

Automotive-grade N-channel 80 V, 3.15 mΩ typ., 120 A STripFET™ F7 Power MOSFET in a PowerFLAT™ 5x6 package

Datasheet - production data

Figure 1: Internal schematic diagram

Features

Order code	V _{DS}	R _{DS(on)} max.	ID	Ртот
STL135N8F7AG	80 V	3.6 mΩ	120 A	135 W

- Designed for automotive applications and AEC-Q101 qualified
- Among the lowest R_{DS(on)} on the market
- Excellent FoM (figure of merit)
- Low C_{rss}/C_{iss} ratio for EMI immunity
- High avalanche ruggedness
- Wettable flank package

Applications

• Switching applications

Description

This N-channel Power MOSFET utilizes STripFET™ F7 technology with an enhanced trench gate structure that results in very low on-state resistance, while also reducing internal capacitance and gate charge for faster and more efficient switching.

Table 1: Device summary

Order code	Marking	Package	Packing
STL135N8F7AG	135N8F7	PowerFLAT™ 5x6	Tape and reel

DocID028274 Rev 4

This is information on a product in full production.

Contents

Contents

1	Electric	al ratings	3
2	Electric	al characteristics	4
	2.1	Electrical characteristics (curves)	6
3	Test cir	cuits	8
4	Packag	e information	9
	4.1	PowerFLAT™ 5x6 WF type C package information	9
	4.2	PowerFLAT™ 5x6 WF packing information	12
5	Revisio	n history	14

1 Electrical ratings

Table 2: Absolute maximum ratings

Symbol	Parameter	Value	Unit
Vds	Drain-source voltage	80	V
V _{GS}	Gate-source voltage	±20	V
ID ⁽¹⁾	Drain current (continuous) at T _{case} = 25 °C	120	^
ID.,,	Drain current (continuous) at T _{case} = 100 °C	98	A
IDM ⁽¹⁾⁽²⁾	Drain current (pulsed)	480	А
ID ⁽³⁾	Drain current (continuous) at T _{pcb} = 25 °C	26	Α
ID(°)	Drain current (continuous) at T _{pcb} = 100 °C	19	A
I _{DM} ⁽²⁾⁽³⁾	Drain current (pulsed)	104	Α
Ртот ⁽¹⁾	Total dissipation at T _{case} = 25 °C	135	W
Ртот ⁽³⁾	Total dissipation at $T_{pcb} = 25 \text{ °C}$	4.8	W
Eas ⁽⁴⁾	Single pulse avalanche energy	1.2	J
T _{stg}	Storage temperature range	-55 to 175	
Tj	T _j Operating junction temperature range		°C

Notes:

- $^{(1)}$ This value is rated according to $R_{thj\text{-}c}$
- $^{(2)}\ensuremath{\mathsf{Pulse}}\xspace$ width is limited by safe operating area
- $^{(3)}$ This value is rated according to $R_{thj\mbox{-pcb}}$
- $^{(4)}$ Starting T_j = 25 °C, I_D = 13 A, V_{DD} = 50 V

Table 3: Thermal data

Symbol	Parameter	Value	Unit
Rthj-pcb ⁽¹⁾	Thermal resistance junction-pcb	31.3	0C AN
R _{thj-case}	R _{thj-case} Thermal resistance junction-case		°C/W

Notes:

 $^{(1)}$ When mounted on a 1-inch² FR-4 board, 2oz Cu, t < 10 s

2 Electrical characteristics

(T_{case} = 25 °C unless otherwise specified)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source breakdown voltage	V_{GS} = 0 V, I _D = 250 μ A	80			V
	Zara gata valtaga drain	$V_{GS} = 0 V, V_{DS} = 80 V$			1	
Idss	IDSS Zero gate voltage drain current				10	μA
I _{GSS}	Gate-body leakage current	$V_{\text{DS}}=0~V,~V_{\text{GS}}=20~V$			100	nA
V _{GS(th)}	Gate threshold voltage	$V_{DS} = V_{GS}, I_D = 250 \ \mu A$	2.5		4.5	V
R _{DS(on)}	Static drain-source on-resistance	$V_{GS}=10~V,~I_{D}=13~A$		3.15	3.6	mΩ

Notes:

