2.5-GHz Integrated Up-Converter

FEATURES

- Performs Up-Conversion in 2.5-GHz Radios MDS/MMDS/WCS
- Integrated IF Amplifier, Mixer and LO Buffer Amplifier
- Provision for External Image Reject / Band-Pass Filter
- TTL Switched Attenuator For Gain Control
- TTL Controlled Amplifier Power Down
- RF Frequency Range: 2100 2700 MHz
- 20 dB of Gain with 16-dB Switched Attenuator
- Output P-1 dB: +14 dBm, Typical
- Output IP3: +24 dBm, Typical
- LO Drive Level = 0 dBm, Typical

DESCRIPTION

The TRF1122 up-converts a UHF IF signal to an RF signal in the 2100-MHz to 2700-MHz range for 2.5-GHz radio applications. The TRF1122 has 20 dB of gain and an output P-1 dB of +14 dBm, typical. A TTL compatible, 1-bit 16-dB switched attenuator is provided for gain control and the IF and RF amplifiers can be shut off via a TTL control signal for power critical or TDD applications. In order to provide system requirements for LO/spurious rejection, the TRF1122 offers a signal path to an off-chip band-pass filter. Specifications are provided assuming an in-band 2-dB insertion loss filter.

The TRF1122 is designed to complete the second up-conversion in Texas Instruments complete 2.5-GHz chip set. The linear nature of the up-converter makes it ideal for complex modulations schemes such as high order QAM or OFDM.

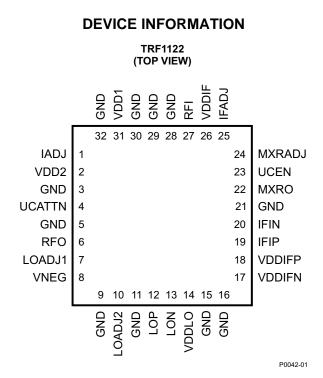


Figure 1. TRF1122 Pin Out

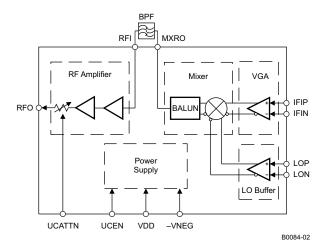


Figure 2. Functional Block Diagram

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

ABSOLUTE MAXIMUM RATINGS

		VALUE	UNIT
VDD	Positive DC Supply Voltage, VDD	0.0 to +5.50	V
-VDD	Negative DC Supply Voltage, -VDD	-5.5 to 0	V
Pin	RF Input Power	10	dBm
T_J	Junction Temperature	200	°C
Pd	Power Dissipation	1	W
	Digital Input Pins	-0.3 to 5.5	V
θ_{JC}	Thermal Resistance Junction to Case (1)	9.01	°C/W
T _{stg}	Storage Temperature	-40 to 105	°C
T _{op}	Operating Temperature	-40 to 85	°C
	Lead Temperature	260	°C

⁽¹⁾ Thermal resistance is junction to ambient assuming thermal pad with 16 thermal vias under package metal base. See Recommended PCB layout.

DC SPECIFICATIONS

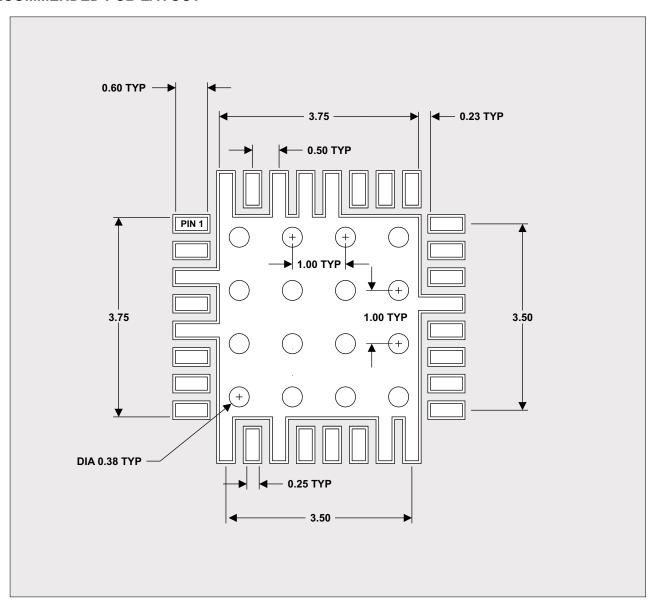
	PARAMETER	PARAMETER TEST CONDITIONS				UNIT
VDD	Positive Supply Voltage		4.75	5	5.25	V
IDD	Positive Supply Current (Total)			170	185	mA
VNEG	Negative Supply Voltage		-5.25	- 5	-4.75	V
INEG	Negative Supply Current		-6	3	6	mA
I _{VDD2}	Supply Current RF 2, pin 2			48		mA
I _{LO}	Supply Current, LO, pin 14			50		mA
I _{IF}	Supply Current, IF	Pins 17, 18, and 26 combined.		44		mA
I _{VDD1}	Supply Current RF1, pin 31			28		
V _{IH}	Input High Voltage		2.5	5		V
V _{IL}	Input Low Voltage				0.8	V
I _{IH}	Input High Current				300	μΑ
I _{IL}	Input Low Current		-50			μΑ

