

SN55LBC176, SN65LBC176, SN75LBC176 SLLS067I - AUGUST 1990 - REVISED OCTOBER 2022

SNx5LBC176 Differential Bus Transceivers

1 Features

- Bidirectional Transceiver
- Meets or Exceeds the Requirements of ANSI Standard TIA/EIA-485-A and ISO 8482:1987(E)
- High-Speed Low-Power LinBiCMOS™ Circuitry
- Designed for High-Speed Operation in Both Serial and Parallel Applications
- Low Skew
- Designed for Multipoint Transmission on Long Bus Lines in Noisy Environments
- Very Low Disabled Supply Current . . . 200 µA Maximum
- Wide Positive and Negative Input/Output **Bus Voltage Ranges**
- Thermal-Shutdown Protection
- **Driver Positive-and Negative-Current** Limiting
- Open-Circuit Failsafe Receiver Design
- Receiver Input Sensitivity . . . ±200 mV Max
- Receiver Input Hysteresis . . . 50 mV Typ
- Operates From a Single 5-V Supply
- Glitch-Free Power-Up and Power-Down Protection
- Available in Q-Temp Automotive HighRel Automotive Applications Configuration Control / Print Support Qualification to Automotive Standards

2 Description

The SN55LBC176, SN65LBC176, SN65LBC176Q, SN75LBC176 differential bus transceivers monolithic, integrated circuits designed for bidirectional data communication on multipoint bustransmission lines. They are designed for balanced transmission lines and meet ANSI Standard

TIA/EIA-485-A (RS-485) and ISO 8482:1987(E).

The SN55LBC176, SN65LBC176, SN65LBC176Q, and SN75LBC176 combine a 3-state, differential line driver and a differential input line receiver, both of which operate from a single 5-V power supply. The driver and receiver have active-high and active-low enables, respectively, which can externally connect together to function as a direction control. The driver differential outputs and the receiver differential inputs connect internally to form a differential input/output (I/O) bus port that is designed to offer minimum loading to the bus whenever the driver is disabled or V_{CC} = 0. This port features wide positive and negative common-mode voltage ranges, making the device suitable for party-line applications. Low device supply current can be achieved by disabling the driver and the receiver.

Package Information

PART NUMBER	PACKAGE ⁽¹⁾	BODY SIZE (NOM)					
SN55LBC176	LCCC (20)	8.89 mm x 8.89 mm					
SNOOLBCT70	CDIP (8)	9.60 mm x 6.67 mm					
SN65LBC176	SOIC (8)	4.90 mm x 3.91 mm					
SINOSLBC170	PDIP (8)	9.81 mm x 6.35 mm					
SN75LBC176	SOIC (8)	4.90 mm x 3.91 mm					
SIN/OLDC1/0	PDIP (8)	9.81 mm x 6.35 mm					

For all available packages, see the orderable addendum at the end of the data sheet.

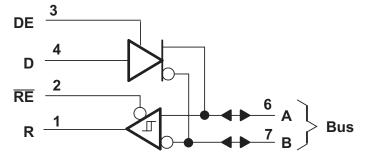


Figure 2-1. Logic Diagram (Positive Logic)

Table of Contents

1 Features1	6.8 Receiver Electrical Characteristics	8
2 Description1	6.9 Receiver Switching Characteristics	8
3 Revision History2	7 Parameter Measurement Information	
4 Description (Continued)3	8 Detailed Description	12
5 Pin Configuration and Functions3	8.1 Functional Block Diagram	12
6 Specifications4	8.2 Device Functional Modes	
6.1 Absolute Maximum Ratings4	9 Device and Documentation Support	14
6.2 Recommended Operating Conditions4	9.1 Device Support	14
6.3 Thermal Information: SN55LBC1764	9.2 Trademarks	14
6.4 Thermal Information: SN65LBC176, SN75LBC1765	9.3 Electrostatic Discharge Caution	15
6.5 Dissipation Ratings5	9.4 Glossary	
6.6 Driver Electrical Characteristics5	10 Mechanical, Packaging, and Orderable	
6.7 Driver Switching Characteristics7	Information	15
•		

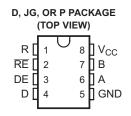
3 Revision History

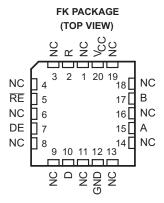
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Changes from Revision H (December 2010) to Revision I (October 2022)

Page

Added Pin Configuration and Functions section, Thermal Information tables, Detailed Description section,
Device Functional Modes, Device and Documentation Support section, and Mechanical, Packaging, and
Orderable Information section




4 Description (Continued)

These transceivers are suitable for ANSI Standard TIA/EIA-485 (RS-485) and ISO 8482 applications to the extent that they are specified in the operating conditions and characteristics section of this data sheet. Certain limits contained in TIA/EIA-485-A and ISO 8482:1987 (E) are not met or cannot be tested over the entire military temperature range.

The SN55LBC176 is characterized for operation from –55°C to 125°C. The SN65LBC176 is characterized for operation from –40°C to 85°C, and the SN65LBC176Q is characterized for operation from –40°C to 125°C. The SN75LBC176 is characterized for operation from 0°C to 70°C.

