

Panasonic ideas for life

New pin layout (LT type) added. Ultra high sensitivity realized at 50 mW nominal operating power

TX-S RELAYS

Products to be discontinued.

FEATURES

1. Nominal operating power: High sensitivity of 50mW

By using the highly efficient polar magnetic circuit "seesaw balance mechanism", a nominal operating power of 50 mW (minimum operating power of 32 mW) has been achieved.

2. Compact size

 $15.0(L) \times 7.4(W) \times 8.2(H)$.591(L) × .291(W) × .323(H)

3. High contact reliability

High contact reliability is achieved by the use of gold-clad twin crossbar contacts, low-gas formation materials, mold sealing the coil section, and by controlling organic gas in the coil.

*We also offer a range of products with AgPd contacts suitable for use in low level load analog circuits (Max. 10V DC 10 mA).

*SX relays designed for low level loads are also available.

4. Outstanding surge resistance

Surge breakdown voltage between open contacts:

1,500 V 10×160 μ sec. (FCC part 68) Surge breakdown voltage between contact and coil:

2,500 V 2×10 µsec. (Telcordia)

5. Low thermal electromotive force (approx. 0.3 μ V)

The structure of the mold-sealed body block of the coil section achieves nominal operating power of 50 mW and high sensitivity, along with low thermal electromotive force, reduced to approximately 0.3 $\mu V.$

6. A range of surface-mount types is also available.

SA: Low-profile surface-mount terminal type

▲ SL: High connection reliability surface-mount terminal type SS: Space saving surface-mount terminal type

7. Sealed construction allows automatic washing.

TYPICAL APPLICATIONS

- 1. Communications (XDSL, Transmission)
- 2. Measurement
- 3. Security
- 4. Home appliances, and audio/visual equipment
- 5. Automotive equipment
- 6. Medical equipment

ORDERING INFORMATION

	TXS 2	_	_	-	-	_
Contact arrangement 2: 2 Form C						
Surface-mount availability Nil: Standard PC board terminal type or self-clinching terminal type SA: SA type SL: SL type SS: SS type						
Operating function Nil: Single side stable L: 1 coil latching L2: 2 coil latching LT: 2 coil latching						
Terminal shape Nil: Standard PC board terminal or surface-mount terminal H: Self-clinching terminal						
Nominal coil voltage (DC) 1.5, 3, 4.5, 6, 9, 12, 24V						
Contact material Nil: Standard contact (Ag+Au clad) 1: AgPd contact (low level load); AgPd+Au clad (stationary), AgPd (movable)					•	
Packing style Nil: Tube packing X: Tape and reel (picked from 1/3/4/5-pin side) 7: Tape and reel packing (picked from the 8/9/10/12-pin side)						-

1. Standard PC board terminal

Contact	Nominal coil	Single side stable	1 coil latching	2 coil latching (L2)	2 coil latching (LT)
arrangement	voltage	Part No.	Part No.	Part No.	Part No.
	1.5V DC	TXS2-1.5V	TXS2-L-1.5V	TXS2-L2-1.5V	TXS2-LT-1.5V
	3V DC	TXS2-3V	TXS2-L-3V	TXS2-L2-3V	TXS2-LT-3V
	4.5V DC	TXS2-4.5V	TXS2-L-4.5V	TXS2-L2-4.5V	TXS2-LT-4.5V
2 Form C	6V DC	TXS2-6V	TXS2-L-6V	TXS2-L2-6V	TXS2-LT-6V
	9V DC	TXS2-9V	TXS2-L-9V	TXS2-L2-9V	TXS2-LT-9V
	12V DC	TXS2-12V	TXS2-L-12V	TXS2-L2-12V	TXS2-LT-12V
	24V DC	TXS2-24V	TXS2-L-24V	TXS2-L2-24V	TXS2-LT-24V

Standard packing: Tube: 40 pcs.; Case: 1,000 pcs.

Note: Please add "-1" to the end of the part number for AgPd contacts (low level load).

