

Support & training

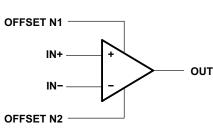
TL071, TL071A, TL071B, TL071H TL072, TL072A, TL072B, TL072H, TL072M TL074, TL074A, TL074B, TL074H, TL074M SLOS080V – SEPTEMBER 1978 – REVISED APRIL 2023

TL07xx Low-Noise FET-Input Operational Amplifiers

1 Features

Texas

INSTRUMENTS

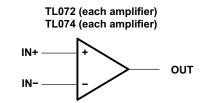

- High slew rate: 20 V/µs (TL07xH, typ)
- Low offset voltage: 1 mV (TL07xH, typ)
- Low offset voltage drift: 2 μV/°C
- Low power consumption: 940 µA/ch (TL07xH, typ)
- Wide common-mode and differential voltage ranges
 - Common-mode input voltage range includes V_{CC+}
- Low input bias and offset currents
- · Low noise:
- $V_n = 18 \text{ nV}/\sqrt{\text{Hz}}$ (typ) at f = 1 kHz
- Output short-circuit protection
- Low total harmonic distortion: 0.003% (typ)
- Wide supply voltage: ±2.25 V to ±20 V, 4.5 V to 40 V

2 Applications

- Solar energy: string and central inverter
- Motor drives: AC and servo drive control and power stage modules
- Single phase online UPS
- Three phase UPS
- Pro audio mixers
- Battery test equipment

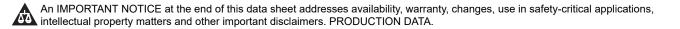
3 Description

The TL07xH (TL071H, TL072H, and TL074H) family of devices are the next-generation versions of the industry-standard TL07x (TL071, TL072, and TL074) devices. These devices provide outstanding value for cost-sensitive applications, with features including low offset (1 mV, typical), high slew rate (20 V/ μ s), and common-mode input to the positive supply. High ESD



TL071

(1.5 kV, HBM), integrated EMI and RF filters, and operation across the full -40° C to 125° C enable the TL07xH devices to be used in the most rugged and demanding applications.


PART NUMBER ⁽¹⁾	PACKAGE	BODY SIZE (NOM)	
	P (PDIP, 8)	9.59 mm × 6.35 mm	
	DCK (SC70, 5)	2.00 mm × 1.25 mm	
TL071x	PS (SO, 8)	6.20 mm × 5.30 mm	
	D (SOIC, 8)	4.90 mm × 3.90 mm	
	DBV (SOT-23, 5)	1.60 mm × 1.20 mm	
	P (PDIP, 8)	9.59 mm × 6.35 mm	
	PS (SO, 8)	6.20 mm × 5.30 mm	
TL072x	D (SOIC, 8)	4.90 mm × 3.90 mm	
	P (SOT-23, 8)	2.90 mm × 1.60 mm	
	PW (TSSOP, 8)	4.40 mm × 3.00 mm	
	JG (CDIP , 8)	9.59 mm × 6.67 mm	
TL072M	W (CFP, 10)	6.12 mm × 3.56 mm	
	FK (LCCC, 20)	8.89 mm × 8.89 mm	
	N (PDIP, 14)	19.30 mm × 6.35 mm	
	NS (SO, 14)	10.30 mm × 5.30 mm	
TL074x	D (SOIC, 14)	8.65 mm × 3.91 mm	
TLU74X	DYY (SOT-23, 14)	4.20 mm × 2.00 mm	
	DB (SSOP, 14)	6.20 mm × 5.30 mm	
	PW (TSSOP, 14)	5.00 mm × 4.40 mm	
	J (CDIP, 14)	19.56 mm × 6.92 mm	
L074M	W (CFP, 14)	9.21 mm × 6.29 mm	
	FK (LCCC, 20)	8.89 mm × 8.89 mm	

(1) For all available packages, see the orderable addendum at the end of the data sheet.

Copyright © 2017, Texas Instruments Incorporated

Logic Symbols

Table of Contents

1 Features1	8 Detailed Description
2 Applications1	8.1 Overview
3 Description1	8.2 Functional Block Diagram32
4 Revision History2	8.3 Feature Description
5 Pin Configuration and Functions	8.4 Device Functional Modes
6 Specifications	9 Application and Implementation
6.1 Absolute Maximum Ratings12	9.1 Application Information
6.2 ESD Ratings 12	9.2 Typical Application
6.3 Recommended Operating Conditions12	9.3 Unity Gain Buffer
6.4 Thermal Information for Single Channel	9.4 System Examples
6.5 Thermal Information for Dual Channel	9.5 Power Supply Recommendations
6.6 Thermal Information for Quad Channel 14	9.6 Layout
6.7 Electrical Characteristics: TL07xH15	10 Device and Documentation Support
6.8 Electrical Characteristics (DC): TL07xC,	10.1 Receiving Notification of Documentation Updates38
TL07xAC, TL07xBC, TL07xI, TL07xM	10.2 Support Resources
6.9 Electrical Characteristics (AC): TL07xC,	10.3 Trademarks
TL07xAC, TL07xBC, TL07xI, TL07xM	10.4 Electrostatic Discharge Caution
6.10 Typical Characteristics: TL07xH	10.5 Glossary
6.11 Typical Characteristics: All Devices Except	11 Mechanical, Packaging, and Orderable
TL07xH27	Information
7 Parameter Measurement Information	

4 Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

С	hanges from Revision U (December 2022) to Revision V (April 2023)	Page
•	Updated Overview, Functional Block Diagram, and Feature Description sections	32
С	hanges from Revision T (December 2021) to Revision U (December 2022)	Page
•	Changed Absolute Maximum Ratings, ESD Ratings, Recommended Operating Conditions, and Therma Information sections by merging TL07xH and TL07xx specifications Changed Electrical Characteristics tables by merging TL07xC, TL07xAC, TL07xBC, TL07xI, and TL07xM specifications Changed gain bandwidth value of all non-NS/non-PS packages and non-TL07xM devices from 3 MHz to MHz.	12 17 o 5.25
•	Changed TL07xC, TL07xAC, TL07xBC, TL07xI, and TL07xM <i>Switching Characteristics</i> tables by renam to <i>Electrical Characteristics (AC)</i> Changed input voltage noise density at 1 kHz for all non-PS/non-NS packages and all non-TL07xM dev to 37 nV/√Hz	ning 19 ices
•	Changed THD+N for all non-PS/non-NS packages and all non-TL07xM devices to 0.00012%	
С	hanges from Revision S (July 2021) to Revision T (December 2021)	Page
•	Corrected DCK pinout diagram and table in <i>Pin Configurations and Functions</i> section	5

Changes from Revision R (June 2021) to Revision S (July 2021)

• Deleted preview note from TL071H SOIC (8), SOT-23 (5) and SC70 (5) packages throughout the data sheet 1

Changes from Revision Q (June 2021) to Revision R (June 2021)