ELECTRICAL CHARACTERISTICS(1)

Unless otherwise stated VDD = 5.0 V, VNEG = -5 V, External Filter loss = 2 dB, $T_A = 25$ °C

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
IF input frequency			325		MHz
RF output frequency		2100		2700	MHz
Gain	UCATTN = TTL High, Input IF Impedance is 100 Ω differential	20			dB
Switched attenuator range	Valid at 2.5 GHz	15	16	17	dB
Gain flatness / 6 MHz				0.2	dB
Output power at 1 dB compression, high gain	UCATTN = TTL High		14		dBm
Output third order intercept point, high gain	UCATTN = TTL High		24		dBm
Gain: IF to MXRO	UCATTN = TTL High		1		dB
Gain: RFI to RFO	UCATTN = TTL High		19		dB
RF output impedance	Differential		50		Ω
RF output: return loss	$Z = 50 \Omega$, $P_{LO} = 3 dBm$, $F_{RF} = 2100-2700 MHz$		-10		dB
LO input impedance	Differential		100		Ω
LO input power	Referenced to 100 Ω differential	-3	0	3	dB
LO input return loss	Referenced to 100 Ω differential, LO input = 3 dBm		-10		dB
IF input impedance	Differential		100		Ω
IF1 input return loss	Referenced to 100 Ω differential		-10		dB
LO to RFO: leakage ⁽¹⁾	LO input = 0 dBm		-20		dBm
	IF input frequency RF output frequency Gain Switched attenuator range Gain flatness / 6 MHz Output power at 1 dB compression, high gain Output third order intercept point, high gain Gain: IF to MXRO Gain: RFI to RFO RF output impedance RF output: return loss LO input impedance LO input power LO input return loss IF input impedance IF1 input return loss	IF input frequency RF output frequency Gain UCATTN = TTL High, Input IF Impedance is 100Ω differential Switched attenuator range Valid at 2.5 GHz Gain flatness / 6 MHz UCATTN = TTL High Output power at 1 dB compression, high gain UCATTN = TTL High Output third order intercept point, high gain UCATTN = TTL High Gain: IF to MXRO UCATTN = TTL High RF output impedance Differential RF output: return loss $Z = 50 \Omega$, $P_{LO} = 3 dBm$, $F_{RF} = 2100-2700 MHz$ LO input impedance Differential LO input power Referenced to 100Ω differential, LO input = $3 dBm$ IF input impedance Differential IF input impedance Differential Referenced to 100Ω differential Referenced to 100Ω differential RF input return loss Referenced to 100Ω differential	IF input frequency 2100 RF output frequency 2100 Gain UCATTN = TTL High, Input IF Impedance is 100 Ω differential 20 Switched attenuator range Valid at 2.5 GHz 15 Gain flatness / 6 MHz 0 UCATTN = TTL High Output power at 1 dB compression, high gain UCATTN = TTL High 0 Output third order intercept point, high gain UCATTN = TTL High 0 Gain: IF to MXRO UCATTN = TTL High 0 RF output impedance Differential 0 RF output: return loss $Z = 50 \Omega$, $P_{LO} = 3 dBm$, $P_{RF} = 2100-2700 MHz$ 0 LO input impedance Differential -3 LO input return loss Referenced to 100Ω differential, LO input = 3 dBm -3 IF input impedance Differential -3 IF1 input return loss Referenced to 100Ω differential -3	IF input frequency 325 RF output frequency 2100 Gain UCATTN = TTL High, Input IF Impedance is 100Ω differential Switched attenuator range Valid at 2.5 GHz 15 16 Gain flatness / 6 MHz Output power at 1 dB compression, high gain UCATTN = TTL High 14 Output third order intercept point, high gain UCATTN = TTL High 24 Gain: IF to MXRO UCATTN = TTL High 1 Gain: RFI to RFO UCATTN = TTL High 19 RF output impedance Differential 50 RF output: return loss $Z = 50 \Omega$, $P_{LO} = 3$ dBm, $F_{RF} = 2100-2700$ MHz -10 LO input impedance Differential 100 LO input power Referenced to 100Ω differential, LO input return loss -10 IF input impedance Differential 100 IF input impedance Differential 100 Referenced to 100Ω differential -10 IF1 input return loss Referenced to 100Ω differential -10	IF input frequency325RF output frequency21002700GainUCATTN = TTL High, Input IF Impedance is 100 Ω differential20Switched attenuator rangeValid at 2.5 GHz151617Gain flatness / 6 MHz0.2Output power at 1 dB compression, high gainUCATTN = TTL High14Output third order intercept point, high gainUCATTN = TTL High24Gain: IF to MXROUCATTN = TTL High1Gain: RFI to RFOUCATTN = TTL High19RF output impedanceDifferential50RF output: return loss $Z = 50 \Omega$, $P_{LO} = 3$ dBm, $P_{RF} = 2100 - 2700$ MHz-10LO input impedanceDifferential100LO input powerReferenced to 100 Ω differential, LO input return loss-10IF input impedanceDifferential100IF input impedanceDifferential-10IF1 input return lossReferenced to 100 Ω differential, LO input = 3 dBm-10IF1 input return lossReferenced to 100 Ω differential-10

