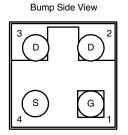


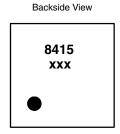
P-Channel 12 V (D-S) MOSFET

PRODUCT SUMMARY						
V _{DS} (V)	$R_{DS(on)}(\Omega)$	I _D (A)	Q _g (Typ.)			
	0.037 at $V_{GS} = -4.5 \text{ V}$	- 7.3				
- 12	0.046 at V _{GS} = - 2.5 V	- 6.6	19			
	0.060 at V _{GS} = - 1.8 V	- 5.8				

FEATURES

- TrenchFET® Power MOSFET
- MICRO FOOT® Chipscale Packaging Reduces Footprint Area Profile (0.62 mm) and On-Resistance Per Footprint Area



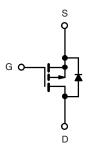

FREE

Ultra-Low On-Resistance

Material categorization: definitions compliance please see www.vishay.com/doc?99912

MICRO FOOT

ABSOLUTE MAXIMUM RATINGS (T_A = 25 °C, unless otherwise noted)


Device Marking: 8415

xxx = Date/Lot Traceability Code

Ordering Information: Si8415DB-T1-E1 (Lead (Pb)-free and Halogen-free)

APPLICATIONS

Load Switch, Charger Switch, and PA Switch for Portable Devices

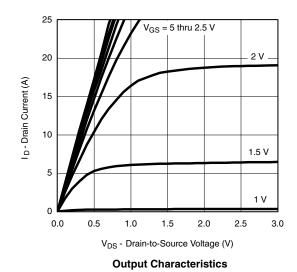
P-Channel MOSFET

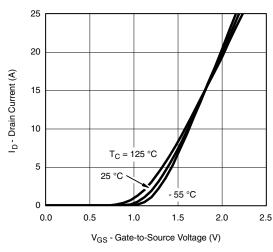
Parameter		Symbol	5 S	Steady State	Unit	
Drain-Source Voltage		V _{DS}	- 12		V	
Gate-Source Voltage		V _{GS}	± 8]	
Continuous Dusin Courset /T 150 °C\d	T _A = 25 °C	1-	- 7.3	- 5.3		
Continuous Drain Current (T _J = 150 °C) ^a	T _A = 70 °C	'D	- 5.9	- 4.3	^	
Pulsed Drain Current		I _{DM}	- 25		^	
Continuous Source Current (Diodo Conduction) ^a		lo	- 25	-13		

Pulsed Drain Current		I _{DM}	- 25		, ,
Continuous Source Current (Diode Conduction) ^a		I _S	- 2.5	- 1.3	
Mariana Darra Diania atiang	T _A = 25 °C	P _D	2.77	1.47	w
Maximum Power Dissipation ^a	T _A = 70 °C	טי	1.77	0.94	VV
Operating Junction and Storage Temperature Range		T _J , T _{stg}	- 55 t	o 150	°C
Package Reflow Conditions ^b	IR/Convection		20	60	

THERMAL RESISTANCE RATINGS						
Parameter		Symbol	Typical	Maximum	Unit	
Mariana baratian ta Ambianta	t ≤ 5 s	R _{thJA}	35	45		
Maximum Junction-to-Ambient ^a	Steady State	' 'thJA	72	85	°C/W	
Maximum Junction-to-Foot (Drain)	Steady State	R_{thJF}	16	20		

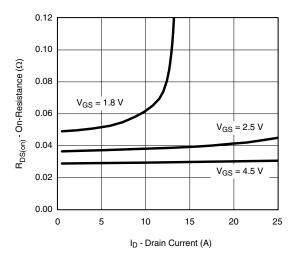
- a. Surface mounted on 1" x 1" FR4 board.
- b. Refer to IPC/JEDEC (J-STD-020), no manual or hand soldering.
- c. In this document, any reference to case represents the body of the MICRO FOOT device and foot is the bump.