5 Pin Configuration and Functions

NC - No internal connection

Table 5-1. Pin Functions

	PIN			
NAME	SOIC,PDIP, CDIP	LCCC	TYPE	DESCRIPTION
R	1	2	0	Logic output RS485 data
RE	2	5	I	Receiver enable/disable
DE	3	7	I	Driver enable/disable
D	4	10	I	Logic input RS485 data
GND	5	12	-	Ground
A	6	15	I/O	RS485 bus pin; Non-Inverting
В	7	17	I/O	RS485 bus pin; Inverted
V _{CC}	8	20	-	5V Supply Voltage
NC	-	1,2,3,6,8,9,1 1,13,14,16,1 8,19	-	No Internal Connection

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted) (1)

	MIN	MAX	UNIT
Supply voltage, V _{CC} ⁽²⁾		7	V
Voltage range at any bus terminal	-10	15	V
Input voltage, V _I (D, DE, R, or $\overline{\text{RE}}$)	-0.3	V _{CC} + 0.5	V
Receiver output current, I _O	-10	10	mA
Continuous total power dissipation	See Sec		
Storage temperature range, T _{stg}	-65	150	°C

⁽¹⁾ Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Section 6.2 is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

6.2 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

		MIN	NOM	MAX	UNIT
Supply voltage, V _{CC}			5	5.25	V
Voltage at any bus terminal (separately or commo	on mode), V _I or V _{IC}	-7		12	V
High-level input voltage, V _{IH}	D, DE, and RE	2			V
Low-level input voltage, VIL	D, DE, and RE			0.8	V
Differential input voltage, V _{ID} ⁽¹⁾		-12		12	V
High level output ourrent I	Driver	-60			mA
High-level output current, I _{OH}	Receiver	-400			μA
Law level output current	Driver		60		A
Low-level output current, I _{OL}	Receiver			8	mA
Junction temperature, T _J				140	°C
	SN55LBC176	-55		125	
Operating free air temperature T	SN65LBC176	-40		85	°C
Operating free-air temperature, T _A	SN65LBC176Q	-40		125	
	SN75LBC176	0		70	

⁽¹⁾ Differential input /output bus voltage is measured at the noninverting terminal A with respect to the inverting terminal B.

6.3 Thermal Information: SN55LBC176

	THERMAL METRIC ⁽¹⁾		JG	UNIT
	THERMAL METRIC	20 PINS	8 PINS	UNII
$R_{\theta JA}$	Junction-to-ambient thermal resistance	61.6	99.5	
R _{0JC(top)}	Junction-to-case (top) thermal resistance	36.8	51.5	
$R_{\theta JB}$	Junction-to-board thermal resistance	36.1	86.5	°C/W
ΨЈТ	Junction-to-top characterization parameter	31.0	23.7	C/VV
ΨЈВ	Junction-to-board characterization parameter	36.0	80.2	
$R_{\theta JC(bot)}$	Junction-to-case (bottom) thermal resistance	4.2	11.6	

⁽²⁾ All voltage values, except differential I/O bus voltage, are with respect to network ground terminal.

6.4 Thermal Information: SN65LBC176, SN75LBC176

	THERMAL METRIC(1)	D	Р	UNIT	
	THERMAL METRIC		8 PINS		
$R_{\theta JA}$	Junction-to-ambient thermal resistance	116.7	65.6		
$R_{\theta JC(top)}$	Junction-to-case (top) thermal resistance	56.3	54.6		
R _{0JB}	Junction-to-board thermal resistance	63.4	42.1	°C/W	
ΨЈТ	Junction-to-top characterization parameter	8.8	22.9	C/VV	
ΨЈВ	Junction-to-board characterization parameter	62.6	41.6		
R _{0JC(bot)}	Junction-to-case (bottom) thermal resistance	n/a	n/a		

⁽¹⁾ For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.

6.5 Dissipation Ratings

PACKAGE	THERMAL MODEL	T _A < 25°C POWER RATING	DERATING FACTOR ABOVE T _A = 25°C	T _A = 70°C POWER RATING	T _A = 85°C POWER RATING	T _A = 110°C POWER RATING
D	Low K ⁽¹⁾	526 mW	5.0 mW/°C	301 mW	226 mW	_
	High K ⁽²⁾	882 mW	8.4 mW/°C	504 mW	378 mW	_
Р		840 mW	8.0 mW/°C	480 mW	360 mW	_
JG		1050 mW	8.4 mW/°C	672 mW	546 mW	210 mW
FK		1375 mW	11.0 mW/°C	880 mW	715 mW	440 mW

⁽¹⁾ In accordance with the low effective thermal conductivity metric definitions of EIA/JESD 51-3.