⁽¹⁾Defined by design, not subject to production test

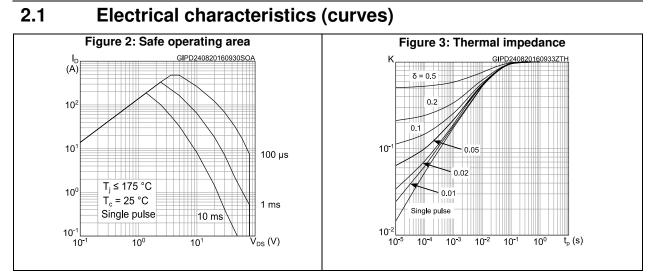
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Ciss	Input capacitance		-	6800	-	
Coss	Output capacitance	$V_{DS} = 40 V, f = 1 MHz,$	-	1350	-	pF
Crss	Reverse transfer capacitance	$V_{GS} = 0 V$	-	95	-	P. 1
Qg	Total gate charge	$V_{DD} = 40 V, I_D = 26 A,$	-	103	-	
Qgs	Gate-source charge	V _{GS} = 10 V (see Figure 14: "Test circuit for gate charge	-	35	-	nC
Q _{gd}	Gate-drain charge	behavior")	-	28	-	

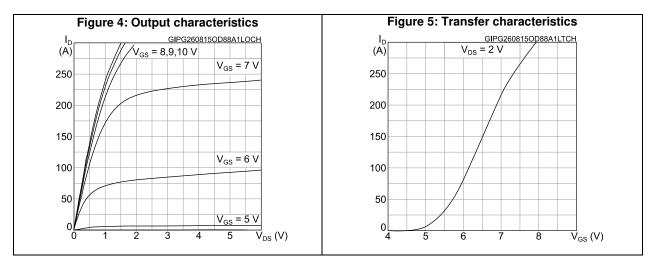
Table 5: Dynamic

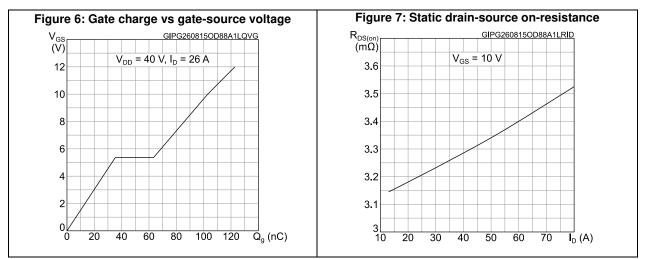
Table 6: Switching times

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{d(on)}	Turn-on delay time	$V_{DD} = 40 \text{ V}, \text{ I}_{D} = 13 \text{ A}$	-	30	-	
tr	Rise time	$R_G = 4.7 \Omega$, $V_{GS} = 10 V$ (see Figure 13: "Test circuit for	-	28	-	
td(off)	Turn-off delay time	resistive load switching times"	-	73	-	ns
tŕ	Fall time	and Figure 18: "Switching time waveform")	-	30	-	

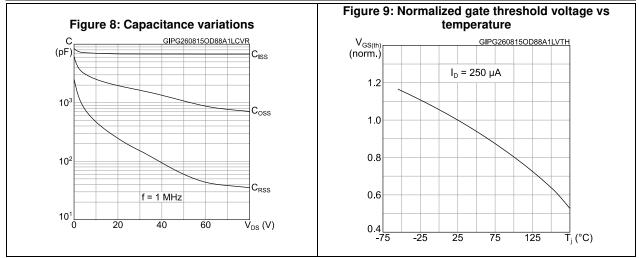
Electrical characteristics

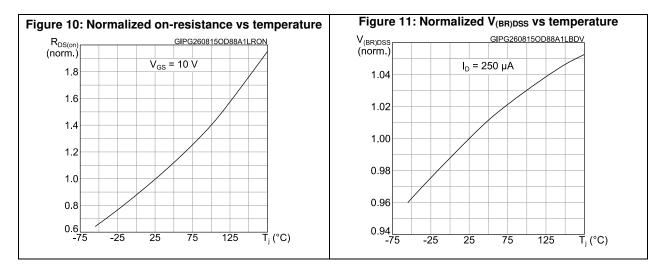

	Table 7: Source-drain diode					
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Isd	Source-drain current		-		26	Α
I _{SDM} ⁽¹⁾	Source-drain current (pulsed)		-		104	А
V _{SD} ⁽²⁾	Forward on voltage	$V_{GS} = 0 V, I_{SD} = 26 A$	-		1.2	V
trr	Reverse recovery time		-	47		ns
Qrr	Reverse recovery charge	$I_{SD} = 26 \text{ A}, \text{ di/dt} = 100 \text{ A/}\mu\text{s},$ $V_{DD} = 64 \text{ V}$ (see <i>Figure 15: "Test</i> <i>circuit for inductive load switching</i>	-	66		nC
IRRM	Reverse recovery current	and diode recovery times")	-	2.8		A