Page

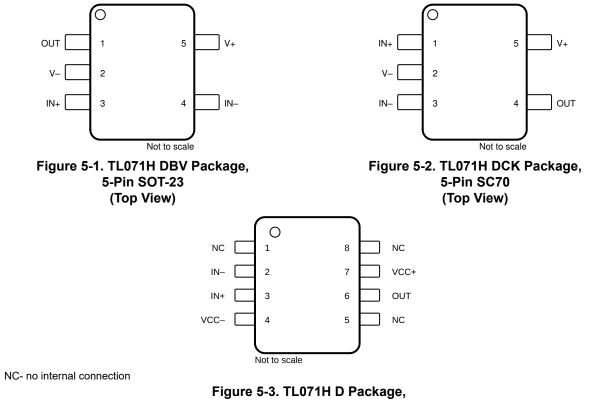
Page

•	Added ESD information for TL072H	. 12	2
•	Added I _Q spec for TL072H	.1	5

С	hanges from Revision P (November 2020) to Revision Q (June 2021)	Page
•	Deleted VSSOP (8) package from the Device Information section	1
•	Added DBV, DCK, and D Package,s to TL071H in Pin Configuration and Functions section	<mark>5</mark>
•	Deleted DGK Package, from TL072x in Pin Configuration and Functions section	5
	Deleted tables with duplicate information from the Specifications section	
•	Added D, DCK, and DBV package thermal information in Thermal Information for Single Channel: TL07	'1H
	section	13
•	Added D, DDF, and PW package thermal information in Thermal Information for Dual Channel: TL072H	
	section	13
•	Added I _B and I _{OS} specification for single channel DCK and DBV package	15
	Added I _Q spec for TL071H	
	Deleted Related Links section from the Device and Documentation Support section	

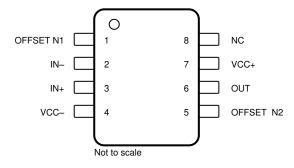
С	hanges from Revision O (October 2020) to Revision P (November 2020)	Page
•	Added SOIC and TSSOP package thermal information in Thermal Information for Quad Channel: TL07	'4H
	section	14
•	Added Typical Characteristics:TL07xH section in Specifications section	20

С	hanges from Revision N (July 2017) to Revision O (October 2020)	Page
•	Updated the numbering format for tables, figures, and cross-references throughout the document	1
•	Features of TL07xH added to the Features section	1
•	Added link to applications in the Applications section	1
•	Added TL07xH in the Description section	1
•	Added TL07xH device in the Device Information section	1
•	Added SOT-23 (14), VSSOP (8), SOT-23 (8), SC70 (5), and SOT-23 (5) packages to the <i>Device Inform</i> section	
•	Added TSSOP, VSSOP and DDF Package,s to TL072x in Pin Configuration and Functions section	5
•	Added DYY Package, to TL074x in Pin Configuration and Functions section	5
•	Removed Table of Graphs from the Typical Characteistics section	27
•	Deleted reference to obsolete documentation in Layout Guidelines section	<mark>36</mark>
	Removed Related Documentation section	


С	hanges from Revision M (February 2014) to Revision N (July 2017)	Page
•	Updated data sheet text to latest documentation and translation standards	1
•	Added TL072M and TL074M devices to data sheet	1
•	Rewrote text in <i>Description</i> section	1
	Changed TL07x 8-pin PDIP package to 8-pin CDIP package in Device Information table	
	Deleted 20-pin LCCC package from Device Information table	
	Added 2017 copyright statement to front page schematic	
	Deleted TL071x FK (LCCC) pinout drawing and pinout table in Pin Configurations and Functions sectio	
	Updated pinout diagrams and pinout tables in Pin Configurations and Functions section	
	Added Figure 6-59 to Typical Characteristics section	
	Added second Typical Application section application curves	
	Changed document references in <i>Layout Guidelines</i> section	

(Changes from Revision L (February 2014) to Revision M (February 2014)	Page
	Added Device Information table, Pin Configuration and Functions section, ESD Ratings table, Feature Description section, Device Functional Modes, Application and Implementation section, Power Supply Recommendations section, Layout section	1

5 Pin Configuration and Functions



8-Pin SOIC (Top View)

Table	5-1. P	in Functio	ons: TL071H
-------	--------	------------	-------------

	PIN		- I/O	DESCRIPTION	
NAME	DBV	DCK	D		DESCRIPTION
IN–	4	3	2	I	Inverting input
IN+	3	1	3	I	Noninverting input
NC	—	_	8	_	Do not connect
NC	—	_	1	_	Do not connect
NC	—	_	5	_	Do not connect
OUT	1	4	6	0	Output
VCC-	2	2	4	_	Power supply
VCC+	5	5	7	_	Power supply

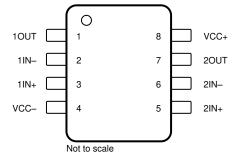

NC- no internal connection

Figure 5-4. TL071x D, P, and PS Package, 8-Pin SOIC, PDIP, and SO (Top View)

Table 5-2. Pin Functions: TL071x

PIN		I/O	DESCRIPTION	
NAME	NO.	1/0	DESCRIPTION	
IN–	2	I	Inverting input	
IN+	3	I	Noninverting input	
NC	8	_	Do not connect	
OFFSET N1	1	_	Input offset adjustment	
OFFSET N2	5	_	Input offset adjustment	
OUT	6	0	Output	
VCC-	4	_	Power supply	
VCC+	7		Power supply	

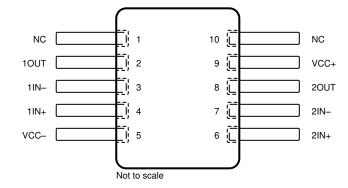

Figure 5-5. TL072x D, DDF, JG, P, PS, and PW Package, 8-Pin SOIC, SOT-23, CDIP, PDIP, SO, and TSSOP (Top View)

Table 5-3. Pin Functions: TL072x

PIN		I/O	DESCRIPTION					
NAME	NO.	1/0	BLOOKFIION					
1IN-	2	I	Inverting input					
1IN+	3	I	Noninverting input					
10UT	1	0	Output					
2IN-	6	I	Inverting input					
2IN+	5	I	Noninverting input					
20UT	7	0	Output					
VCC-	4	_	Power supply					
VCC+	8	—	Power supply					

Copyright © 2023 Texas Instruments Incorporated

NC- no internal connection

Figure 5-6. TL072x U Package, 10-Pin CFP (Top View)

Table 5-4. Pin Functions: TL072x

PIN		I/O	DESCRIPTION					
NAME	NO.		DESCRIPTION					
1IN-	3	I	Inverting input					
1IN+	4	I	Noninverting input					
10UT	2	0	Output					
2IN-	7	I	Inverting input					
2IN+	6	I	Noninverting input					
20UT	8	0	Output					
NC	1, 10	_	Do not connect					
VCC-	5	_	Power supply					
VCC+	9		Power supply					