6.6 Driver Electrical Characteristics

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

PARAMETER		TEST CONDITIONS			MIN	MAX	UNIT
V _{IK}	Input clamp voltage	I _I = -18 mA			-1.5		V
Vo	Output voltage	I _O = 0			0	6	V
V _{OD1}	Differential output voltage	I _O = 0			1.5	6	V
V _{OD2}	Differential output voltage	R _L = 54 Ω,	See Figure 7-1,	55LBC176, 65LBC176, 65LBC176Q	1.1		V
		See ⁽²⁾		75LBC176	1.5	5	
V _{OD3}	Differential output voltage	$V_{\text{test}} = -7 \text{ V to } 12 \text{ V},$	See Figure 2,	55LBC176, 65LBC176, 65LBC176Q	1.1		V
		See ⁽²⁾		75LBC176	1.5	5	
Δ V _{OD}	Change in magnitude of differential output voltage ⁽¹⁾				-0.2	0.2	V
V _{oc}	Common-mode output voltage	R_L = 54 Ω or 100 Ω,	See Figure 7-1	-1	3	V	
Δ V _{OC}	Change in magnitude of common-mode output voltage ⁽¹⁾	11, 04 12 01 100 12,	occ riguio / T		-0.2	0.2	V
	Output aurrant	Output disabled,	sabled, $ V_O = 12 \text{ V} $ $ V_O = -7 \text{ V} $			1	mA
Io	Output current	See (3)			-0.8		ША
I _{IH}	High-level input current	V _I = 2.4 V			-100		μA
I _{IL}	Low-level input current	V _I = 0.4 V			-100		μA

⁽²⁾ In accordance with the high effective thermal conductivity metric definitions of EIA/JESD 51-7.

6.6 Driver Electrical Characteristics (continued)

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER		TEST CONDITIONS			MAX	UNIT
		V _O = -7 V	V _O = -7 V		-250		
	Short circuit output current	V _O = 0			-150		mA
los	Short circuit output current	V _O = V _{CC}				250	IIIA
		V _O = 12 V				250	
				55LBC176, 65LBC176Q		1.75	
	Supply current	$V_I = 0$ or V_{CC} ,	and driver enabled	65LBC176, 75LBC176		1.5	mA
Icc	Зирріу сипепі	No load	Receiver and driver	55LBC176, 65LBC176Q		0.25	IIIA
		disabled		65LBC176, 75LBC176		0.2	

⁽¹⁾ $\Delta |V_{OD}|$ and $\Delta |V_{OC}|$ are the changes in magnitude of V_{OD} and V_{OC} , respectively, that occur when the input changes from a high level to a low level.

⁽²⁾ This device meets the V_{OD} requirements of TIA/EIA-485-A above 0°C only.

⁽³⁾ This applies for both power on and off; refer to TIA/EIA-485-A for exact conditions.

6.7 Driver Switching Characteristics

over recommended ranges of supply voltage and operating free-air temperature

PARAMETER		TEST CONDITIONS		SN55LBC176 SN65LBC176Q		SN65LBC176 SN75LBC176			UNIT	
				MIN	TYP	MAX	MIN	TYP ⁽¹⁾	MAX	
t _{d(OD)}	Differential output delay time	$R_1 = 54 \Omega$		8		31	8		25	ns
t _{t(OD)}	Differential output transition time	See Figure	$C_L = 50 pF$,		12			12		ns
t _{sk(p)}	Pulse skew $(_{td(ODH)} - t_{d(ODL)})$	7-3				6		0	6	ns
t _{PZH}	Output enable time to high level	R _L = 110 Ω,	See Figure 7-4			65			35	ns
t _{PZL}	Output enable time to low level	R _L = 110 Ω,	See Figure 7-5			65			35	ns
t _{PHZ}	Output disable time from high level	R _L = 110 Ω,	See Figure 7-4			105			60	ns
t _{PLZ}	Output disable time from low level	R _L = 110 Ω,	See Figure 7-5			105			35	ns

(1) All typical values are at $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$.

Table 6-1. Driver Symbol Equivalents

DATA SHEET PARAMETER	RS-485
V _O	V _{oa} , V _{ob}
V _{OD1}	V _o
V _{OD2}	$V_t (R_L = 54 \Omega)$
V _{OD}	V _t (test termination measurement 2)
Δ V _{OD}	$ V_t - \overline{V}_t $
V _{OC}	V _{os}
Δ V _{OC}	V _{os} − ∇ _{os}
I _{OS}	None
I _O	l _{ia} , l _{ib}

6.8 Receiver Electrical Characteristics

over recommended ranges of common-mode input voltage, supply voltage, and operating free-air temperature (unless otherwise noted)

	PARAMETER		TEST CONDITION	IS	MIN	TYP ⁽¹⁾	MAX	UNIT
V _{IT+}	Positive-going input threshold voltage	V _O = 2.7 V,	I _O = -0.4 mA				0.2	V
V _{IT} _	Negative-going input threshold voltage	V _O = 0.5 V,	I _O = 8 mA		-0.2 ⁽²⁾			V
V _{hys}	Hysteresis voltage (V _{IT+} – V _{IT-}) (see Figure 7-4)					50		mV
V _{IK}	Enable-input clamp voltage	I _I = -18 mA			-1.5			V
V _{OH}	High level output voltage	V _{ID} = 200 mV, See Figure 7-6	$I_{OH} = -400 \mu A,$		2.7			V
V _{OL}	Low level output voltage	$V_{ID} = -200 \text{ mV},$ See Figure 7-6	I _{OL} = 8 mA,				0.45	V
I _{OZ}	High-impedance-state output current	V _O = 0.4 V to 2.4 V	-20		20	μΑ		
ı.	Line input current	Other input = 0 V,	V _I = 12 V			1	mA	
l _l	Line input current	See (3)	V _I = -7 V	-0.8			ША	
I _{IH}	High-level enable-input current	V _{IH} = 2.7 V			-100			μΑ
I _{IL}	Low-level enable-input current	V _{IL} = 0.4 V			-100			μA
rı	Input resistance				12			kΩ
			Receiver enabled and driver disable				3.9	mA
I _{CC}	Supply current	V _I = 0 or V _{CC} , No load	Receiver and driver disabled	SN55LBC176, SN65LBC176, SN65LBC176Q			0.25	mA
				SN75LBC176	0.2			

- (1) All typical values are at $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$.
- (2) The algebraic convention, in which the less-positive (more-negative) limit is designated minimum, is used in this data sheet.
- (3) This applies for both power on and power off. Refer to ANSI Standard RS-485 for exact conditions.

