pcb trace antenna	44 30	mm mm
PCB thickness	0.8	mm
Maximum component height on top side	1.5	mm
Maximum component height on bottom side	0	mm
Ground hole diameter	3.5	mm
Plating around ground hole, diameter	5.5	mm
Module weight	1.5 ±0.5 gram	gram

Embedded Artists has added a non-standard feature to the 2230 M.2 modules designed together with Murata and Cypress. The pictures below illustrates the how the standard module size has been extended by 14 mm in the length direction in order to include a pcb trace antenna.

Figure 1 - M.2 Module with, and without, PCB Trace Antenna

The picture below gives dimensions for the grounded center (half) hole and the u.fl. antenna connector.

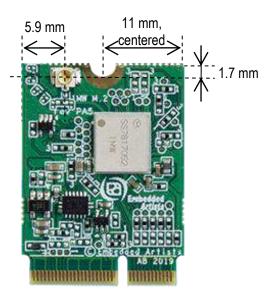


Figure 2 - M.2 Module With, and Without, Trace Antenna

3.4 M.2 Pinning

This section presents the pinning used for the M.2 module. It is essentially M.2 Key-E compliant with enhancements to support additional debug signals and 3.3V VDDIO override. The pin assignment for specific control and debug signals has been jointly defined by Embedded Artists, Murata and Cypress.

The picture below illustrates the edge pin numbering. It starts on the right edge and alternates between top and bottom side. The removed pads in the keying notch counts (but as obviously non-existing).

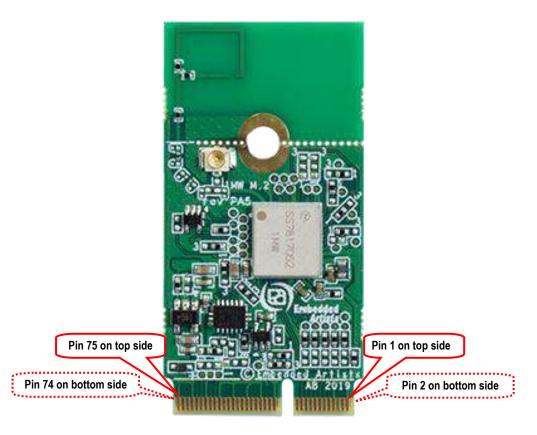


Figure 3 - M.2 Module Pin Numbering

The Wi-Fi interface uses the SDIO interface. The Bluetooth interface uses the UART interface for control and PCM interface for audio. The table below lists the pin usage for the 1MW M.2 modules. The column "When is signal needed" signals four different categories:

- Always: These signals shall always be connected.
- Wi-Fi: These signals shall always be connected then the Wi-Fi interface is used.
- Bluetooth: These signals shall always be connected then the Bluetooth interface is used.
- Optional: These signals are optional to connect.

Pin#	Side of pcb	M.2 Name	Voltage Level and Signal Direction	When is signal needed	Note
1	Тор	GND	GND	Always	Connect to ground
2	Bottom	3.3 V		Always	Power supply input. Connect to stable, low-noise 3.3V supply.
3	Тор	USB_D+			Not connected.
4	Bottom	3.3 V		Always	Power supply input. Connect to stable, low-noise 3.3V supply.
5	Тор	USB_D-			Not connected.
6	Bottom	LED_1#			Not connected.
7	Тор	GND	GND	Always	Connect to ground.
8	Bottom	PCM_CLK	1.8V I/O	Bluetooth audio	For Bluetooth audio interface: BT_PCM_CLK
					Connected to 1MW module, signal BT_PCM_CLK, pin 35
9	Тор	SDIO CLK	1.8V Input to M.2	Wi-Fi SDIO	For Wi-Fi SDIO interface: SDIO_CLK
					Connected to 1MW module, signal SDIO_CLK, pin 20