⁽¹⁾ Performance is sensitive to impedance termination and board layout.

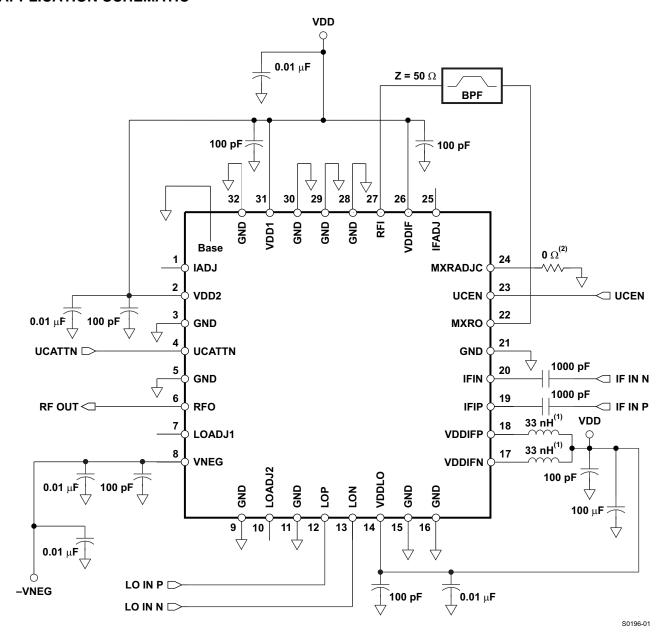

TERMINAL FUNCTIONS

TER	MINAL		TVDE	DECORIDATION					
NO.	NAME	1/0	TYPE	DESCRIPTION					
1	IADJ			Not connected for normal operation. Amplifier Bias Adjustment. Do not ground this pin or connect to any other pin.					
2	VDD2	ı	Power	RF amplifier bias +5 V					
3, 5, 9, 11, 15, 16, 21, 28–30, 32	GND			Ground					
4	UCATTN	I	Digital	Logic high is high gain, Logic low reduces gain by 16 dB. Normally set high.					
6	RFO	0	Analog	RF output from RF amplifier					
7	LOADJ1			Not connected for normal operation. LO common gate bias adjustment. Do not ground this pin or connect to any other pin.					
8	VNEG	ı	Power	Negative bias used for enable circuitry -5 V. This pin can be grounded if the user does not use the UCEN pin to turnoff the amplifier. If the VNEG is grounded the UCEN pin should be tied high.					
10	LOADJ2			Not connected for normal operation. LO amplifier bias adjustment. Do not ground this pin or connect to any other pin.					
12	LOP	I	Analog	LO input, Positive, Internally ac coupled					
13	LON	I	Analog	LO input, Negative, Internally ac coupled.					
14	VDDLO	I	Power	Positive power for LO amplifier, +5 V.					
17	VDDIFN	I	Analog	VDD supply for IF amplifier, negative, +5 V					
18	VDDIFP	I	Analog	VDD supply for IF amplifier, positive, +5 V					
19	IFIP	I	Analog	IF input, positive, dc coupled, Typical dc voltage is 1.2 V.					
20	IFIN	I	Analog	IF input, negative, dc coupled Typical dc voltage is 1.2 V.					
22	MXRO	0	Analog	Output of mixer (after balun) 50 Ω impedance with high impedance DC ground.					
23	UCEN		Digital	Set HIGH to enable IF amplifier and RF amplifiers					
24	MXRADJ	I	Analog	Normally grounded. Provide 0 Ω jumper to ground.					
25	IFADJ	I		Not connected for normal operation. IF amplifier bias adjustment. Do not ground this pin or connect to any other pin.					
26	VDDIF	I	Power	Positive supply for IF bias circuitry +5 V					
27	RFI	I	Analog	Input to RF amplifier, 50 Ω impedance, Internally AC coupled					
31	VDDI	ı	Power	RF amplifier bias +5 V					
Back	GND			Back of package has metal base that must be grounded for thermal and RF performance.					