NC- no internal connection

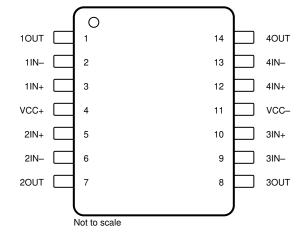

Figure 5-7. TL072 FK Package, 20-Pin LCCC (Top View)

Table 5-5. Pin Functions: TL072x

PIN		I/O	DESCRIPTION					
NAME	NO.	1/0	DESCRIPTION					
1IN-	5	Ι	Inverting input					
1IN+	7	Ι	Noninverting input					
10UT	2	0	Output					
2IN-	15	Ι	Inverting input					
2IN+	12	Ι	Noninverting input					
20UT	17	0	Output					
NC	1, 3, 4, 6, 8, 9, 11, 13, 14, 16, 18, 19	_	Do not connect					
VCC-	10		Power supply					
VCC+	20	_	Power supply					

Copyright © 2023 Texas Instruments Incorporated

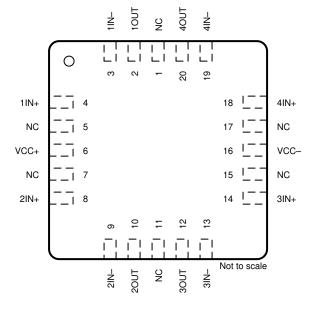


Figure 5-8. TL074x D, N, NS, PW, J, DYY, and W Package, 14-Pin SOIC, PDIP, SO, TSSOP, CDIP, SOT-23, and CFP (Top View)

PIN		I/O	DESCRIPTION					
NAME	NO.	/U	DESCRIPTION					
1IN-	2	I	Inverting input					
1IN+	3	I	Noninverting input					
10UT	1	0	Output					
2IN-	6	I	Inverting input					
2IN+	5	I	Noninverting input					
20UT	7	0	Output					
3IN-	9	I	Inverting input					
3IN+	10	I	Noninverting input					
3OUT	8	0	Output					
4IN-	13	I	Inverting input					
4IN+	12	I	Noninverting input					
40UT	14	0	Output					
V _{CC}	11	_	Power supply					
V _{CC+}	4		Power supply					

NC- no internal connection

Figure 5-9. TL074 FK Package, 20-Pin LCCC (Top View)

Table 5-7. Pin Functions: TL074x

PIN		I/O	DESCRIPTION				
NAME	NO.	1/0	DESCRIPTION				
1IN-	3	I	Inverting input				
1IN+	4	I	Noninverting input				
10UT	2	0	Output				
2IN-	9	I	Inverting input				
2IN+	8	I	Noninverting input				
2OUT	10	0	Output				
3IN-	13	I	Inverting input				
3IN+	14	I	Noninverting input				
3OUT	12	0	Output				
4IN-	19	I	Inverting input				
4IN+	18	I	Noninverting input				
4OUT	20	0	Output				
NC	1, 5, 7, 11, 15, 17	_	Do not connect				
VCC-	16	—	Power supply				
VCC+	6	_	Power supply				

6 Specifications

6.1 Absolute Maximum Ratings

over operating ambient temperature range (unless otherwise noted) (1)

			MIN	MAX	UNIT	
Supply voltage, $V_S = (V+) - (V-)$		All NS and PS packages; All TL07xM devices	-0.3	36	V	
Supply voltage, vs – (v+) - (v-)	All other devices	0	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	V	
	Common-mode voltage (3)	All NS and PS packages; All TL07xM devices	(V–) – 0.3	(V–) + 36	V	
	Common-mode voltage (*)	All other devices	(V–) – 0.5	(V+) + 0.5	V	
Signal input pins	Differential voltage ⁽³⁾	All NS and PS packages; All TL07xM devices (4)	(V–) – 0.3	(V–) + 36	V	
		All other devices		V _S + 0.2	V	
	Current ⁽³⁾	All NS and PS packages; All TL07xM devices		50	mA	
	Current	All other devices	-10	10	mA	
Output short-circuit (2)			Continuous			
Operating ambient terr	nperature, T _A		-55	150	°C	
Junction temperature,	TJ			150	°C	
Case temperature for 60 seconds - FK package				260	°C	
Lead temperature 1.8 mm (1/16 inch) from case for 10 seconds				300	°C	
Storage temperature,	T _{stg}	-65	150	°C		

(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) Short-circuit to ground, one amplifier per package.

(3) Input pins are diode-clamped to the power-supply rails. Input signals that can swing more than 0.5 V beyond the supply rails must be current limited to 10 mA or less.

(4) Differential voltage only limited by input voltage.

6.2 ESD Ratings

			VALUE	UNIT
V	Electrostatic discharge	Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 ⁽¹⁾	±2000	V
V _(ESD)	Electrostatic discharge	Charged-device model (CDM), per JEDEC specification JESD22-C101 ⁽²⁾	±1000	v

(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions

over operating ambient temperature range (unless otherwise noted)

			MIN	MAX	UNIT
Vs	Supply voltage, (V+) – (V–)	All NS and PS packages; All TL07xM devices ⁽¹⁾	10	30	V
		All other devices	4.5	40	V
VI	Input voltage range	All NS and PS packages; All TL07xM devices	(V–) + 2	(V+) + 0.1	V
		All other devices	(V–) + 4	(V+) + 0.1	V
		TL07xM	-55	125	°C
-	Specified temperature	TL07xH	-40	125	°C
I A	Specified temperature	TL07xl	-40	85	°C
		TL07xC	0	70	°C

(1) V+ and V- are not required to be of equal magnitude, provided that the total V_S (V+ - V-) is between 10 V and 30 V.

6.4 Thermal Information for Single Channel

THERMAL METRIC (1)		TL071xx					
		D (SOIC)	DCK (SC70)	DBV (SOT-23)	P (PDIP)	PS (SO)	UNIT
		8 PINS	5 PINS	5 PINS	8 PINS	8 PINS	
R _{θJA}	Junction-to-ambient thermal resistance	158.8	217.5	212.2	85	95	°C/W
R _{0JC(top)}	Junction-to-case (top) thermal resistance	98.6	113.1	111.1	-	-	°C/W
R _{θJB}	Junction-to-board thermal resistance	102.3	63.8	79.4	-	-	°C/W
ΨJT	Junction-to-top characterization parameter	45.8	34.8	51.8	-	-	°C/W
Ψјв	Junction-to-board characterization parameter	101.5	63.5	79.0	-	-	°C/W
R _{0JC(bot)}	Junction-to-case (bottom) thermal resistance	N/A	N/A	N/A	N/A	N/A	°C/W

(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report, SPRA953.