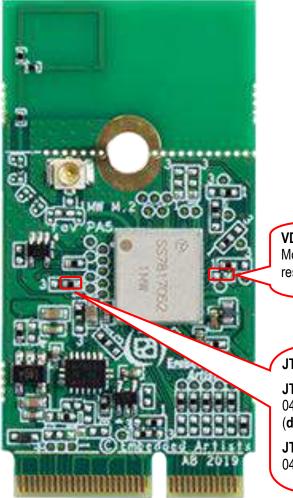
10	Dottom	DCM CVNC	1.8V I/O	Bluetooth audio	For Divetoeth audic interfess, DT. DCM. CVNC
10	Bottom	PCM_SYNC	1.0V I/O	Biuelootii audio	For Bluetooth audio interface: BT_PCM_SYNC Connected to 1MW module, signal BT_PCM_SYNC, pin 33
11	Ton	SDIO CMD	1.8V I/O	Wi-Fi SDIO	
'	Тор	2DIO CIVID	1.00 1/0	WI-FI 3DIO	For Wi-Fi SDIO interface: SDIO_CMD Connected to 1MW module, signal SDIO_CMD, pin 15
					, 0 = /1
40	D. 11	DOM OUT	10//	DI 1 11 11	Note: 10-100K ohm pullup required
12	Bottom	PCM_OUT	1.8V output from M.2	Bluetooth audio	For Bluetooth audio interface: BT_PCM_OUT
					Connected to 1MW module, signal BT_PCM_OUT, pin 34
13	Тор	SDIO DATA0	1.8V I/O	Wi-Fi SDIO	For Wi-Fi SDIO interface: SDIO_D0
					Connected to 1MW module, signal SDIO_DAT0, pin 14
					Note: 10-100K ohm pullup required
14	Bottom	PCM_IN	1.8V input to M.2	Bluetooth audio	For Bluetooth audio interface: BT_PCM_IN
					Connected to 1MW module, signal BT_PCM_IN, pin 32
15	Тор	SDIO DATA1	1.8V I/O	Wi-Fi SDIO	For Wi-Fi SDIO interface: SDIO_D1
					Connected to 1MW module, signal SDIO_DAT1, pin 16
					Note: 10-100K ohm pullup required
16	Bottom	LED_2#			Not connected.
17	Тор	SDIO DATA2	1.8V I/O	Wi-Fi SDIO	For Wi-Fi SDIO interface: SDIO_D2
					Connected to 1MW module, signal SDIO_DAT2, pin 17
					Note: 10-100K ohm pullup required
18	Bottom	GND		Always	Connect to ground.
19	Тор	SDIO DATA3	1.8V I/O	Wi-Fi SDIO	For Wi-Fi SDIO interface: SDIO_D3
					Connected to 1MW module, signal SDIO_DAT3, pin 18
					Note: 10-100K ohm pullup required
20	Bottom	UART WAKE#	3.3V OD output from	Bluetooth	For Bluetooth UART interface: BT_HOST_WAKE_L
			M.2		Connected to 1MW module, via open drain buffer, pin 41
					Require an external 10K pullup resistor to 3.3V.
21	Тор	SDIO WAKE#	1.8V OD output from	Wi-Fi SDIO	For Wi-Fi SDIO interface WL_HOST_WAKE_L
			M.2		Connected to 1MW module, via open drain buffer, signal GPIO0, pin 2
					Require an external 10K pullup resistor to 1.8V.
22	Bottom	UART TXD	1.8V output from M.2	Bluetooth	For Bluetooth UART interface: BT_UART_TXD
**	ביינוטווו	טאוזו ואט	1.0 v Output 110111 IVI.2	DIRECOOLL	Connected to 1MW module, pin 46
23	Тор	SDIO RESET#			Not connected.
23	тор	SDIO RESEI#			
					The Wi-Fi SDIO interface is controlled by pin 56, W_DISABLE1#, which is a 3.3V logic level signal.
24	Key, non	existing			
25	Key, non existing				
26	Key, non existing				
27	Key, non	existing			
28	Key, non	existing			
29	Key, non existing				
30	Key, non				
31	Key, non existing				
32	Bottom	UART_RXD	1.8V input to M.2	Bluetooth	For Bluetooth UART interface: BT_UART_RXD
J2	ביינוטווו	ονινι-μνη	1.04 HIPUL TO 191.2	חומפנטטנוו	I OI DIUGIOUIT OAIXT IIIIGIIAGE. DT_OAIXT_KAD