2. Self-clinching terminal

Contact	Nominal coil	Single side stable	1 coil latching	2 coil latching (L2)	2 coil latching (LT)
arrangement	voltage	Part No.	Part No.	Part No.	Part No.
	1.5V DC	⚠ TXS2-H-1.5V	↑ TXS2-L-H-1.5V	↑ TXS2-L2-H-1.5V	⚠ TXS2-LT-H-1.5V
	3V DC	⚠ TXS2-H-3V	⚠ TXS2-L-H-3V	⚠ TXS2-L2-H-3V	⚠ TXS2-LT-H-3V
	4.5V DC	<u>↑</u> TXS2-H-4.5V	⚠ TXS2-L-H-4.5V	↑ TXS2-L2-H-4.5V	↑ TXS2-LT-H-4.5V
2 Form C	6V DC	⚠ TXS2-H-6V	⚠ TXS2-L-H-6V	⚠ TXS2-L2-H-6V	↑ TXS2-LT-H-6V
	9V DC	⚠ TXS2-H-9V	⚠ TXS2-L-H-9V	⚠ TXS2-L2-H-9V	⚠ TXS2-LT-H-9V
	12V DC	⚠ TXS2-H-12V	⚠ TXS2-L-H-12V	⚠ TXS2-L2-H-12V	↑ TXS2-LT-H-12V
	24V DC	⚠ TXS2-H-24V	⚠ TXS2-L-H-24V	<u>↑</u> TXS2-L2-H-24V	⚠ TXS2-LT-H-24V

Standard packing: Tube: 40 pcs.; Case: 1,000 pcs.

Note: Please add "-1" to the end of the part number for AgPd contacts (low level load).

3. Surface-mount terminal

1) Tube packing

Contact	Nominal coil	Single side stable	1 coil latching	2 coil latching (L2)	2 coil latching (LT)
arrangement	voltage	Part No.	Part No.	Part No.	Part No.
	1.5V DC	TXS2S□-1.5V	TXS2S□-L-1.5V	TXS2S□-L2-1.5V	TXS2S□-LT-1.5V
	3V DC	TXS2S□-3V	TXS2S□-L-3V	TXS2S□-L2-3V	TXS2S□-LT-3V
	4.5V DC	TXS2S□-4.5V	TXS2S□-L-4.5V	TXS2S□-L2-4.5V	TXS2S□-LT-4.5V
2 Form C	6V DC	TXS2S□-6V	TXS2S□-L-6V	TXS2S□-L2-6V	TXS2S□-LT-6V
	9V DC	TXS2S□-9V	TXS2S□-L-9V	TXS2S□-L2-9V	TXS2S□-LT-9V
	12V DC	TXS2S□-12V	TXS2S□-L-12V	TXS2S□-L2-12V	TXS2S□-LT-12V
	24V DC	TXS2S□-24V	TXS2S□-L-24V	TXS2S□-L2-24V	TXS2S□-LT-24V

^{□:} For each surface-mounted terminal identification, input the following letter. SA type: A. SL type: L. SS type: Standard packing: Tube: 40 pcs.; Case: 1,000 pcs.

Note: Please add "-1" to the end of the part number for AgPd contacts (low level load).

2) Tape and reel packing

Contact	Nominal coil	Single side stable	1 coil latching	2 coil latching (L2)	2 coil latching (LT)	
arrangement	voltage	Part No.	Part No.	Part No.	Part No.	
	1.5V DC	TXS2S□-1.5V-Z	TXS2S□-L-1.5V-Z	TXS2S□-L2-1.5V-Z	TXS2S□-LT-1.5V-Z	
	3V DC	TXS2S□-3V-Z	TXS2S□-L-3V-Z	TXS2S□-L2-3V-Z	TXS2S□-LT-3V-Z	
	4.5V DC	TXS2S□-4.5V-Z	TXS2S□-L-4.5V-Z	TXS2S□-L2-4.5V-Z	TXS2S□-LT-4.5V-Z	
2 Form C	6V DC	TXS2S□-6V-Z	TXS2S□-L-6V-Z	TXS2S□-L2-6V-Z	TXS2S□-LT-6V-Z	
	9V DC	TXS2S□-9V-Z	TXS2S□-L-9V-Z	TXS2S□-L2-9V-Z	TXS2S□-LT-9V-Z	
	12V DC	TXS2S□-12V-Z	TXS2S□-L-12V-Z	TXS2S□-L2-12V-Z	TXS2S□-LT-12V-Z	
	24V DC	TXS2S□-24V-Z	TXS2S□-L-24V-Z	TXS2S□-L2-24V-Z	TXS2S□-LT-24V-Z	

^{☐:} For each surface-mounted terminal identification, input the following letter. SA type: A SL type: L, SS type: S Standard packing: Tape and reel: 500 pcs.; Case: 1,000 pcs.