6.9 Receiver Switching Characteristics

over recommended ranges of supply voltage and operating free-air temperature, C_L = 15 pF

PARAMETER		TEST CONDITIONS	SN55LB SN65LBC	-	SN65LBC176 SN75LBC176			UNIT
			MIN	MAX	MIN	TYP ⁽¹⁾	MAX	
t _{PLH}	Propagation delay time, low- to high-level single-ended output		11	37	11		33	ns
t _{PHL}	Propagation delay time, high- to low-level single-ended output	V _{ID} = -1.5 V to 1.5 V, See Figure 7-7	11	37	11		33	ns
t _{sk(p)}	Pulse skew (t _{PLH} – t _{PHL})			10		3	6	ns
t _{PZH}	Output enable time to high level	Soo Figure 7.9		35			35	ns
t _{PZL}	Output enable time to low level	See Figure 7-8		35			30	ns
t _{PHZ}	Output disable time from high level	Can Figure 7.0		35			35	ns
t _{PLZ}	Output disable time from low level	See Figure 7-8		35			30	ns

(1) All typical values are at $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$.

7 Parameter Measurement Information



Figure 7-1. Driver V_{OD} and V_{OC}

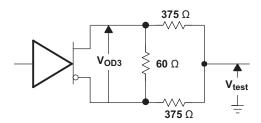


Figure 7-2. Driver V_{OD3}

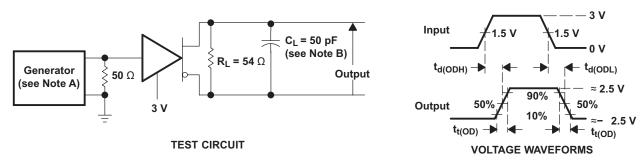


Figure 7-3. Driver Test Circuit and Voltage Waveforms

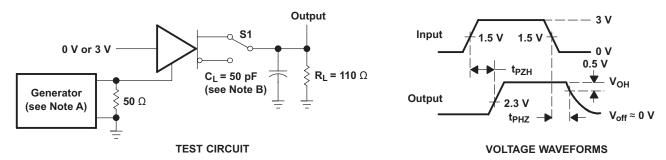


Figure 7-4. Driver Test Circuit and Voltage Waveforms

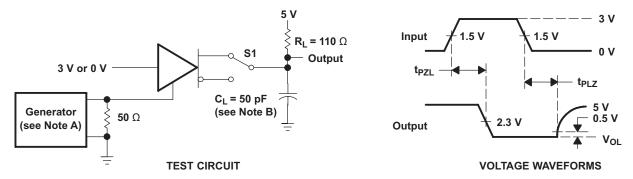


Figure 7-5. Driver Test Circuit and Voltage Waveforms

- A. The input pulse is supplied by a generator having the following characteristics: PRR \leq 1 MHz, 50% duty cycle, $t_r \leq$ 6 ns, $t_f \leq$ 6 ns, $Z_O =$ 50 Ω .
- B. C_L includes probe and jig capacitance.
- C. The input pulse is supplied by a generator having the following characteristics: PRR ≤ 1 MHz, 50% duty cycle, t_r ≤ 6 ns, t_f ≤ 6 ns, Z_O = 50 Ω.
- D. C_L includes probe and jig capacitance.

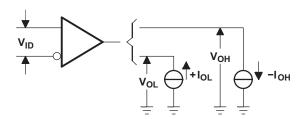


Figure 7-6. Receiver VOH and VOL

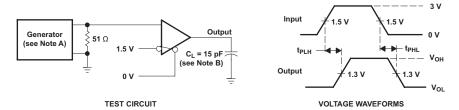
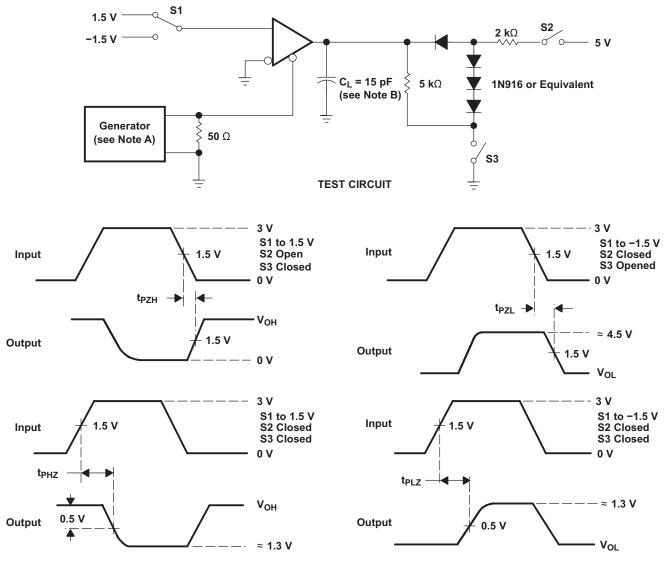
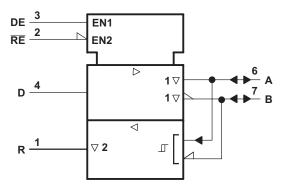



Figure 7-7. Receiver Test Circuit and Voltage Waveforms

VOLTAGE WAVEFORMS

- A. The input pulse is supplied by a generator having the following characteristics: PRR \leq 1 MHz, 50% duty cycle, $t_r \leq$ 6 ns, $t_f \leq$ 6 ns, $Z_O = 50 \Omega$.
- B. C_L includes probe and jig capacitance.