					Connected to 1MW module, pin 45
33	Тор	GND		Always	Connect to ground.
34	Bottom	UART_RTS	1.8V output from M.2	Bluetooth	For Bluetooth UART interface: BT_UART_RTS
					Connected to 1MW module, pin 47
35	Тор	PERp0			Not connected.
36	Bottom	UART_CTS	1.8V input to M.2	Bluetooth	For Bluetooth UART interface: BT_UART_CTS
					Connected to 1MW module, pin 48
37	Тор	PERn0			Not connected.
38	Bottom	VENDOR DEFINED	1.8V I/O	Optional	Connected to 1MW module, signal WL_GPIO_5, pin 4
39	Тор	GND		Always	Connect to ground.
40	Bottom	VENDOR DEFINED	1.8V input to M.2	Optional for Wi-Fi SDIO	For Wi-Fi SDIO interface WL_DEV_WAKE_L, also called HOST_WL_WAKE
					Connected to 1MW module, signal WL_GPIO_1, pin 5
					Note: On rev A/PA5 boards, signal WL_GPIO_4 was connected to this pin.
41	Тор	PETp0			Not connected.
42	Bottom	VENDOR DEFINED	1.8V input to M.2	Bluetooth	For Bluetooth UART interface: BT_DEV_WAKE_L, also called HOST_BT_WAKE
					Connected to 1MW module, pin 40
43	Тор	PETn0			Not connected.
44	Bottom	COEX3	1.8V I/O	Optional	Connected to 1MW module, signal WL_GPIO_4, pin 6
					Note: On rev A/PA5 boards, signal WL_GPIO_6 was connected to this pin.
45	Тор	GND		Always	Connect to ground.
46	Bottom	COEX_TXD	1.8V I/O	Optional	Connected to 1MW module, signal WL_GPIO_2, pin 7
47	Тор	REFCLKp0			Not connected.
48	Bottom	COEX_RXD	1.8V I/O	Optional	Connected to 1MW module, signal WL_GPIO_3, pin 3
49	Тор	REFCLKn0			Not connected.
50	Bottom	SUSCLK	3.3V input to M.2	Always	External sleep clock input (32.768kHz)
					Connected to 1MW module, via buffer, signal LPO_IN, pin 30
51	Тор	GND		Always	Connect to ground.
52	Bottom	PERST0#			Not connected.
53	Тор	CLKREQ0#			Not connected.
54	Bottom	W_DISABLE2#	3.3V input to M.2	Always	Connected to 1MW module, via buffer, signal BT_REG_ON,
					pin 8 BT_REG_ON, High = BT part of module enabled/internally powered, Low = BT disabled/powered down
55	Тор	PEWAKE0#			Not connected.
56	Bottom	W_DISABLE1#	3.3V input to M.2	Always	Connected to 1MW module, via buffer, signal WL_REG_ON,
					pin 9 WL_REG_ON, High = Wi-Fi part of module enabled/internally powered, Low = Wi-Fi disabled/powered down
57	Тор	GND		Always	Connect to ground.
58	Bottom	I2C_SDA			Not connected.
59	Тор	Reserved	1.8V I/O	Optional	Connected to 1MW module, signal BT_GPIO_2, pin 64
60	Bottom	I2C_CLK			Not connected.

61	Тор	Reserved	1.8V I/O	Optional	Connected to 1MW module, signal BT_GPIO_3, pin 63
62	Bottom	ALERT#			Not connected.
63	Тор	GND		Always	Connect to ground.
64	Bottom	RESERVED		Optional	Optional supply voltage input for control and data signal voltage level. Apply a stable, low-noise, 3.3V 100mA supply to set 3.3V voltage level on all signals.
					Note that VDD-SDIO control resistor (10Kohm 0201/0402) must be mounted for 3.3V SDIO voltage, see Figure 4 for details.
65	Тор	Reserved	1.8V I/O	Optional	Connected to 1MW module, signal BT_GPIO_4, pin 62
66	Bottom	UIM_SWP	1.8V input to M.2	Optional for	Connected to 1MW module, signal WL_GPIO_1, pin 5.
			Wi-Fi SDIO		For Wi-Fi SDIO interface WL_DEV_WAKE_L, also called HOST_WL_WAKE
					Note: On rev B boards, this signal (WL_GPIO_1) is connected both to this pin and to pin 40.
67	Тор	Reserved	1.8V I/O	Optional	Connected to 1MW module, signal BT_GPIO_5, pin 65
68	Bottom	UIM_POWER_ SNK			Not connected.
69	Тор	GND		Always	Connect to ground.
70	Bottom	UIM_POWER_ SRC/GPIO_1			Not connected.
71	Тор	Reserved	1.8V I/O		Connected to 1MW module, signal WL_GPIO_6, pin 1
72	Bottom	3.3 V		Always	Power supply input. Connect to stable, low-noise 3.3V supply.
73	Тор	Reserved			Not connected.
74	Bottom	3.3 V		Always	Power supply input. Connect to stable, low-noise 3.3V supply.
75	Тор	GND		Always	Connect to ground.

3.5 VDDIO Override Feature

The M.2 standard specifies 1.8V logic level on several of the data and control signals. It is possible to override the voltage level for the 1.8V signals via pin 64. Apply a 3.3V / 100 mA supply to pin 64 in order to get 3.3V voltage level on all data and control signals.


Note that it is not enough to connect a 3.3V supply to pin 64. The VDD-SDIO control resistor must also be mounted (10Kohm, 5%, 0201/0402 resistor), see Figure 4 below in the next section for the location of this resistor.

Note that using the 3.3V VIO option will limit SDIO clock to 50 MHz, thereby limiting throughput. Running at 1.8V VIO will support up to 200 MHz SDIO clock which is ultimately needed for maximum 802.11ac throughput.

3.6 VDD-SDIO and JTAG Interface Control

To set SDIO signaling level to 3.3V, a 10Kohm, 5%, 0201/0402 resistor must be mounted at the location illustrated in the picture below. On rev B and PA5 boards, the resistor size is 0402. On rev A boards, the resistor size is 0201.

The picture also illustrates where to enable the JTAG interface (only relevant for debugging the internal firmware).