RECOMMENDED PCB LAYOUT

SLWS173B-APRIL 2005-REVISED SEPTEMBER 2006

Solder Mask. No Solder Mask Under Chip, On Lead Pads or On Ground Connections.


Notes: 9 Via Holes, Each 0.38 mm. DIMENSIONS in mm

M0022-03

A. Four layer Board, Starting material: two: 10 mil core FR4 with 1 oz copper, both sides, pressed with 8 mil thick prepreg. Via plating ½ oz copper plate, final plate White immersion tin. Final thickness: 0.033" to 0.037" thick.

APPLICATION SCHEMATIC

APPLICATION INFORMATION

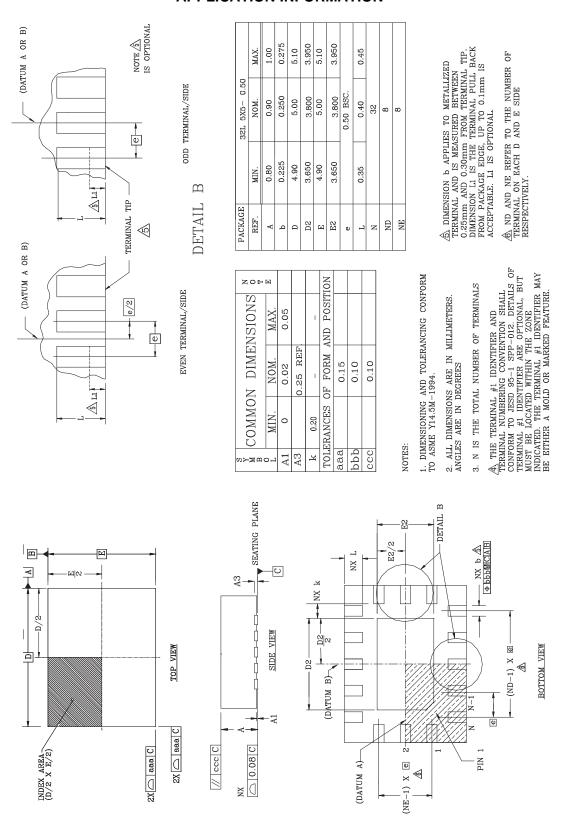


Figure 3. Package Outline: 5 mm x 5 mm LPCC 32-Pin Leadless Package

PACKAGE OPTION ADDENDUM

25-Feb-2015

PACKAGING INFORMATION

Orderable Device	Status	Package Type	_	Pins	_	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
	(1)		Drawing		Qty	(2)	(6)	(3)		(4/5)	
TRF1122IRTMR	LIFEBUY	VQFN	RTM	32	2500	Green (RoHS	CU SN	Level-3-260C-168 HR		TRF	
						& no Sb/Br)				1122	
TRF1122IRTMT	LIFEBUY	VQFN	RTM	32	250	Green (RoHS	CU SN	Level-3-260C-168 HR		TRF	
						& no Sb/Br)				1122	

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

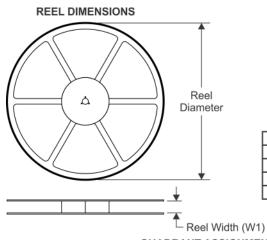
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