6.5 Thermal Information for Dual Channel

		TL072xx								
тн	THERMAL METRIC (1)		DDF (SOT-23)	FK (LCCC)	JG (CDIP)	P (PDIP)	PS (SO)	PW (TSSOP)	U (CFP)	UNIT
		8 PINS	8 PINS	20 PINS	8 PINS	8 PINS	8 PINS	8 PINS	10 PINS	
R _{θJA}	Junction-to-ambient thermal resistance	147.8	181.5	-	-	85	95	200.3	169.8	°C/W
R _{0JC(top)}	Junction-to-case (top) thermal resistance	88.2	112.5	5.61	15.05	-	-	89.4	62.1	°C/W
R _{θJB}	Junction-to-board thermal resistance	91.4	98.2	-	-	-	-	131.0	176.2	°C/W
тιΨ	Junction-to-top characterization parameter	36.8	17.2	_	_	_	_	22.2	48.4	°C/W
ΨЈВ	Junction-to-board characterization parameter	90.6	97.6	_	_	_	_	129.3	144.1	°C/W
R _{θJC(bot)}	Junction-to-case (bottom) thermal resistance	N/A	N/A	-	-	-	-	N/A	5.4	°C/W

(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report, SPRA953.

Copyright © 2023 Texas Instruments Incorporated

6.6 Thermal Information for Quad Channel

	THERMAL METRIC ⁽¹⁾		TL074xx							
			DYY (SOT-23)	FK (TSSOP)	J (TSSOP)	N (TSSOP)	NS (TSSOP)	PW (TSSOP)	W (TSSOP)	UNIT
		14 PINS	14 PINS	20 PINS	14 PINS	14 PINS	14 PINS	14 PINS	14 PINS	
R _{θJA}	Junction-to-ambient thermal resistance	114.2	153.2	-	-	80	76	-	128.8	°C/W
R _θ JC(top)	Junction-to-case (top) thermal resistance	70.3	88.7	5.61	14.5	-	-	14.5	56.1	°C/W
R _{θJB}	Junction-to-board thermal resistance	70.2	65.4	-	-	-	-	-	127.6	°C/W
Ψυτ	Junction-to-top characterization parameter	28.8	9.5	-	-	-	-	-	29	°C/W
Ψјв	Junction-to-board characterization parameter	69.8	65.0	-	-	-	-	-	106.1	°C/W
R _θ JC(bot)	Junction-to-case (bottom) thermal resistance	N/A	N/A	-	-	-	-	-	0.5	°C/W

(1) For more information about traditional and new thermal metrics, see the *Semiconductor and IC Package Thermal Metrics* application report, SPRA953.

6.7 Electrical Characteristics: TL07xH

For $V_S = (V_{CC+}) - (V_{CC-}) = 4.5$ V to 40 V (±2.25 V to ±20 V) at $T_A = 25^{\circ}$ C, $R_L = 10$ k Ω connected to $V_S / 2$, $V_{CM} = V_S / 2$, and $V_{O,UT} = V_S / 2$, unless otherwise noted.

	PARAMETER	TEST CO	NDITIONS	MIN	TYP	MAX	UNIT
FFSET V	/OLTAGE						
					±1	±4	
/ _{OS}	Input offset voltage		$T_A = -40^{\circ}C$ to 125°C			±5	mV
IV _{OS} /dT	Input offset voltage drift		$T_{A} = -40^{\circ}C \text{ to } 125^{\circ}C$		±2		µV/⁰C
PSRR	Input offset voltage versus	$V_{\rm S}$ = 5 V to 40 V, $V_{\rm CM}$ = $V_{\rm S}$ /	$T_{A} = -40^{\circ}C \text{ to } 125^{\circ}C$		±1	+10	
'SKK	power supply	2	$T_{\rm A} = -40$ C to 125 C		ΞI	±10	μV/V
	Channel separation	f = 0 Hz			10		μV/V
NPUT BIA	AS CURRENT		1				
в					±1	±120	pА
	Input bias current		DCK and DBV packages		±1	±300	pА
			$T_A = -40^{\circ}C$ to 125°C ⁽¹⁾			±5	nA
					±0.5	±120	pА
os	Input offset current		DCK and DBV packages		±0.5	±250	pА
			$T_A = -40^{\circ}C$ to 125°C ⁽¹⁾			±5	nA
OISE							
	lane de callo de la						μV _{PP}
N	Input voltage noise	f = 0.1 Hz to 10 Hz			1.4		μV _{RMS}
		f = 1 kHz			37		
N	Input voltage noise density	put voltage noise density f = 10 kHz			21		nV/√Hz
N	Input current noise	f = 1 kHz			80		fA/√Hz
	LTAGE RANGE						
	Common-mode voltage						
/ _{CM}	range			(V _{CC} _) + 1.5		(V _{CC+})	V
		V _S = 40 V, (V _{CC}) + 2.5 V <		100	105		dB
	Common-mode rejection ratio	$V_{CM} < (V_{CC+}) - 1.5 V$ $V_{S} = 40 V, (V_{CC-}) + 2.5 V <$	T _A = -40°C to 125°C	95			dB
CMRR				90	105		dB
		$V_{CM} < (V_{CC+})$	$T_A = -40^{\circ}C$ to $125^{\circ}C$	80			dB
NPUT CA	PACITANCE			L			
Z _{ID}	Differential				100 2		MΩ pF
ZICM	Common-mode				6 1		TΩ pF
-	OP GAIN						
4 _{OL}	Open-loop voltage gain	$V_{S} = 40 V$, $V_{CM} = V_{S} / 2$, $(V_{CC-}) + 0.3 V < V_{O} < (V_{CC+})$ - 0.3 V	$T_A = -40^{\circ}C$ to $125^{\circ}C$	118	125		dB
۹ _{ol}	Open-loop voltage gain		$T_A = -40^{\circ}C$ to $125^{\circ}C$	115	120		dB
REQUEN	NCY RESPONSE				F 05		MHz
	Gain-bandwidth product				5.25		
GBW		V _S = 40 V, G = +1, C _L = 20 pF			20		V/µs
BW	Gain-bandwidth product	V _S = 40 V, G = +1, C _L = 20 pF To 0.1%, V _S = 40 V, V _{STEP} = 1					
BW	Gain-bandwidth product	To 0.1%, V _S = 40 V, V _{STEP} = 1	0 V , G = +1, CL = 20 pF		20		
BBW BR	Gain-bandwidth product	To 0.1%, $V_S = 40 V$, $V_{STEP} = 1$ To 0.1%, $V_S = 40 V$, $V_{STEP} = 2$	0 V , G = +1, CL = 20 pF 2 V , G = +1, CL = 20 pF		20 0.63		
GBW GR	Gain-bandwidth product Slew rate	To 0.1%, $V_S = 40 V$, $V_{STEP} = 1$ To 0.1%, $V_S = 40 V$, $V_{STEP} = 2$ To 0.01%, $V_S = 40 V$, $V_{STEP} = 2$	0 V , G = +1, CL = 20 pF V , G = +1, CL = 20 pF 10 V , G = +1, CL = 20 pF		20 0.63 0.56 0.91		V/µs
GBW GR	Gain-bandwidth product Slew rate Settling time	To 0.1%, $V_S = 40 V$, $V_{STEP} = 1$ To 0.1%, $V_S = 40 V$, $V_{STEP} = 2$ To 0.01%, $V_S = 40 V$, $V_{STEP} =$ To 0.01%, $V_S = 40 V$, $V_{STEP} =$	0 V , G = +1, CL = 20 pF V , G = +1, CL = 20 pF 10 V , G = +1, CL = 20 pF 2 V , G = +1, CL = 20 pF		20 0.63 0.56 0.91 0.48		V/µs
GBW GR	Gain-bandwidth product Slew rate Settling time Phase margin	To 0.1%, V _S = 40 V, V _{STEP} = 1 To 0.1%, V _S = 40 V, V _{STEP} = 2 To 0.01%, V _S = 40 V, V _{STEP} = 2 To 0.01%, V _S = 40 V, V _{STEP} = G = +1, R _L = 10 kΩ, C _L = 20 p	0 V , G = +1, CL = 20 pF V , G = +1, CL = 20 pF 10 V , G = +1, CL = 20 pF 2 V , G = +1, CL = 20 pF		20 0.63 0.56 0.91 0.48 56		V/µs µs °
GBW GR	Gain-bandwidth product Slew rate Settling time Phase margin Overload recovery time	To 0.1%, $V_S = 40 V$, $V_{STEP} = 1$ To 0.1%, $V_S = 40 V$, $V_{STEP} = 2$ To 0.01%, $V_S = 40 V$, $V_{STEP} =$ To 0.01%, $V_S = 40 V$, $V_{STEP} =$	0 V , G = +1, CL = 20 pF V , G = +1, CL = 20 pF 10 V , G = +1, CL = 20 pF 2 V , G = +1, CL = 20 pF		20 0.63 0.56 0.91 0.48		V/µs µs
SR SR SR SR	Gain-bandwidth product Slew rate Settling time Phase margin	To 0.1%, V _S = 40 V, V _{STEP} = 1 To 0.1%, V _S = 40 V, V _{STEP} = 2 To 0.01%, V _S = 40 V, V _{STEP} = 2 To 0.01%, V _S = 40 V, V _{STEP} = G = +1, R _L = 10 kΩ, C _L = 20 p	0 V , G = +1, CL = 20 pF V , G = +1, CL = 20 pF 10 V , G = +1, CL = 20 pF 2 V , G = +1, CL = 20 pF FF		20 0.63 0.56 0.91 0.48 56		V/µs µs °