VDD-SDIO control resistor Mount 10Kohm 5% 0201/0402 resistor for 3.3V SDIO operation

JTAG interface control:

JTAG disabled: Mount a zero ohm 0402 resistor in 1-2 position (right) (default)

JTAG enabled: Mount a zero ohm 0402 resistor in 2-3 position (left).

Figure 4 - 1MW M.2 Module VDD-SDIO and JTAG Interface Control

3.7 SDIO Interface

The SDIO interface conforms to the SDIO v3.0 specification, including the UHS-I modes, and is backward compatible with SDIO v2.0.

SDIO bus speed modes	Max SDIO clock frequency	Max bus speed	Signaling voltage according to M.2 specification	Supported in 3.3V VDDIO Override Mode
DS (Default speed)	25 MHz	12.5 MByte/s	1.8 V	Yes
HS (High speed)	50 MHz	25 MByte/s	1.8 V	Yes
SDR12	25 MHz	12.5 MByte/s	1.8 V	No
SDR25	50 MHz	25 MByte/s	1.8 V	No
SDR50	100 MHz	50 MByte/s	1.8 V	No
SDR104	208 MHz	104 MByte/s	1.8 V	No
DDR50	50 MHz	50 MByte/s	1.8 V	No

3.8 Test Points

There are some test points that can be of interest to probe for debugging purposes, as illustrated in the picture below.

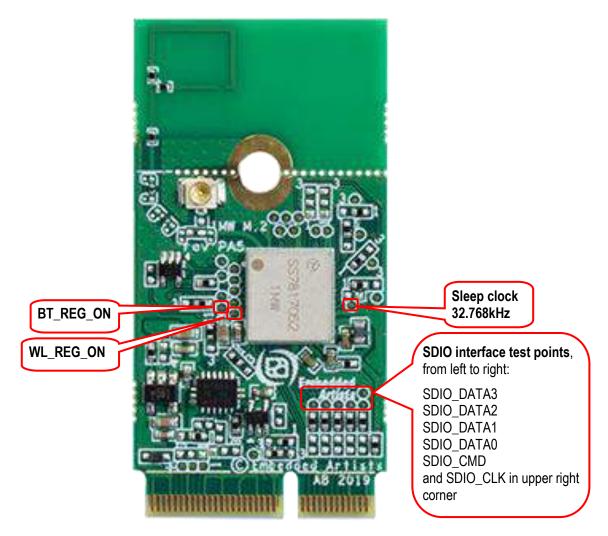


Figure 5 – 1MW M.2 Module Test Points

3.9 Current Consumption Measurements

It is possible to measure the currents of the power supplies to the 1MW module, VBAT and VDDIO. VBAT is the 3.3V the is supplied to the M.2 interface and VDDIO is an on-board generated 1.8V. VDDIO is generated from the supplied 3.3V. If the supply voltage (3.3V) to the M.2 module is measured it will be both the VBAT and VDDIO currents that is measured. By measuring currents at the illustrated points below it is possible to measure VBAT and VDDIO independently.

Note that zero ohm resistors are mounted by default. Select a series resistor with as low resistance as possible to keep the voltage drop to a minimum. Keep the drop below 100mV. VBAT can be slightly above 1 Amp in peak which means that maximum series resistance is 100 milliOhm for the VBAT resistor. For VDDIO the current is lower so a 1 ohm resistor can be a suitable value.

Note that the current measurement possibility only exist on rev A and B boards (not on rev PA5 boards).

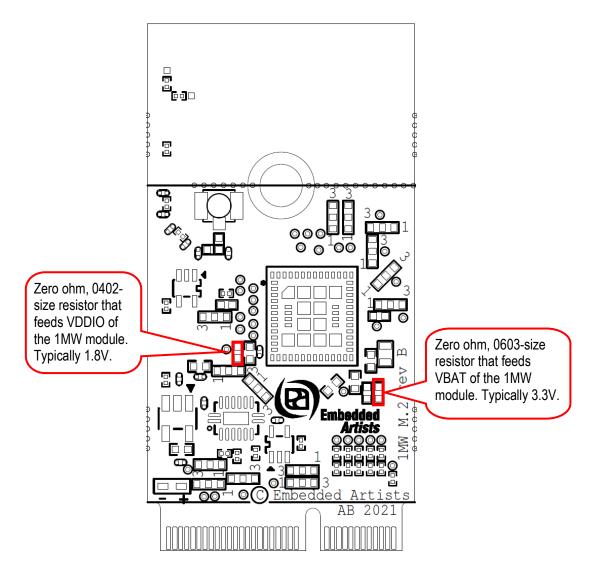


Figure 6 - Current Measurement on rev A and B Boards

4 Antenna

This chapter addresses the antenna side of the module. There is an on-board, reference certified pcb trace antenna. This can be used for testing/evaluation purposes, but also for the final product. Also, for testing and evaluation purposes, it is possible to disconnect the on-board antenna and instead use an u.fl. connector to connect an external antenna.