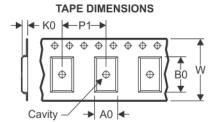
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead/Ball Finish Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

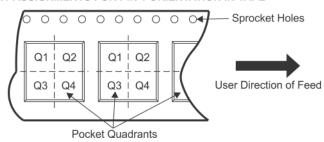
PACKAGE OPTION ADDENDUM


25-Feb-2015


In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

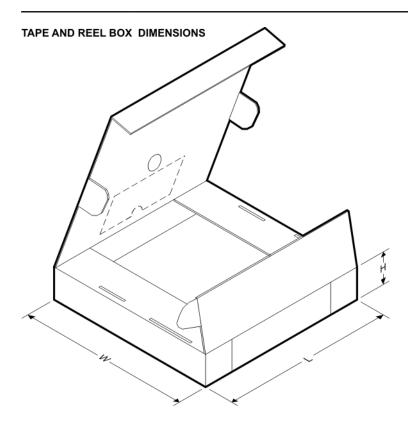
PACKAGE MATERIALS INFORMATION

www.ti.com 12-Feb-2015


TAPE AND REEL INFORMATION

	Dimension designed to accommodate the component width
B0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

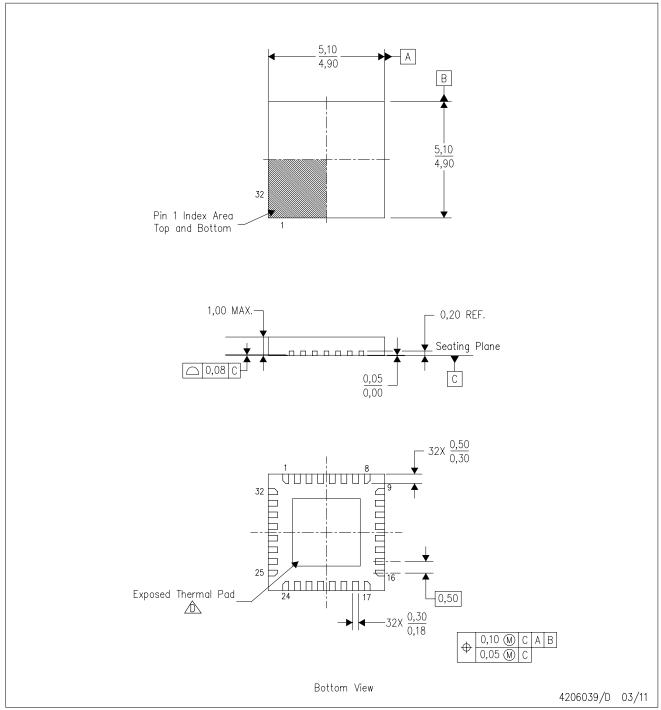


*All dimensions are nominal

Device	Package Type	Package Drawing			Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TRF1122IRTMR	VQFN	RTM	32	2500	330.0	12.4	5.3	5.3	1.5	8.0	12.0	Q2
TRF1122IRTMT	VQFN	RTM	32	250	180.0	12.4	5.3	5.3	1.5	8.0	12.0	Q2

PACKAGE MATERIALS INFORMATION

www.ti.com 12-Feb-2015



*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
TRF1122IRTMR	VQFN	RTM	32	2500	338.1	338.1	20.6
TRF1122IRTMT	VQFN	RTM	32	250	210.0	185.0	35.0

RTM (S-PVQFN-N32)

PLASTIC QUAD FLATPACK NO-LEAD

- NOTES: A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994.
 - B. This drawing is subject to change without notice.
 - C. QFN (Quad Flatpack No-Lead) Package configuration.
 - The Package thermal pad must be soldered to the board for thermal and mechanical performance. See product data sheet for details regarding the exposed thermal pad dimensions.
 - E. Package complies to JEDEC MO-220.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products	Applications
Products	Applications

Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive **Amplifiers** amplifier.ti.com Communications and Telecom www.ti.com/communications **Data Converters** dataconverter.ti.com Computers and Peripherals www.ti.com/computers **DLP® Products** www.dlp.com Consumer Electronics www.ti.com/consumer-apps DSP dsp.ti.com **Energy and Lighting** www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical Logic Security www.ti.com/security logic.ti.com

Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense

Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video

RFID www.ti-rfid.com

OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com/omap

Wireless Connectivity www.ti.com/wirelessconnectivity