6.7 Electrical Characteristics: TL07xH (continued)

For $V_S = (V_{CC+}) - (V_{CC-}) = 4.5 \text{ V}$ to 40 V (±2.25 V to ±20 V) at $T_A = 25^{\circ}$ C, $R_L = 10 \text{ k}\Omega$ connected to $V_S / 2$, $V_{CM} = V_S / 2$, and $V_{O \text{ UT}} = V_S / 2$, unless otherwise noted.

PARAMETER		TEST C	CONDITIONS	MIN	TYP	MAX	UNIT
		Positive rail headroom	V _S = 40 V, R _L = 10 kΩ		115	210	
	Voltage output swing from	Positive rail headroom	$V_{\rm S}$ = 40 V, R _L = 2 k Ω		520	965	mV
	rail	Negative rail headroom	$V_{\rm S}$ = 40 V, R _L = 10 k Ω		105	215	IIIV
			$V_{\rm S}$ = 40 V, R _L = 2 k Ω		500	1030	
I _{SC}	Short-circuit current				±26		mA
C _{LOAD}	Capacitive load drive				300		pF
Zo	Open-loop output impedance	f = 1 MHz, I _O = 0 A		125		Ω	
POWER S	SUPPLY	I					
Ι _Q	Quiescent current per amplifier	I _O = 0 A			937.5	1125	
		I _O = 0 A, (TL071H)			960	1156	
		I _O = 0 A				1130	μA
		I _O = 0 A, (TL072H)	T _A = -40°C to 125°C			1143	
		I _O = 0 A, (TL071H)				1160	
	Turn-On Time	At $T_A = 25^{\circ}C$, $V_S = 40$ V, V_S	s ramp rate > 0.3 V/μs		60		μs

(1) Max I_B and I_{os} data is specified based on characterization results.

6.8 Electrical Characteristics (DC): TL07xC, TL07xAC, TL07xBC, TL07xI, TL07xM

	PARAMETER	±15 V at T _A = 25°C	TEST CONDITIONS ⁽¹⁾		MIN	ТҮР	MAX	UNIT
							40	
			TL07xC			3	10	
				T _A = Full range			13	
			TL07xAC			3	6	
				T _A = Full range			7.5	
			TL07xBC			2	3	
V _{os}	Input offset voltage	V _O = 0 V R _S = 50 Ω	1207,200	T _A = Full range			5	mV
•05			TL07xl			3	6	mv
				T _A = Full range			8	
			TL071M, TL072M			3	6	
				T _A = Full range			9	
			TI 07414			3	9	
			TL074M	T _A = Full range			15	
dV _{OS} /dT	Input offset voltage drift	V _O = 0 V, R _S = 50 Ω	T _A = Full range			±18		μV/°C
		V ₀ = 0 V				5	100	n A
			TL07xC			5	100	pA
				T _A = Full range			-	nA
os	Input offset current		TL07xAC, TL07xBC,			5	100	pA
			TL07xl	T _A = Full range			2	nA
			TL07xM			5	100	рA
				T _A = Full range			20	nA
			TL07xC, TL07xAC,			65	200	pА
	Input bias current	V ₀ = 0 V	TL07xBC, TL07xI	T _A = Full range			7	nA
			TL071M, TL072M			65	200	pА
В				T _A = Full range			50	nA
			TL 074M			65	200	pА
			TL074M	T _A = Full range			20	nA
V _{CM}	Common-mode voltage range				±11	–12 to 15		V
	Maximum peak output voltage swing	R _L = 10 kΩ			±12	±13.5		
VOM		 R _L ≥ 10 kΩ			±12			V
		 R _L ≥ 2 kΩ	T _A = Full range		±10			
	Open-loop voltage gain		TL07xC		25	200		
				T _A = Full range	15			
			TL07xAC, TL07xBC, TL07xI		50	200		
۹ _{OL}				T _A = Full range	25			V/m\
			TL07xM		35	200		
				T _A = Full range	15	200		
		All NS and PS package		15	3			
GBW	Gain-bandwidth product	All other devices	es; All TLU7XIVI devices					MHz
		All other devices				5.25		
۲ _{ID}	Common-mode input resistance					1		TΩ
	Common-mode rejection ratio	$V_{IC} = V_{ICR(min)}$ $V_{O} = 0 V$ $R_{S} = 50 \Omega$	TL07xC		70	100		
CMRR			TL07xAC, TL07xBC, TL07xI		75	100		dB
			TL07xM		80	86		
		V _S = ±9 V to ± 18 V	TL07xC		70	100		
PSRR	Input offset voltage	$V_0 = 0 V$	TL07xAC, TL07xBC, TL07xI		80	100		dB
	versus power supply	R _S = 50 Ω	TL07xM		80	86		
	Quiescent current per	V _O = 0 V; no load						mA