Figure 7-8. Receiver Test Circuit and Voltage Waveforms



8 Detailed Description

8.1 Functional Block Diagram

Figure 8-1. Logic Diagram (Positive Logic)

A. This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

Figure 8-2. Logic Symbol^(A)

8.2 Device Functional Modes

Table 8-1. Driver Function Tables⁽¹⁾

DRIVER									
INPUT	ENABLE	OUTPUTS							
D	DE	Α	В						
Н	Н	Н	L						
L	Н	L	Н						
X	L	Z	Z						

(1) H = high level, L = low level, ? = indeterminate, X = irrelevant, Z = high impedance (off)

Table 8-2. Receiver Function Tables⁽¹⁾

RECEIVER									
DIFFERENTIAL INPUTS $V_{ID} = V_{IA} - V_{IB}$	ENABLE RE	OUTPUTS R							
V _{ID} ≥ 0.2 V	L	Н							
-0.2 V < V _{ID} < 0.2 V	L	?							
V _{ID} ≤ -0.2 V	L	L							
X	Н	Z							
Open	L	Н							

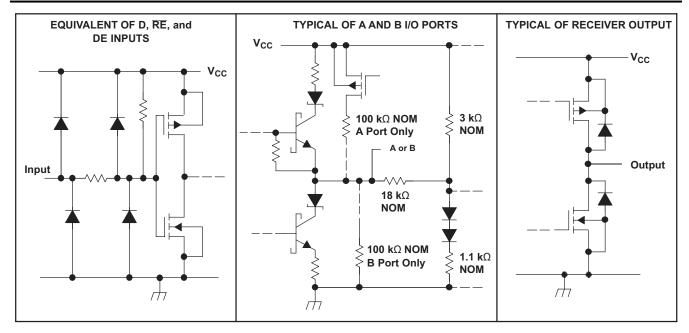


Figure 8-3. Schematics of Inputs and Outputs

9 Device and Documentation Support

9.1 Device Support

9.1.1 Thermal Characteristics of IC Packages

 θ_{JA} (Junction-to-Ambient Thermal Resistance) is defined as the difference in junction temperature to ambient temperature divided by the operating power.

 θ_{JA} is NOT a constant and is a strong function of

- the PCB design (50% variation)
- altitude (20% variation)
- device power (5% variation)

 θ_{JA} can be used to compare the thermal performance of packages if the specific test conditions are defined and used. Standardized testing includes specification of PCB construction, test chamber volume, sensor locations, and the thermal characteristics of holding fixtures. θ_{JA} is often misused when it is used to calculate junction temperatures for other installations.

TI uses two test PCBs as defined by JEDEC specifications. The low-k board gives average in-use condition thermal performance and consists of a single trace layer 25 mm long and 2-oz thick copper. The high-k board gives best case in-use condition and consists of two 1-oz buried power planes with a single trace layer 25 mm long with 2-oz thick copper. A 4% to 50% difference in θ_{JA} can be measured between these two test cards.

 θ_{JC} (Junction-to-Case Thermal Resistance) is defined as difference in junction temperature to case divided by the operating power. It is measured by putting the mounted package up against a copper block cold plate to force heat to flow from die, through the mold compound into the copper block.

 θ_{JC} is a useful thermal characteristic when a heatsink is applied to package. It is NOT a useful characteristic to predict junction temperature as it provides pessimistic numbers if the case temperature is measured in a non-standard system and junction temperatures are backed out. It can be used with θ_{JB} in 1-dimensional thermal simulation of a package system.

 θ_{JB} (Junction-to-Board Thermal Resistance) is defined to be the difference in the junction temperature and the PCB temperature at the center of the package (closest to the die) when the PCB is clamped in a cold-plate structure. θ_{JB} is only defined for the high-k test card.

 θ_{JB} provides an overall thermal resistance between the die and the PCB. It includes a bit of the PCB thermal resistance (especially for BGA's with thermal balls) and can be used for simple 1-dimensional network analysis of package system (see Figure 9-1).

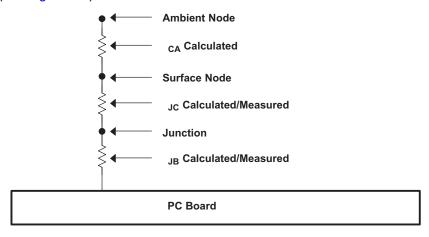


Figure 9-1. Thermal Resistance

9.2 Trademarks

LinBiCMOS[™] is a trademark of Texas Instruments Incorporated. All trademarks are the property of their respective owners.