4.1 Mounting and Clearance

Ideally, arrange the M.2 module so that the antenna is located at a corner of the product. Keep plastic case (i.e., non-metallic) away from the antenna area with at least 5 mm clearance (in all directions). Also keep any metal elements (e.g., connectors, battery, etc.) away from the antenna area with at least 5 mm clearance (in all directions). Keep a clearance area under and above the antenna area of at least 7.5mm, both under and over the PCB.

Human hands or body parts should be kept away (in the normal use case) from the antenna area.

The ground hole in the middle shall be grounded. Use a metal stand-off according to M.2 standard (height suitable for selected M.2 connector) and use metal screw to create a proper ground connection.

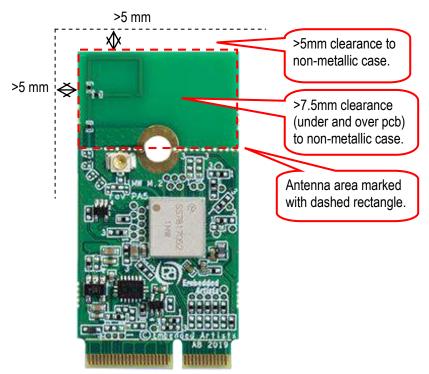


Figure 7 - M.2 Module Clearance Area

4.2 Overriding PCB Trace Antenna

The antenna connection from the 1MW module be redirected to the u.fl. connector by just moving one zero ohm 0402 resistor and one capacitor, see illustration below. The on-board trace antenna can be left as-is, or the antenna can be snapped-off.

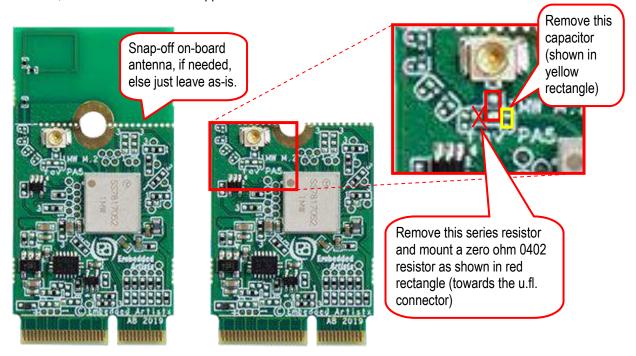


Figure 8 – Rework to Connect U.FL. Connector

4.3 On-board Trace Antenna Performance

The on-board pcb trace antenna type is monopole. The 1MW M.2 module has been measured both standalone and mounted on the iMX OEM Carrier Board (which is a typical carrier board design).

The table below lists total efficiency:

Measurement condition		Frequency MHz						Total Efficiency in dB		Total Efficiency in %	
	2400	2442	2484	5150	5500	5850	Average 2 GHz band	Average 5 GHz band	Average 2 GHz band	Average 5 GHz band	
1MW M.2 module mounted on iMX OEM Carrier Board	-5.5	-5.3	-5.2	-6.3	-5.7	-6.5	-5.3	-6.1	29.2	24.3	
1MW M.2 module standalone	-4.6	-4.6	-4.6	-5.4	-5.2	-5.2	-4.6	-5.3	34.6	29.7	

The table below lists peak gain:

Measurement			Frequer	Max dBi				
condition	2400	2442	2484	5150	5500	5850	Max 2 GHz band	Max 5 GHz band
1MW M.2 module mounted on iMX OEM Carrier Board	-2.3	-2.0	-1.7	-2.7	-1.3	-1.2	-1.7	-1.2
1MW M.2 module standalone	-1.7	-1.5	-1.5	-3.0	-2.5	-2.8	-1.5	-2.5

4.3.1 1MW M.2 Module Mounted on iMX OEM Carrier Board

The 3D directivity measurements are presented below for the 2 GHz and 5GHz bands when the 1MW M.2 module is mounted on the iMX OEM Carrier Board.