Copyright © 2023 Texas Instruments Incorporated

6.8 Electrical Characteristics (DC): TL07xC, TL07xAC, TL07xBC, TL07xI, TL07xM (continued)

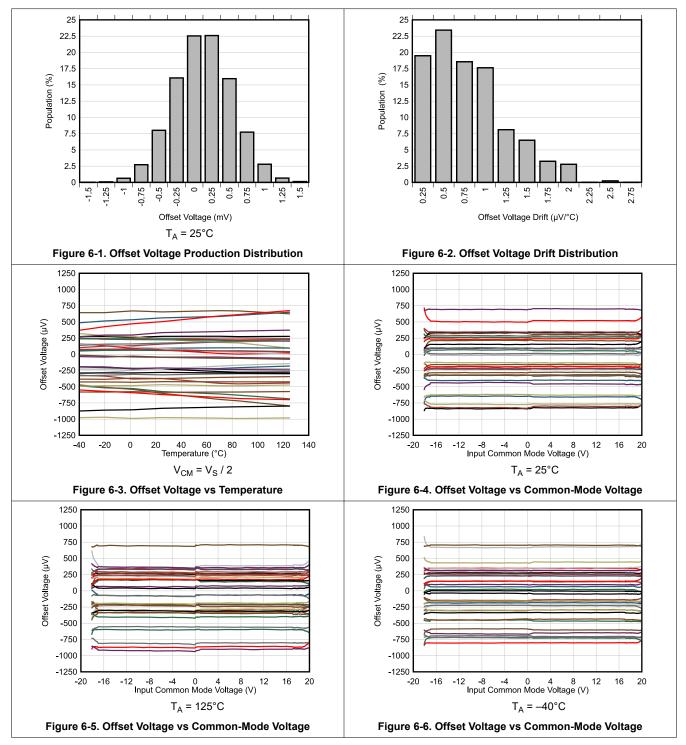
For $V_S = (V_{CC+}) - (V_{CC-}) = \pm 15 \text{ V}$ at $T_A = 25^{\circ}\text{C}$, unless otherwise noted

PARAMETER	TEST CONDITIONS ⁽¹⁾ ⁽²⁾		TYP	MAX	UNIT
Channel separation	f = 0 Hz		1		μV/V

(1) All characteristics are measured under open-loop conditions with zero common-mode voltage, unless otherwise specified.

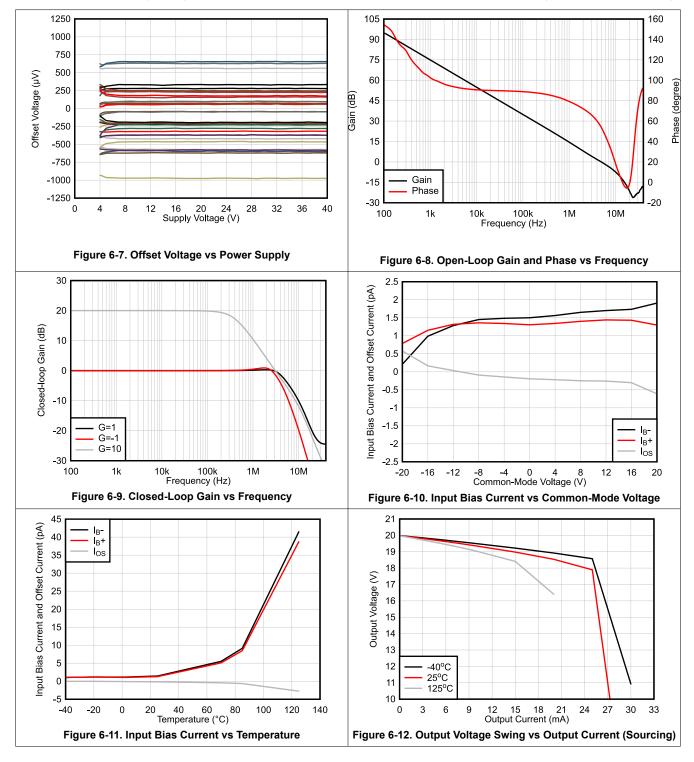
(2) Full range is $T_A = 0^{\circ}C$ to 70°C for the TL07xC, TL07xAC, and TL07xBC; $T_A = -40^{\circ}C$ to 85°C for the TL07xI; and $T_A = -55^{\circ}C$ to 125°C for the TL07xM.

6.9 Electrical Characteristics (AC): TL07xC, TL07xAC, TL07xBC, TL07xI, TL07xM

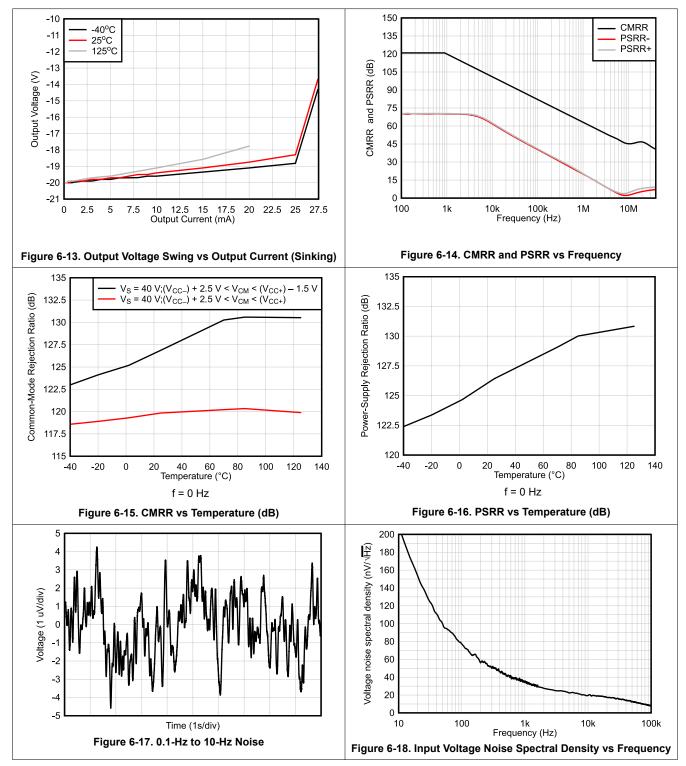

For $V_S = (V_{CC+}) - (V_{CC-}) = \pm 15$ V at $T_A = 25^{\circ}$ C, unless otherwise noted.