Notes: 1. Tape and reel packing symbol "-Z" is not marked on the relay. "X" type tape and reel packing (picked from 1/2/3/4-pin side) is also available.

2. Please add "-1" to the end of the part number for AgPd contacts (low level load). (Ex. TXS2SA-1.5V-1-Z)

RATING

1. Coil data

1) Single side stable

Nominal coil voltage	Pick-up voltage (at 20°C 68°F)	Drop-out voltage (at 20°C 68°F)	Nominal operating current [±10%] (at 20°C 68°F)	Coil resistance [±10%] (at 20°C 68°F)	Nominal operating power	Max. applied voltage (at 20°C 68°F)		
1.5V DC			33.3mA	45Ω				
3V DC			16.7mA	180Ω				
4.5V DC	80%V or less of	10%V or more of	10%V or more of	or less of 10%V or more of	11.1mA	405Ω	50mW	450000
6V DC	nominal voltage*	nominal voltage*	8.3mA	720Ω	SOITIVV	150%V of nominal voltage		
9V DC	(Initial)	(Initial)	5.6mA	1,620Ω	i			
12V DC				2,880Ω				
24V DC			2.9mA	8,229Ω	70mW			

2) 1 coil latching

Nominal coil voltage	Set voltage (at 20°C 68°F)	Reset voltage (at 20°C 68°F)	Nominal operating current [±10%] (at 20°C 68°F)	Coil resistance [±10%] (at 20°C 68°F)	Nominal operating power	Max. applied voltage (at 20°C 68°F)
1.5V DC			23.3mA			
3V DC			11.7mA	257Ω	OFW	
4.5V DC	80%V or less of	80%V or less of	7.8mA	579Ω		
6V DC	nominal voltage*		5.8mA	1,029Ω	35mW	150%V of nominal voltage
9V DC	(Initial)		3.9mA	2,314Ω		Homiliai voitage
12V DC			2.9mA	4,114Ω		
24V DC			2.1mA	11,520Ω	50mW	

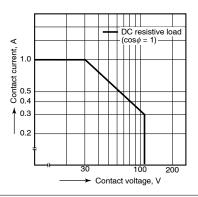
3) 2 coil latching (L2, LT)

Nominal coil voltage	Set voltage (at 20°C 68°F)	Reset voltage (at 20°C 68°F)	Nominal operating current [±10%] (at 20°C 68°F)		Coil resistance [±10%] (at 20°C 68°F)		Nominal operating power		Max. applied voltage (at 20°C 68°F)		
· ·	,	, ,	Set coil	Reset coil	Set coil	Reset coil	Set coil	Reset coil	,		
1.5V DC		80%V or less of nominal voltage* nominal voltage*	46.7mA	46.7mA	32.1Ω	32.1Ω					
3V DC			23.3mA	23.3mA	129Ω	129Ω					
4.5V DC	80%V or less of				15.6mA	15.6mA	289Ω	289Ω	70mW	70mW	450001
6V DC					11.7mA	11.7mA	514Ω	514Ω	7011100	7011100	150%V of nominal voltage
9V DC	(Initial)	(Initial)	7.8mA	7.8mA	1,157Ω	1,157Ω			Hominal voltage		
12V DC			5.8mA	5.8mA	2,057Ω	2,057Ω					
24V DC			6.3mA	6.3mA	3,840Ω	3,840Ω	150mW	150mW			

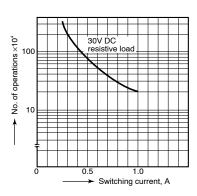
^{*}Pulse drive (JIS C 5442-1986)