@2442MHz

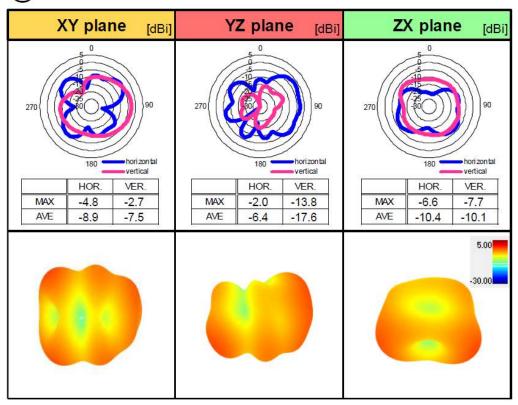


Figure 9 – 3D Directivity Measurements in 2 GHz Band

@5500MHz

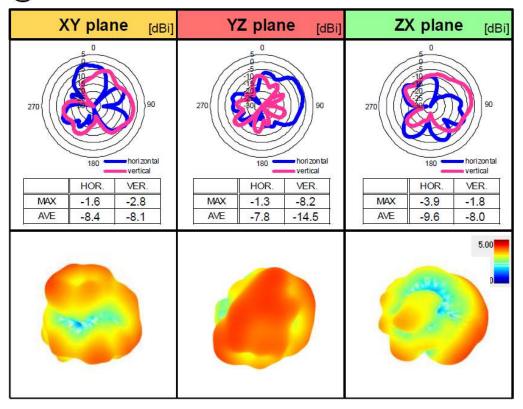


Figure 10 – 3D Directivity Measurements in 5 GHz Band

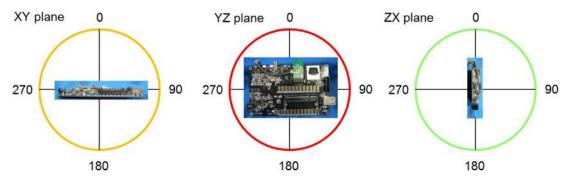


Figure 11 – 3D Directivity Measurements Plane Orientations

The pictures below illustrates the return loss, efficiency and directivity when the 1MW M.2 module is mounted on the iMX OEM Carrier Board.

<Return Loss>

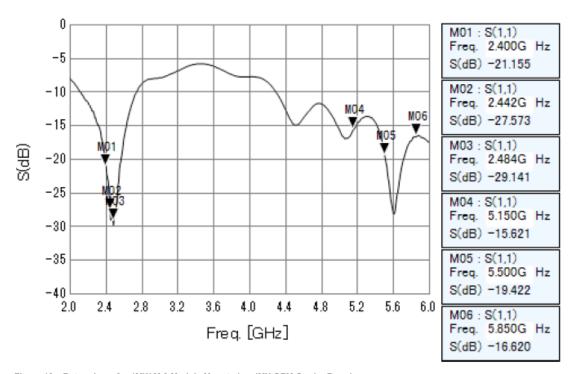


Figure 12 – Return Loss for 1MW M.2 Module Mounted on iMX OEM Carrier Board

<Efficiency>

							[dBi]	[dB]
LINEAR		XY-plane		YZ-plane		ZX-plane		Total
POLARIZAT	ION	hor.	ver.	hor.	ver.	hor.	ver.	Efficiency
2400 MHz	MAX.	-5.2	-2.8	-2.3	-13.9	-7.6	-7.7	
2400 IVINZ	AVE.	-9.1	-7.5	-6.5	-17.5	-11.0	-10.0	-5.5
2442 MHz	MAX.	-4.8	-2.7	-2.0	-13.8	-6.6	-7.7	
2442 WITZ	AVE.	-8.9	-7.5	-6.4	-17.6	-10.4	-10.1	-5.3
2484 MHz	MAX.	-4.7	-2.9	-1.7	-14.2	-6.0	-7.9	
2404 IVINZ	AVE.	-8.9	-7.6	-6.4	-18.0	-10.1	-10.3	-5.2

							[dBi]	[dB]
LINEAR		XY-plane		YZ-plane		ZX-plane		Total
POLARIZAT	ION	hor.	ver.	hor.	ver.	hor.	ver.	Efficiency
5150 MHz	MAX.	-3.2	-3.6	-2.7	-7.4	-4.4	-2.7	
3130 10172	AVE.	-9.3	-7.9	-8.9	-14.4	-9.8	-8.0	-6.3
5500 MHz	MAX.	-1.6	-2.8	-1.3	-8.2	-3.9	-1.8	
3300 WHZ	AVE.	-8.4	-8.1	-7.8	-14.5	-9.6	-8.0	-5.7
5850 MHz	MAX.	-1.2	-5.0	-3.7	-8.6	-7.6	-2.2	
JOJU IVITZ	AVE.	-8.6	-9.9	-9.8	-15.0	-12.5	-8.0	-6.5

Figure 13 – Efficiency for 1MW M.2 Module Mounted on iMX OEM Carrier Board

<Directivity>

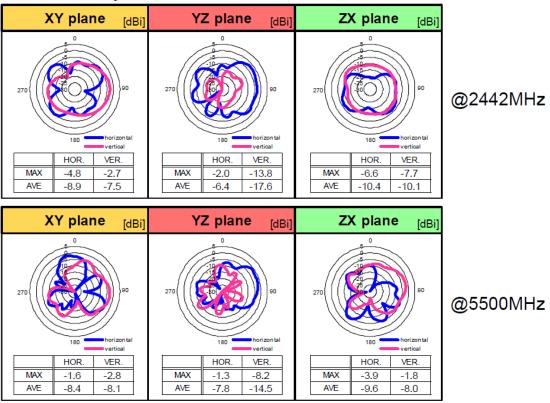


Figure 14 – Directivity for 1MW M.2 Module Mounted on iMX OEM Carrier Board

4.3.2 1MW M.2 Module Standalone

The pictures below illustrate the return loss, efficiency and directivity when the 1MW M.2 module is mounted on the iMX OEM Carrier Board.