9.3 Electrostatic Discharge Caution

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

9.4 Glossary

TI Glossary

This glossary lists and explains terms, acronyms, and definitions.

10 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

17-Jun-2023 www.ti.com

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead finish/ Ball material (6)	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
5962-9318301Q2A	ACTIVE	LCCC	FK	20	1	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	5962- 9318301Q2A SNJ55 LBC176FK	Samples
5962-9318301QPA	ACTIVE	CDIP	JG	8	1	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	9318301QPA SNJ55LBC176	Samples
SN65LBC176D	LIFEBUY	SOIC	D	8	75	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	6LB176	
SN65LBC176DR	ACTIVE	SOIC	D	8	2500	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	6LB176	Samples
SN65LBC176DRG4	ACTIVE	SOIC	D	8	2500	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	6LB176	Samples
SN65LBC176P	LIFEBUY	PDIP	Р	8	50	RoHS & Green	NIPDAU	N / A for Pkg Type	-40 to 85	65LBC176	
SN65LBC176QD	NRND	SOIC	D	8	75	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	LB176Q	
SN65LBC176QDG4	NRND	SOIC	D	8	75	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	LB176Q	
SN65LBC176QDR	ACTIVE	SOIC	D	8	2500	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	LB176Q	Samples
SN65LBC176QDRG4	ACTIVE	SOIC	D	8	2500	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	(J176Q1, LB176Q)	Samples
SN75LBC176D	LIFEBUY	SOIC	D	8	75	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	7LB176	
SN75LBC176DR	LIFEBUY	SOIC	D	8	2500	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	7LB176	
SN75LBC176DRG4	LIFEBUY	SOIC	D	8	2500	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	7LB176	
SN75LBC176P	LIFEBUY	PDIP	Р	8	50	RoHS & Green	NIPDAU	N / A for Pkg Type	0 to 70	75LBC176	
SNJ55LBC176FK	ACTIVE	LCCC	FK	20	1	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	5962- 9318301Q2A SNJ55 LBC176FK	Sample
SNJ55LBC176JG	ACTIVE	CDIP	JG	8	1	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	9318301QPA SNJ55LBC176	Sample

⁽¹⁾ The marketing status values are defined as follows: **ACTIVE:** Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

www.ti.com 17-Jun-2023

(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead finish/Ball material Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF SN55LBC176, SN65LBC176, SN75LBC176:

Catalog: SN75LBC176

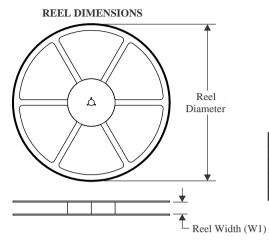
Automotive: SN65LBC176-Q1

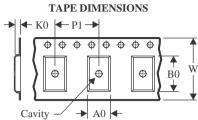
Military: SN55LBC176

NOTE: Qualified Version Definitions:

- Catalog TI's standard catalog product
- Automotive Q100 devices qualified for high-reliability automotive applications targeting zero defects

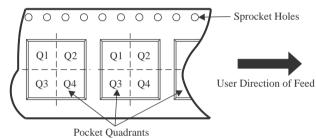
PACKAGE OPTION ADDENDUM


www.ti.com 17-Jun-2023


• Military - QML certified for Military and Defense Applications

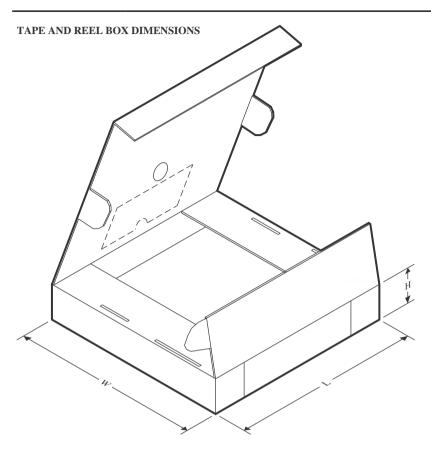
PACKAGE MATERIALS INFORMATION

www.ti.com 17-Jun-2023


TAPE AND REEL INFORMATION

A0	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

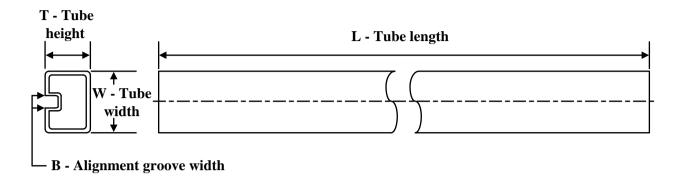
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE



*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
SN65LBC176DR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
SN65LBC176QDR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
SN65LBC176QDRG4	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
SN75LBC176DR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1

www.ti.com 17-Jun-2023

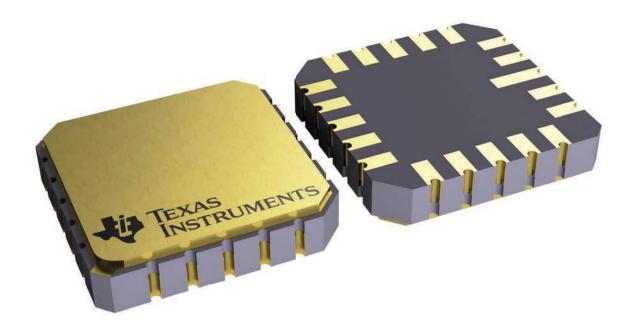

*All dimensions are nominal

7 till dillitorioriorio di o riorimilar							
Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
SN65LBC176DR	SOIC	D	8	2500	356.0	356.0	35.0
SN65LBC176QDR	SOIC	D	8	2500	350.0	350.0	43.0
SN65LBC176QDRG4	SOIC	D	8	2500	350.0	350.0	43.0
SN75LBC176DR	SOIC	D	8	2500	340.5	336.1	25.0