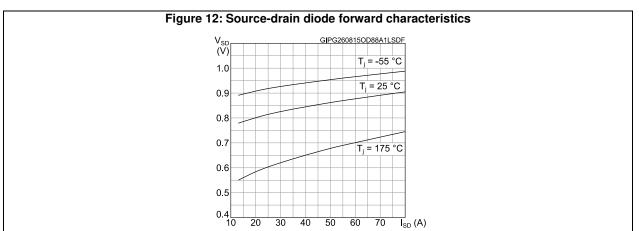

Notes:


 $^{\left(1\right) }$ Pulse width is limited by safe operating area

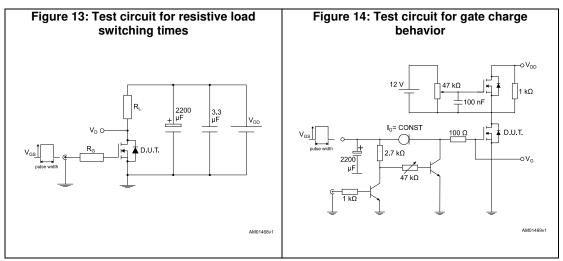
 $^{(2)}$ Pulse test: pulse duration = 300 $\mu s,$ duty cycle 1.5%

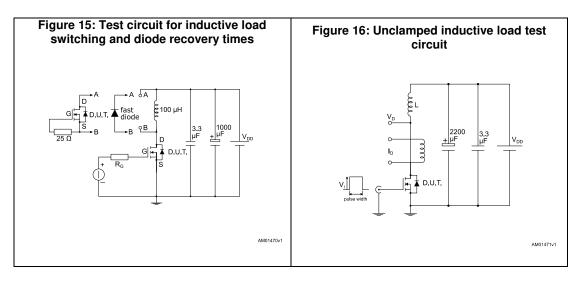


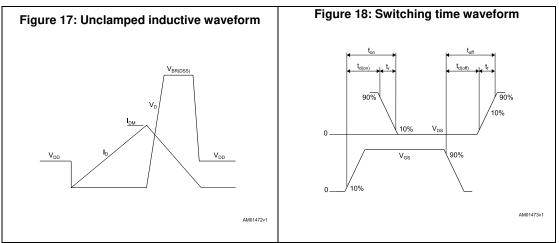



DocID028274 Rev 4

Electrical characteristics







3 Test circuits

DocID028274 Rev 4

4 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: *www.st.com*. ECOPACK[®] is an ST trademark.

4.1 PowerFLAT[™] 5x6 WF type C package information

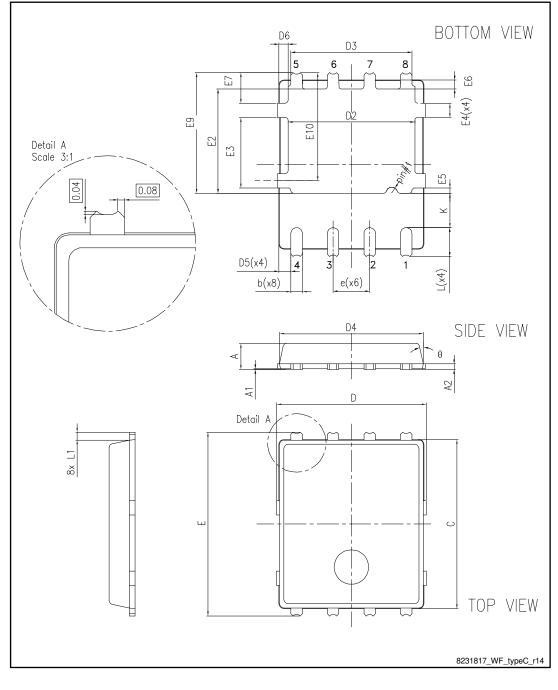
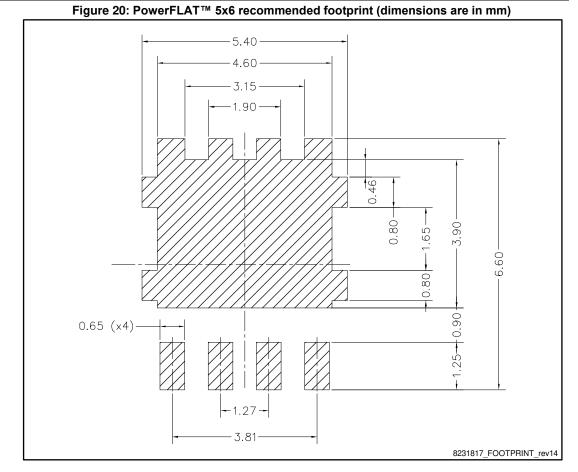