PARAMETER	TEST CO	NDITIONS	MIN TYP MA		MAX	X UNIT	
Slew rate	V_{I} = 10 V, C_{L} = 100 pF, R_{L} = 2 k Ω	TL07xM	5	20		V/µs	
		TL07xC, TL07xAC, TL07xBC, TL07xI	8	20		V/µs	
Cattline a time a				0.1		μs	
Setting time	v - 20 v, CL - 100 pr, KL - 2	$T_{\rm I} = 20$ V, $C_{\rm L} = 100$ pF, $R_{\rm L} = 2$ KΩ					
	All PS and NS packages; All TL07xM devices	R _S = 20 Ω, f = 1 kHz		18		nV/√Hz	
Input voltage noise density	All other devices	f = 1 kHz		37		nV/√Hz	
		f = 10 kHz		21			
Input voltage noise	All PS and NS packages; All TL07xM devices	R_S = 20 Ω, f = 10 Hz to 10 kHz		4		μV _{RMS}	
	All other devices	f = 0.1 Hz to 10 Hz		1.4		μV _{RMS}	
Input current noise	R _S = 20 Ω, f = 1 kHz			10		fA/√ Hz	
Phase margin	TL07xC, TL07xAC, TL07xBC, TL07xI	$ \begin{array}{l} G = \texttt{+1}, R_{L} = \texttt{10} \; k\Omega, C_{L} = \texttt{20} \\ pF \end{array} $		56		٥	
Overload recovery time	V _{IN} × gain > V _S			300		ns	
Total harmonic distortion +	All PS and NS packages; All TL07xM devices			0.003		%	
noise	All other devices	V _S = 40 V, V _O = 6 V _{RMS} , G = +1, f = 1 kHz		0.00012		%	
EMI rejection ratio	TL07xC, TL07xAC, TL07xBC, TL07xI	f = 1 GHz		53		dB	
Open-loop output impedance	TL07xC, TL07xAC, TL07xBC, TL07xI	f = 1 MHz, I _O = 0 A		125		Ω	
	Slew rate Settling time Input voltage noise density Input voltage noise Input voltage noise Input voltage noise Phase margin Overload recovery time Total harmonic distortion + noise EMI rejection ratio Open-loop output	Slew rate $V_I = 10 V, C_L = 100 pF, R_L = 2 k\Omega$ Settling time $V_I = 20 V, C_L = 100 pF, R_L = 2$ Input voltage noise density All PS and NS packages; All TL07xM devices Input voltage noise All Other devices Input voltage noise All PS and NS packages; All TL07xM devices Input voltage noise All Other devices Input voltage noise All PS and NS packages; All TL07xM devices Input current noise R _S = 20 \Omega, f = 1 kHz Phase margin TL07xC, TL07xAC, TL07xAC, TL07xBC, TL07xI Overload recovery time V _{IN} × gain > V _S All PS and NS packages; All TL07xM devices All PS and NS packages; All TL07xBC, TL07xI Overload recovery time V _{IN} × gain > V _S All PS and NS packages; All TL07xM devices All other devices All other devices All other devices EMI rejection ratio TL07xC, TL07xAC, TL07xAC, TL07xAC, TL07xBC, TL07xI Open-loop output TL07xC, TL07xAC, NL07xAC, TL07xAC, TL07x	Slew rate $V_1 = 10 \text{ V}, \text{C}_L = 100 \text{ pF}, \text{R}_L = \frac{1207 \text{ xM}}{1207 \text{ xC}, $	Slew rate $V_1 = 10 \text{ V}, \text{C}_L = 100 \text{ pF}, \text{R}_L = \frac{\text{TL07xM}}{1\text{ L07xBC}, \text{ TL07xAC}, \text{TL07xAC}, \text{TL07xBC}, \text{ TL07xAC}, \text{R} $	Siew rate $V_1 = 10 \text{ V}, \text{ C}_L = 100 \text{ pF}, \text{ R}_L = \frac{1207 \text{ xM}}{1.07 \text{ xC}, TL07 \text{ xAC}, TL07 \text{ xAC}, TL07 \text{ xAC}, TL07 \text{ xAC}, TL07 \text{ xBC}, TL07 \text{ xI} (3.3 \text{ cm}) = 2.5 \text{ cm} + 1.5 $	Slew rate $V_1 = 10 V, C_L = 100 pF, R_L = \frac{TL07xM}{2 k\Omega}$ $5 20$ Setting time $V_1 = 20 V, C_L = 100 pF, R_L = 2 k\Omega$ 0.1 Number 1 $V_1 = 20 V, C_L = 100 pF, R_L = 2 k\Omega$ 0.1 Input voltage noise density $All PS$ and NS packages; All TL07xM devices $R_S = 20 \Omega, f = 1 \text{ kHz}$ 18 Input voltage noise density $All PS$ and NS packages; All TL07xM devices $f = 1 \text{ kHz}$ 37 Input voltage noise $All PS$ and NS packages; All TL07xM devices $f = 10 \text{ kHz}$ 21 Input voltage noise $All PS$ and NS packages; All TL07xM devices $f = 0 \text{ kHz}$ 21 Input voltage noise $All PS$ and NS packages; All TL07xM devices $f = 0.1 \text{ Hz}$ 21 Input voltage noise $All Other devices$ $f = 0.1 \text{ Hz}$ 1.4 Input current noise $R_S = 20 \Omega, f = 1 \text{ kHz}$ 1.4 Input current noise $R_S = 20 \Omega, f = 1 \text{ kHz}$ 1.4 Input current noise $R_S = 20 \Omega, f = 1 \text{ kHz}$ 1.4 Input current noise $R_S = 20 \Omega, f = 1 \text{ kHz}$ 1.4 Input current noise $R_S = 20 \Omega, f = 1 \text{ kHz}$ 10 Phase margin $TL07xC, TL07xAC, D_{TA}$ $G = +1, R_L = 10 k\Omega, C_L = 20$ 56 Overload recovery time $V_N \times gain > V_S$ $V_O = 6 V_{RMS}, R_L \ge 20, f = 1 \text{ kHz}$ 0.003 Inoise $All PS$ and NS packages; All TL07xM devices $V_S = 40 V, V_O = 6 V_{RMS}, G = 0.0003$ 0.00012 EMI rejection ratio $TL07xC, TL07xAC, TL07xAC$	