<Return Loss>

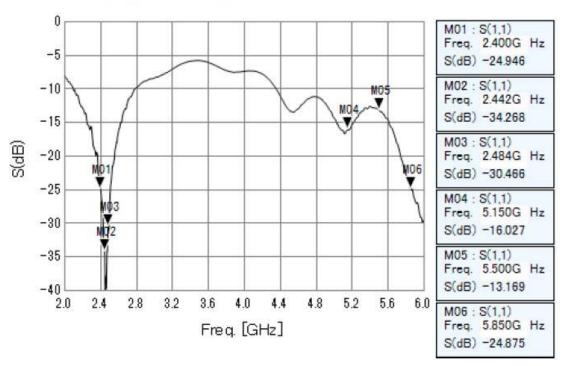


Figure 15 - Return Loss for 1MW M.2 Module Standalone

<Efficiency>

							[dBi]	[dB]
LINEAR	LINEAR		XY-plane		YZ-plane		ZX-plane	
POLARIZAT	ION	hor.	ver.	hor.	ver.	hor.	ver.	Efficiency
2400 MHz	MAX.	-14.9	-1.7	-2.1	-21.1	-2.7	-11.8	
2400 10102	AVE.	-19.1	-2.9	-6.0	-27.8	-6.3	-13.4	-4.6
2442 MHz	MAX.	-14.9	-1.5	-2.2	-22.2	-2.4	-11.9	
2442 WITZ	AVE.	-18.7	-2.8	-6.1	-28.8	-6.1	-13.4	-4.6
2484 MHz	MAX.	-14.9	-1.5	-2.5	-23.0	-2.4	-11.7	
2404 IVIDZ	AVE.	-19.0	-2.8	-6.1	-29.3	-6.1	-13.4	-4.6

							[dBi]	[dB]
LINEAR		XY-r	XY-plane		YZ-plane		ZX-plane	
POLARIZAT	ION	hor.	ver.	hor.	ver.	hor.	ver.	Efficiency
5150 MHz	MAX.	-3.5	-3.0	-3.1	-10.5	-5.2	-3.8	
5150 MHz	AVE.	-9.0	-8.0	-6.8	-15.9	-10.1	-6.5	-5.4
5500 MHz	MAX.	-4.5	-2.7	-2.5	-17.5	-4.4	-3.4	
3300 WHZ	AVE.	-9.2	-7.9	-6.4	-24.2	-9.7	-5.7	-5.2
ESEC MIL	MAX.	-4.6	-3.2	-2.8	-17.2	-4.3	-3.5	
5850 MHz	AVE.	-9.7	-8.1	-6.4	-23.7	-9.9	-5.7	-5.2

Figure 16 - Efficiency for 1MW M.2 Module Standalone

<Directivity>

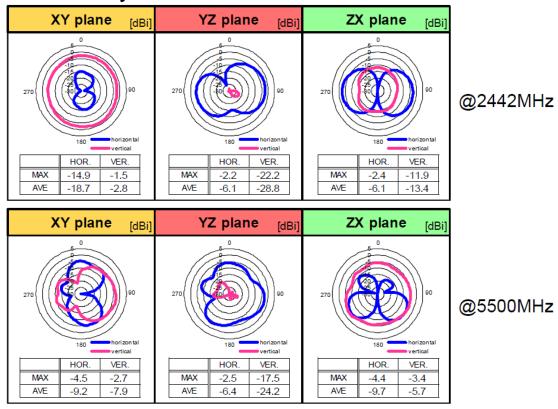


Figure 17 – Directivity for 1MW M.2 Module Standalone

5 Errata

5.1 Audio Interface - PCM CLK Not Connected Correctly

Signal PCM_CLK (on pin 8) is incorrectly routed to pin BT_I2S_CLK (pad 37 on the 1MW) instead of the correct pin BT_PCM_CLK (pad 35 on the 1MW).

The error only exist on board revision PA5. The picture below illustrates where to find the board revision identifier. The picture also show how to correct the error - mount a 0402 size zero ohm resistor (or solder bump) in the lower position of SJ12.

Figure 18 – 1MW M.2 Module J12 Location

6 Software and Support

This chapter contains information about software and support.

6.1 Software Driver

The CYW43455 chipset do not contain any persistent software. A firmware image must be downloaded by the host at start-up. This is the responsibility of the operating system driver.