Figure 19: PowerFLAT™ 5x6 WF type C package outline


Package information

STL135N8F7AG

Table 8: PowerFLAT™ 5x6 WF type C mechanical data				
Dim		mm		
Dim.	Min.	Тур.	Max.	
A	0.80		1.00	
A1	0.02		0.05	
A2		0.25		
b	0.30		0.50	
С	5.80	6.00	6.10	
D	5.00	5.20	5.40	
D2	4.15		4.45	
D3	4.05	4.20	4.35	
D4	4.80	5.00	5.10	
D5	0.25	0.40	0.55	
D6	0.15	0.30	0.45	
е		1.27		
E	6.20	6.40	6.60	
E2	3.50		3.70	
E3	2.35		2.55	
E4	0.40		0.60	
E5	0.08		0.28	
E6	0.20	0.325	0.45	
E7	0.85	1.00	1.15	
E9	4.00	4.20	4.40	
E10	3.55	3.70	3.85	
К	1.05		1.35	
L	0.90	1.00	1.10	
L1	0.175	0.275	0.375	
θ	0°		12°	

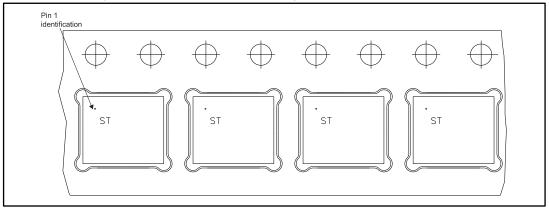

Package information

Figure 21: PowerFLAT™ 5x6 WF tape (dimensions are in mm) P2 2.0±0.05(l) Po 4.0±0.1(**II**) Do E1 1.75±0.1 Т Ø1.50 0.0 0.30±0.05 Y_ \oslash \oplus \bigcirc \bigcirc \oplus \oplus \bigcirc \bigcirc F(5.50±0.0.05)(III) D1 Ø1.50MIN W(12.00±0.1) Bo (5.35±0.05) R0.30 MAX P1(8.00±0.1) Ao(6.70±0.1) Ko (1.20±0.1) SECTION Y-Y (I) Measured from centreline of sprocket hole to centreline of pocket. (II) Cumulative tolerance of 10 sprocket Base and bulk quatity 3000 pcs holes is ± 0.20. Measured from centreline of sprocket (III) hole to centreline of pocket. 8234350<u>T</u>apeWF<u>r</u>ev_C

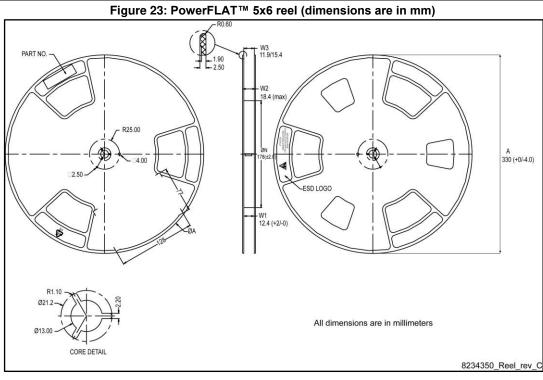

4.2 PowerFLAT[™] 5x6 WF packing information

Figure 22: PowerFLAT™ 5x6 package orientation in carrier tape

Package information

5 Revision history

Table 9: Document revision history

Date	Revision	Changes
07-Sep-2015	1	First release.
15-Sep-2015	2	Minor text edits. On cover page: - updated Title and Features.
26-Jan-2016	3	Updated Table 2: "Absolute maximum ratings" and Section 4.1: "PowerFLAT™ 5x6 WF type C package information".
16-Sep-2016	4	Updated the silhouette, the title and the features in cover page. Updated <i>Table 2: "Absolute maximum ratings"</i> , <i>Figure 2: "Safe operating area"</i> and <i>Figure 3: "Thermal impedance"</i> . Minor text changes.

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2016 STMicroelectronics - All rights reserved