2. Specifications

Characteristics		Item	Specifications		
	Arrangement		2 Form C		
Contact	Initial contact resista	nce, max.	Max. 100 mΩ (By voltage drop 6 V DC 1A)		
	Contact material		Standard contact: Ag+Au clad, AgPd contact (low level load): AgPd+Au clad (stationary), AgPd (movable)		
	Nominal switching ca	apacity	1 A 30 V DC (resistive load)		
	Max. switching powe	r	30 W (DC) (resistive load)		
	Max. switching voltage	ge	110V DC		
Rating	Max. switching curre	nt	1 A		
rialing	Min. switching capac	city (Reference value)*1	10μA 10mV DC		
		Single side stable	50 mW (1.5 to 12 V DC), 70 mW (24 V DC)		
	Nominal operating power	1 coil latching	35 mW (1.5 to 12 V DC), 50 mW (24 V DC)		
	power	2 coil latching	70 mW (1.5 to 12 V DC), 150 mW (24 V DC)		
	Insulation resistance (Initial)		Min. 1,000M Ω (at 500V DC) Measurement at same location as "Initial breakdown voltage" section.		
	Breakdown voltage (Initial)	Between open contacts	750 Vrms for 1min. (Detection current: 10mA)		
		Between contact and coil	1,800 Vrms for 1min. (Detection current: 10mA)		
		Between contact sets	1,000 Vrms for 1min. (Detection current: 10mA)		
Electrical	Surge breakdown	Between open contacts	1,500 V (10×160μs) (FCC Part 68)		
characteristics	voltage (Initial)	Between contacts and coil	2,500 V (2×10μs) (Telcordia)		
	Temperature rise (at 20°C 68°F)		Max. 50°C (By resistive method, nominal coil voltage applied to the coil; contact carrying current: 1/		
	Operate time [Set time	ne] (at 20°C 68°F)	Max. 5 ms [Max. 5 ms] (Nominal coil voltage applied to the coil, excluding contact bounce time.)		
	Release time [Reset	time] (at 20°C 68°F)	Max. 5 ms [Max. 5 ms] (Nominal coil voltage applied to the coil, excluding contact bounce time.) (without diode)		
	Shock resistance	Functional	Min. 750 m/s² (Half-wave pulse of sine wave: 6 ms; detection time: 10μs.)		
/lechanical	Shock resistance	Destructive	Min. 1,000 m/s ² (Half-wave pulse of sine wave: 6 ms.)		
characteristics	Vibration resistance	Functional	10 to 55 Hz at double amplitude of 3.3 mm (Detection time: 10μs.)		
	Vibration resistance	Destructive	10 to 55 Hz at double amplitude of 5 mm		
Type et ed life	Mechanical		Min. 5×10 ⁷ (at 180 cpm)		
Expected life	Electrical		Min. 2×10 ⁵ (1 A 30 V DC resistive) (at 20 cpm)		
Conditions	Conditions for operat	tion, transport and storage*2	Ambient temperature: -40°C to +70°C -40°F to +158°F; Humidity: 5 to 85% R.H. (Not freezing and condensing at low temperature)		
	Max. operating spee	d (at rated load)	20 cpm		
Unit weight			Approx. 2 g .071 oz		

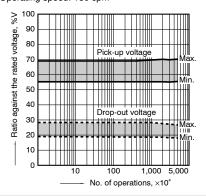

This value can change due to the switching frequency, environmental conditions, and desired reliability level, therefore it is recommended to check this with the actual load. (AgPd contact type or SX relays are available for low level load switching [10V DC, 10mA max. level])

Refer to "6. Usage, Storage and Transport Conditions" in AMBIENT ENVIRONMENT section in Relay Technical Information.