There are three different cases, depending on which host processor is used:

Embedded Artists' Computer-on-Modules, (u)COM, as host processor
 Embedded Artists' Linux BSPs and SDKs for the different (u)COM board contains all drivers
 available and pre-configured. Everything has been tested and works out-of-the-box on the
 different iMX Developer's Kits.

iMX Developer's Kit	1MW M.2 support
iMX8M Mini uCOM	From Linux BSP v4.14.98
iMX8M Nano uCOM	From Linux BSP v4.14.98
iMX8M COM	From Linux BSP v4.14.98
iMX7 Dual COM	From Linux BSP v4.14.98
iMX7 Dual uCOM	From Linux BSP v4.14.98
iMX7ULP uCOM	Not available
iMX 6 Quad COM	From Linux BSP v4.14.98
iMX 6 DualLite COM	From Linux BSP v4.14.98
iMX 6 SoloX COM	From Linux BSP v4.14.98
iMX 6 UltraLite/ULL COM	From Linux BSP v4.14.98
iMX RT1176 uCOM	SDK v2.9.2
iMX RT1166 uCOM	Not available
iMX RT1064 uCOM	Not available
iMX RT1062 OEM	SDK v2.9.2

2. Other i.MX based, for example NXP's EVKs

Murata has created documentation how to compile the Linux kernel for the NXP EVKs https://wireless.murata.com/products/rf-modules-1/wi-fi-bluetooth-for-nxp-i-mx.html#Linux

3. Non-i.MX host processor

There is no ready-to-go driver exist. Contact Murata to check driver availability on the hardware platform used.

6.2 Support

Embedded Artists supports customers that use our M.2 module in combination with Embedded Artists' Computer-on-Modules, (u)COM, based on NXP's i.MX RT/6/7/8 families.

For other platforms, support is provided by Murata via their Community Support Forum: https://community.murata.com/s/topic/0TO5F0000002TLWWA2/connectivity-modules

7 Regulatory

The Murata 1MW module is reference certified. See the LBEE5HY1MW datasheet from Murata for details.

7.1 European Union Regulatory Compliance

EUROPEAN DECLARATION OF CONFORMITY (Simplified DoC per Article 10.9 of the Radio Equipment Directive 2014/53/EU)

This apparatus, namely 1MW M.2 module (pn EAR00315) conforms to the Radio Equipment Directive (RED) 2014/53/EU. The full EU Declaration of Conformity for this apparatus can be found at this location: https://www.embeddedartists.com/products/1mw-m-2-module/, see document 1MW M.2 module Declaration of Conformity.

The following information is provided per Article 10.8 of the Radio Equipment Directive 2014/53/EU:

- (a) Frequency bands in which the equipment operates.
- (b) The maximum RF power transmitted.

PN	RF Technology	(a) Frequency Ranges (EU)	(b) Max Transmitted Power
EAR00315	Bluetooth BR/EDR/LE	2400 MHz – 2484 MHz	-1.5 dBm
EAR00315	Wi-Fi IEEE 802.11b/g/n	2400 MHz – 2484 MHz	-1.5 dBm
EAR00315	Wi-Fi IEEE 802.11a/n/ac	5150 MHz – 5850 MHz	-1.2 dBm

The 1MW M.2 module comply with the Directive 2011/65/EU (EU RoHS 2) and its amendment Directive (EU) 2015/863 (EU RoHS 3).

8 Disclaimers

Embedded Artists reserves the right to make changes to information published in this document, including, without limitation, specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Customer is responsible for the design and operation of their applications and products using Embedded Artists' products, and Embedded Artists accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the Embedded Artists' product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products. Customer is required to have expertise in electrical engineering and computer engineering for the installation and use of Embedded Artists' products.

Embedded Artists does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using Embedded Artists' products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). Embedded Artists does not accept any liability in this respect.

Embedded Artists does not accept any liability for errata on individual components. Customer is responsible to make sure all errata published by the manufacturer of each component are taken note of. The manufacturer's advice should be followed.

Embedded Artists does not accept any liability and no warranty is given for any unexpected software behavior due to deficient components.

Customer is required to take note of manufacturer's specification of used components. Such specifications, if applicable, contains additional information that must be taken note of for the safe and reliable operation.

All Embedded Artists' products are sold pursuant to Embedded Artists' terms and conditions of sale: http://www.embeddedartists.com/sites/default/files/docs/General Terms and Conditions.pdf

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by Embedded Artists for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN EMBEDDED ARTISTS' TERMS AND CONDITIONS OF SALE EMBEDDED ARTISTS DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF EMBEDDED ARTISTS PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY THE CEO OF EMBEDDED ARTISTS, PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, NUCLEAR, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE.

Resale of Embedded Artists' products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by Embedded Artists

for the Embedded Artists' product or service described herein and shall not create or extend in any manner whatsoever, any liability of Embedded Artists.

This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from national authorities.

8.1 Definition of Document Status

Preliminary – The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. Embedded Artists does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information. The document is in this state until the product has passed Embedded Artists product qualification tests.

Approved – The information and data provided define the specification of the product as agreed between Embedded Artists and its customer, unless Embedded Artists and customer have explicitly agreed otherwise in writing.