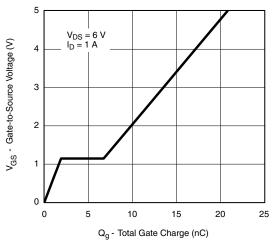

SPECIFICATIONS (T _J = 25 °C, unless otherwise noted)							
Parameter	Symbol	Test Conditions Mi		Тур.	Max.	Unit	
Static							
Gate Threshold Voltage	V _{GS(th)}	$V_{DS} = V_{GS}$, $I_D = -250 \mu A$	- 0.4		- 1	V	
Gate-Body Leakage	I _{GSS}	$V_{DS} = 0 V, V_{GS} = \pm 8 V$			± 100	nA	
Zara Cata Valtaga Drain Current		V _{DS} = - 12 V, V _{GS} = 0 V			- 1	μΑ	
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} = - 12 V, V _{GS} = 0 V, T _J = 70 °C			- 5		
On-State Drain Current ^a	I _{D(on)}	$V_{DS} \le -5 \text{ V}, V_{GS} = -4.5 \text{ V}$	- 5			Α	
		V _{GS} = - 4.5 V, I _D = - 1 A		0.031	0.037		
Drain-Source On-State Resistance ^a	R _{DS(on)}	V _{GS} = - 2.5 V, I _D = - 1 A		0.038	0.046	Ω	
		V _{GS} = - 1.8 V, I _D = - 1 A		0.050	0.060		
Forward Transconductance ^a	9 _{fs}	V _{DS} = - 10 V, I _D = - 1 A		11		S	
Diode Forward Voltage ^a	V_{SD}	I _S = - 1 A, V _{GS} = 0 V		- 0.8	- 1.1	V	
Dynamic ^b							
Total Gate Charge	Q_g			19	30		
Gate-Source Charge	Q_{gs}	$V_{DS} = -6 \text{ V}, V_{GS} = -4.5 \text{ V}, I_{D} = -1 \text{ A}$		1.9		nC	
Gate-Drain Charge	Q_{gd}			4.8			
Gate Resistance	R_{g}	f = 1 MHz		19		Ω	
Turn-On Delay Time	t _{d(on)}			15	25		
Rise Time	t _r	V_{DD} = - 6 V, R_L = 6 Ω		32	50	1	
Turn-Off Delay Time	t _{d(off)}	$\text{I}_\text{D}\cong$ - 1 A, V_GEN = - 4.5 V, R_g = 6 Ω		180	270	ns	
Fall Time	t _f			115	175		
Source-Drain Reverse Recovery Time	t _{rr}	I _F = - 1 A, dI/dt = 100 A/μs		80	120		

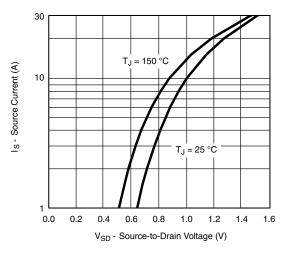

Notes:

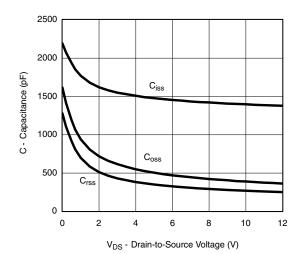
- a. Pulse test; pulse width \leq 300 μ s, duty cycle \leq 2 %.
- b. Guaranteed by design, not subject to production testing.

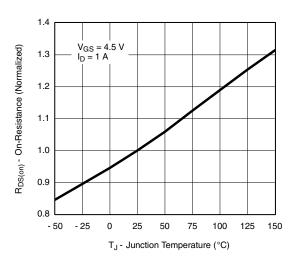
Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

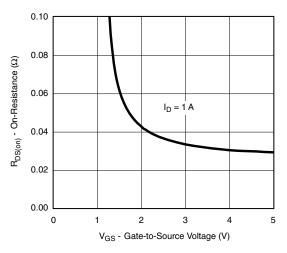

TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)



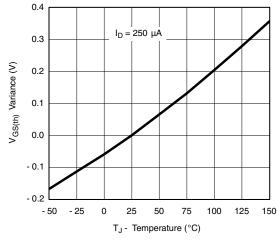

TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)