ds_61022_en_txs: 011010J 3

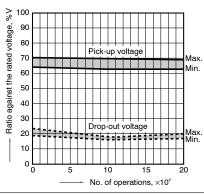
REFERENCE DATA

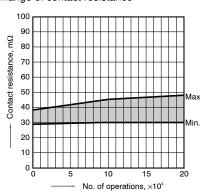
1. Maximum switching capacity



2. Life curve

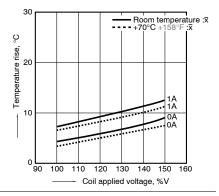
3. Mechanical life


Tested sample: TXS2-4.5V, 10 pcs. Operating speed: 180 cpm

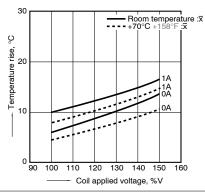

4. Electrical life (1 A 30 V DC resistive load)

Tested sample: TXS2-4.5V, 6 pcs. Operating speed: 20 cpm

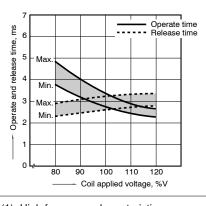
Change of pick-up and drop-out voltage



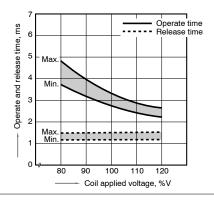
Change of contact resistance

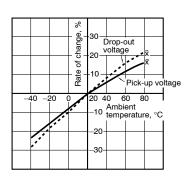

5-(1). Coil temperature rise Tested sample: TXS2-4.5V, 6 pcs. Point measured: Inside the coil

Ambient temperature: 25°C 77°F, 70°C 158°F

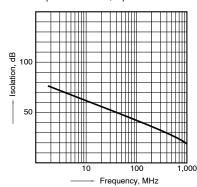


5-(2). Coil temperature rise Tested sample: TXS2-24V, 6 pcs. Point measured: Inside the coil

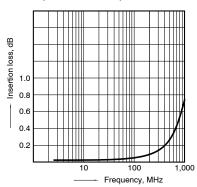

Ambient temperature: 25°C 77°F, 70°C 158°F


6-(1). Operate and release time (with diode) Tested sample: TXS2-4.5V, 10 pcs.

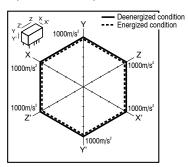
6-(2). Operate and release time (without diode) Tested sample: TXS2-4.5V, 10 pcs.



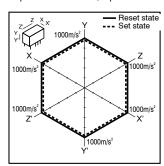
7. Ambient temperature characteristics Tested sample: TXS2-4.5V, 5 pcs.

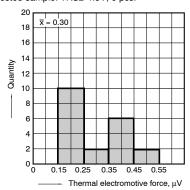

8-(1). High frequency characteristics (Isolation)

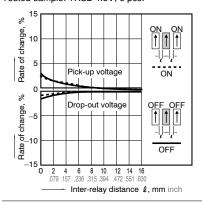
Tested sample: TXS2-4.5V, 2 pcs.

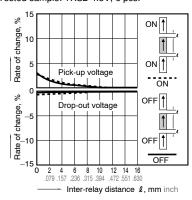


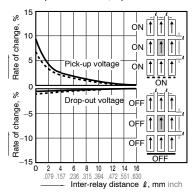
8-(2). High frequency characteristics (Insertion loss)

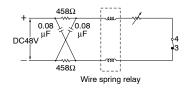

Tested sample: TXS2-4.5V, 2 pcs.

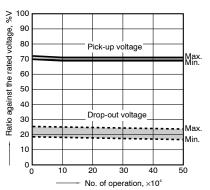

9-(1). Malfunctional shock (single side stable) Tested sample: TXS2-4.5V, 6 pcs.

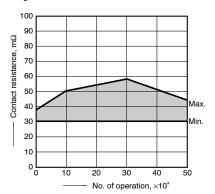

9-(2). Malfunctional shock (latching) Tested sample: TXS2-L2-4.5V, 6 pcs.


10. Thermal electromotive force Tested sample: TXS2-4.5V, 6 pcs.


11-(1). Influence of adjacent mounting Tested sample: TXS2-4.5V, 6 pcs.


11-(2). Influence of adjacent mounting Tested sample: TXS2-4.5V, 6 pcs.


11-(3). Influence of adjacent mounting Tested sample: TXS2-4.5V, 6 pcs.


12. Pulse dialing test (35 mA 48V DC wire spring relay load) Tested sample: TXS2-4.5V, 6 pcs.

Change of pick-up and drop-out voltage

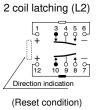
Change of contact resistance

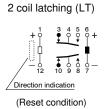
Note: Data of surface-mount type are the same as those of PC board terminal type.