PACKAGE MATERIALS INFORMATION

www.ti.com 17-Jun-2023

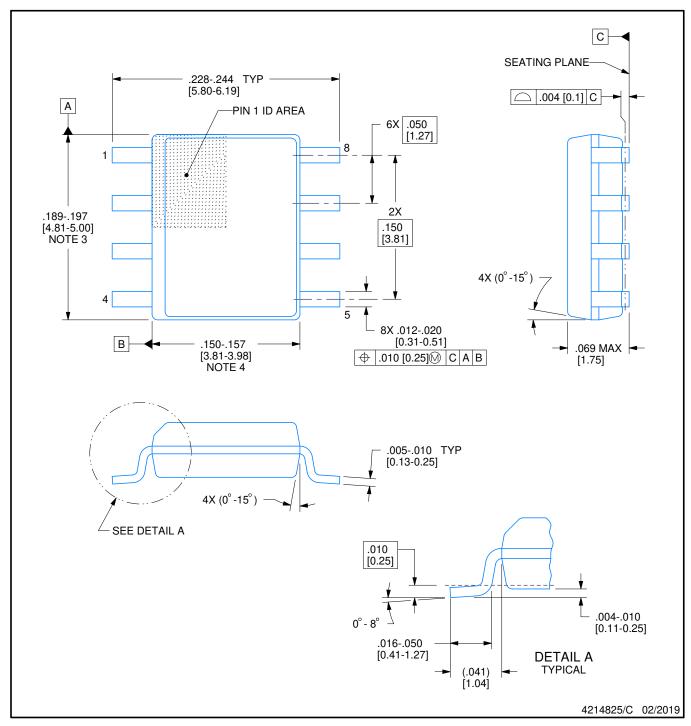
TUBE


*All dimensions are nominal

Device	Package Name	Package Type	Pins	SPQ	L (mm)	W (mm)	T (µm)	B (mm)
5962-9318301Q2A	FK	LCCC	20	1	506.98	12.06	2030	NA
SN65LBC176D	D	SOIC	8	75	507	8	3940	4.32
SN65LBC176P	Р	PDIP	8	50	506	13.97	11230	4.32
SN65LBC176QD	D	SOIC	8	75	505.46	6.76	3810	4
SN65LBC176QDG4	D	SOIC	8	75	505.46	6.76	3810	4
SN75LBC176D	D	SOIC	8	75	507	8	3940	4.32
SN75LBC176P	Р	PDIP	8	50	506	13.97	11230	4.32
SNJ55LBC176FK	FK	LCCC	20	1	506.98	12.06	2030	NA

8.89 x 8.89, 1.27 mm pitch

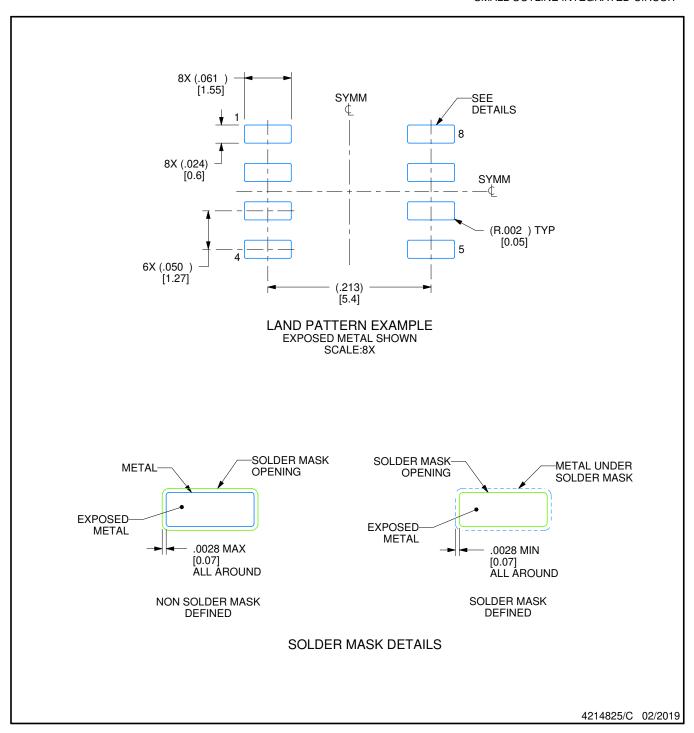
LEADLESS CERAMIC CHIP CARRIER


This image is a representation of the package family, actual package may vary. Refer to the product data sheet for package details.