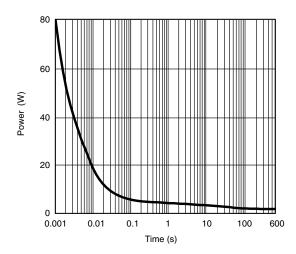

On-Resistance vs. Drain Current


Gate Charge

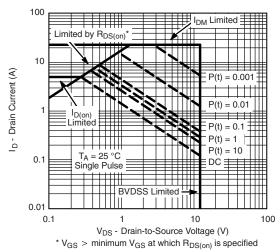

Source-Drain Diode Forward Voltage

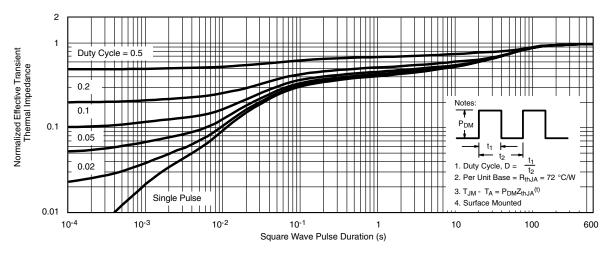
Capacitance




On-Resistance vs. Junction Temperature

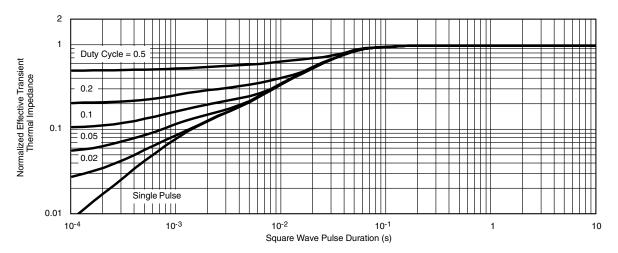
On-Resistance vs. Gate-to-Source Voltage


TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)



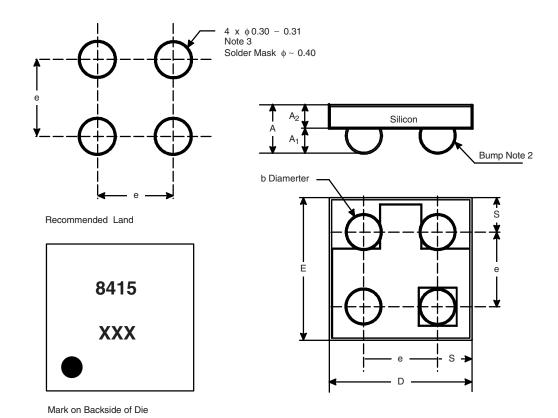
Threshold Voltage

Single Pulse Power, Junction-to-Ambient



Normalized Thermal Transient Impedance, Junction-to-Ambient

TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)



Normalized Thermal Transient Impedance, Junction-to-Foot

PACKAGE OUTLINE

MICRO FOOT: 4-BUMP (0.8 mm PITCH)

Notes (unless otherwise specified):

- 1. Laser mark on the silicon die back, coated with a thin metal.
- 2. Bumps are 95.5/3.8/0.7 Sn/Ag/Cu.
- 3. Non-solder mask defined copper landing pad.
- 4. The flat side of wafers is oriented at the bottom.

Dim.	Millim	neters ^a	Inches		
	Min.	Max.	Min.	Max.	
Α	0.600	0.650	0.0236	0.0256	
A ₁	0.260	0.290	0.0102	0.0114	
A ₂	0.340	0.360	0.0134	0.0142	
b	0.370	0.410	0.0146	0.0161	
D	1.520	1.600	0.0598	0.0630	
E	1.520	1.600	0.0598	0.0630	
е	0.800		0.0315		
S	0.360	0.400	0.0142	0.0157	

Notes:

a. Use millimeters as the primary measurement.

Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see www.vishay.com/ppg?73210.

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Hyperlinks included in this datasheet may direct users to third-party websites. These links are provided as a convenience and for informational purposes only. Inclusion of these hyperlinks does not constitute an endorsement or an approval by Vishay of any of the products, services or opinions of the corporation, organization or individual associated with the third-party website. Vishay disclaims any and all liability and bears no responsibility for the accuracy, legality or content of the third-party website or for that of subsequent links.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.