DIMENSIONS (mm inch) Interested in CAD data? You can obtain CAD data for all products with a CAD Data mark from your local Panasonic Electric Works representative.

1. Standard PC board terminal and Self clinching terminal

	External dimensions (Gen	eral tolerance: ±0.3 ±.012)	PC board pattern (Bottom v	iew) (Tolerance: ±0.1 ±.004)
Туре	Single side stable and 1 coil latching type	2 coil latching type (L2, LT)	Single side stable and 1 coil latching type	2 coil latching type (L2, LT)
Standard PC board terminal	15.00 7.40 .591 0.65 8.20 .020 .026 .323 0.50 0.20 3.50 0.25 1.15 5.08 2.54 .138 5.08 .010	15.00 7.40 .591 0.65 8.20 .026 323 0.50 0.20 3.50 5.08 0.10	2.54 - 4.00 - 1.5.0B	2.54500
Self clinching terminal	15.00 7.40 .591 0.65 8.20 0.26 3.23 0.50 0.50 0.50 1.15 5.08 2.54 3.50 5.08 .010 .045 200 100 200	15.00 7.40 .591 0.65 8.20 0.50 3.23 0.50 0.25 1.15 5.08 2.54 (.045) 5.08 0.10	8-1.0 dia. 8-039 dia.	10-1.0 dia. 10-0.039 dia.


Schematic (Bottom view)


Single side stable

(Reset condition)

1 coil latching

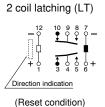
2. Surface-mount terminal

CAD Data

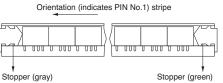
Direction indication

(Deenergized condition)

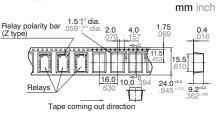
-	External dimensions (Gen	eral tolerance: ±0.3 ±.012)	Suggested mounting pad (Top	view) (Tolerance: ±0.1 ±.004)
Туре	Single side stable and 1 coil latching type	2 coil latching type (L2, LT)	Single side stable and 1 coil latching type	2 coil latching type (L2, LT)
SA type	15 .501 .20 .323 .321 .323 .321 .323 .321 .323 .321 .323 .321 .323 .321 .323 .321 .323 .324 .324 .325 .325 .326 .327 .32	15 .591 .020 .026 .026 .026 .026 .026 .026 .026	3.16 039 100 100 124 039 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	3.16.039 2.54 100 1.124 100 1.124 1.
SL type	15 .591 .323 Max. 10 .324 .323 Max. 10 .324 .324 .324 .324 .324 .324 .324 .324	15 .591 82 323 Max.10 394 0.25 0.026	3.16 039 2.54 1.24 039 7.100 7.24 	3.16.039 2.54
SS type	15 .591	15 .591 82 .323 Max. 10 .394 0.65 .026 .026 .026 .026 .020 7.440.5 .200 1.010 .020 2.010 2	2.16 .039 .100 .100 .100 .100 .100 .100 .100 .10	2.16 1 5.08 2.54 .085.03900


Schematic (Top view)

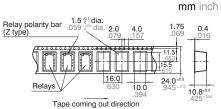
(Deenergized condition)


(Reset condition)

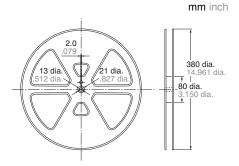
(Reset condition)


NOTES

1. Packing style


1) The relay is packed in a tube with the relay orientation mark on the left side, as shown in the figure below.

- 2) Tape and reel packing (surface-mount terminal type)
- (1) Tape dimensions
- (i) SA type



(iii) SS type

(2) Dimensions of plastic reel

2. Automatic insertion

To maintain the internal function of the relay, the chucking pressure should not exceed the values below.

Chucking pressure in the direction A: 4.9 N {500gf} or less

Chucking pressure in the direction B:

9.8 N {1 kgf} or less

Chucking pressure in the direction C:

9.8 N {1 kgf} or less

Please chuck the portion. Avoid chucking the center of the relay. In addition, excessive chucking pressure to the pinpoint of the relay should be avoided.

For Cautions for Use, see Relay Technical Information.