PACKAGE OUTLINE

SOIC - 1.75 mm max height

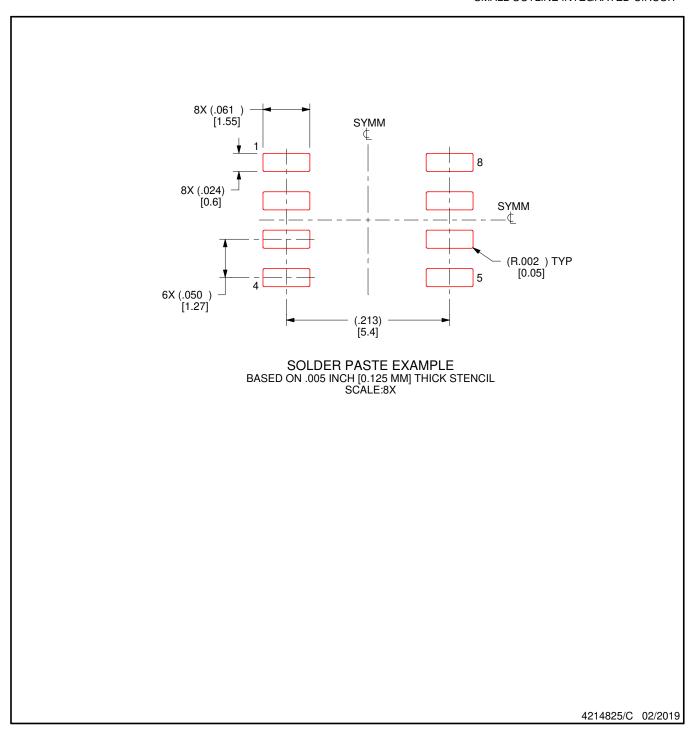
SMALL OUTLINE INTEGRATED CIRCUIT



NOTES:

- 1. Linear dimensions are in inches [millimeters]. Dimensions in parenthesis are for reference only. Controlling dimensions are in inches. Dimensioning and tolerancing per ASME Y14.5M.
- 2. This drawing is subject to change without notice.
- 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed .006 [0.15] per side.
- 4. This dimension does not include interlead flash.5. Reference JEDEC registration MS-012, variation AA.

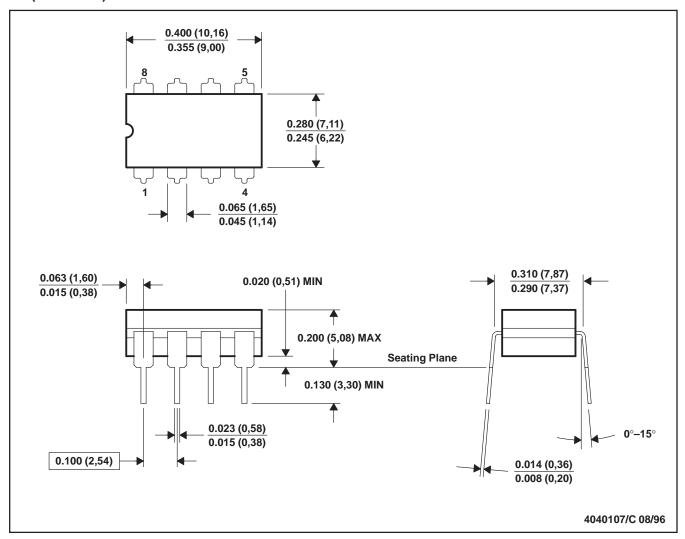
SMALL OUTLINE INTEGRATED CIRCUIT


NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

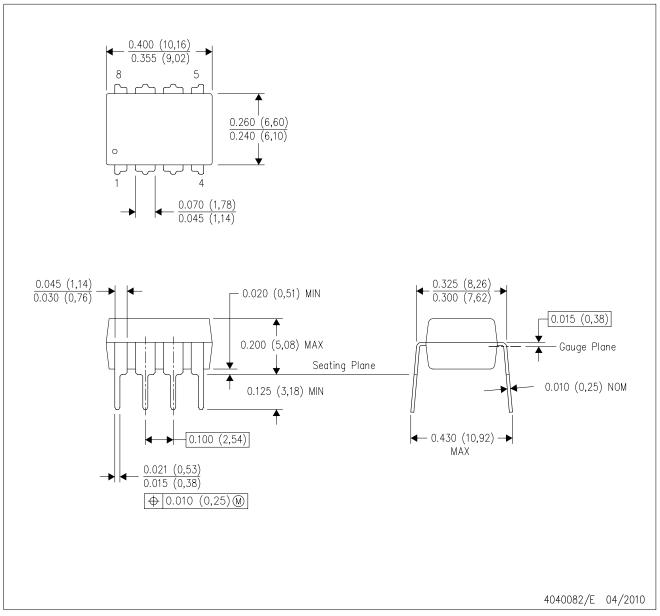
SMALL OUTLINE INTEGRATED CIRCUIT


NOTES: (continued)

- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.

JG (R-GDIP-T8)

CERAMIC DUAL-IN-LINE



NOTES: A. All linear dimensions are in inches (millimeters).

- B. This drawing is subject to change without notice.
- C. This package can be hermetically sealed with a ceramic lid using glass frit.
- D. Index point is provided on cap for terminal identification.
- E. Falls within MIL STD 1835 GDIP1-T8

P (R-PDIP-T8)

PLASTIC DUAL-IN-LINE PACKAGE

NOTES:

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. Falls within JEDEC MS-001 variation BA.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2023, Texas Instruments Incorporated