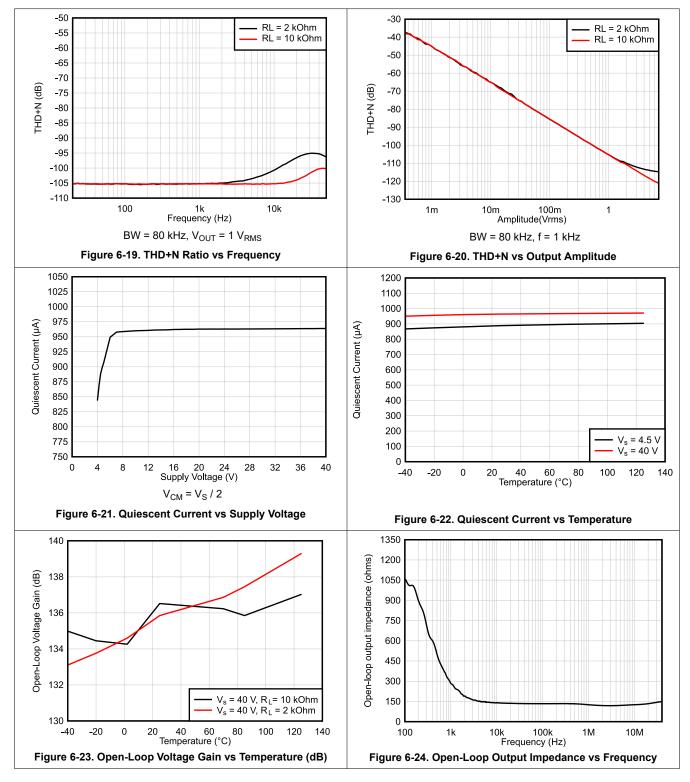
6.10 Typical Characteristics: TL07xH


at $T_A = 25^{\circ}C$, $V_S = 40 V$ (±20 V), $V_{CM} = V_S / 2$, $R_{LOAD} = 10 k\Omega$ connected to $V_S / 2$, and $C_L = 20 pF$ (unless otherwise noted)

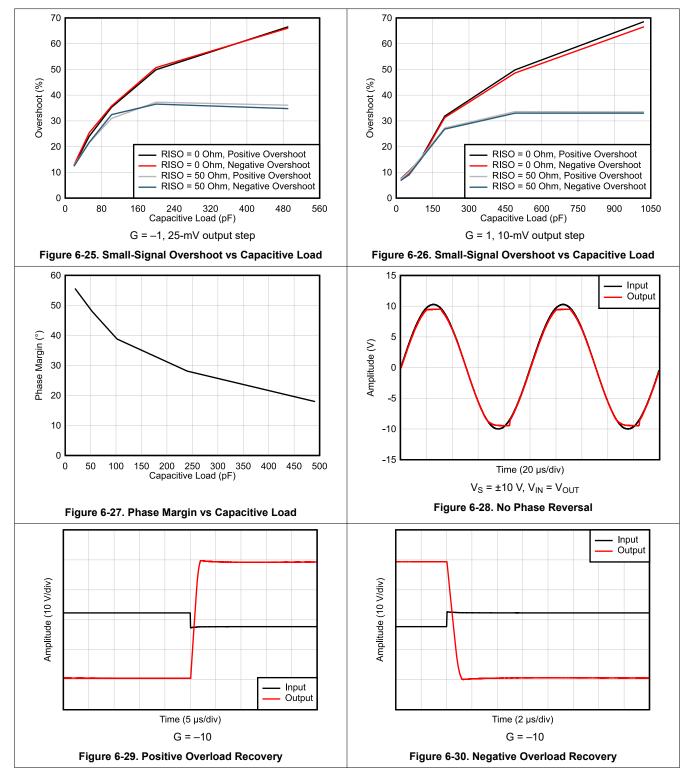
6.10 Typical Characteristics: TL07xH (continued)


at T_A = 25°C, V_S = 40 V (±20 V), V_{CM} = V_S / 2, R_{LOAD} = 10 kΩ connected to V_S / 2, and C_L = 20 pF (unless otherwise noted)

6.10 Typical Characteristics: TL07xH (continued)


at $T_A = 25^{\circ}C$, $V_S = 40 V$ (±20 V), $V_{CM} = V_S / 2$, $R_{LOAD} = 10 k\Omega$ connected to $V_S / 2$, and $C_L = 20 pF$ (unless otherwise noted)

6.10 Typical Characteristics: TL07xH (continued)

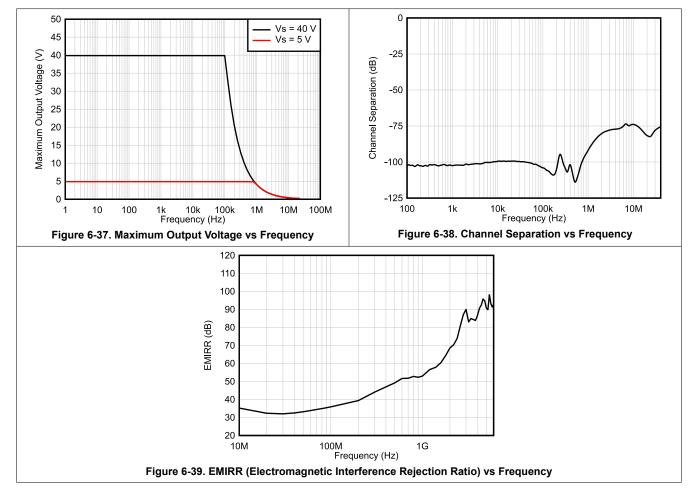

at T_A = 25°C, V_S = 40 V (±20 V), V_{CM} = V_S / 2, R_{LOAD} = 10 kΩ connected to V_S / 2, and C_L = 20 pF (unless otherwise noted)

6.10 Typical Characteristics: TL07xH (continued)

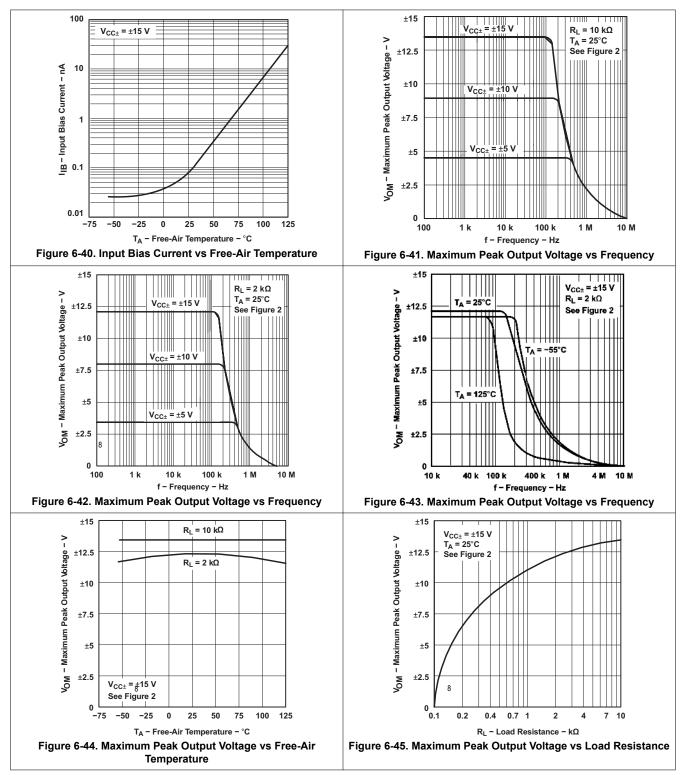
at $T_A = 25^{\circ}C$, $V_S = 40 V$ (±20 V), $V_{CM} = V_S / 2$, $R_{LOAD} = 10 k\Omega$ connected to $V_S / 2$, and $C_L = 20 pF$ (unless otherwise noted)

6.10 Typical Characteristics: TL07xH (continued)

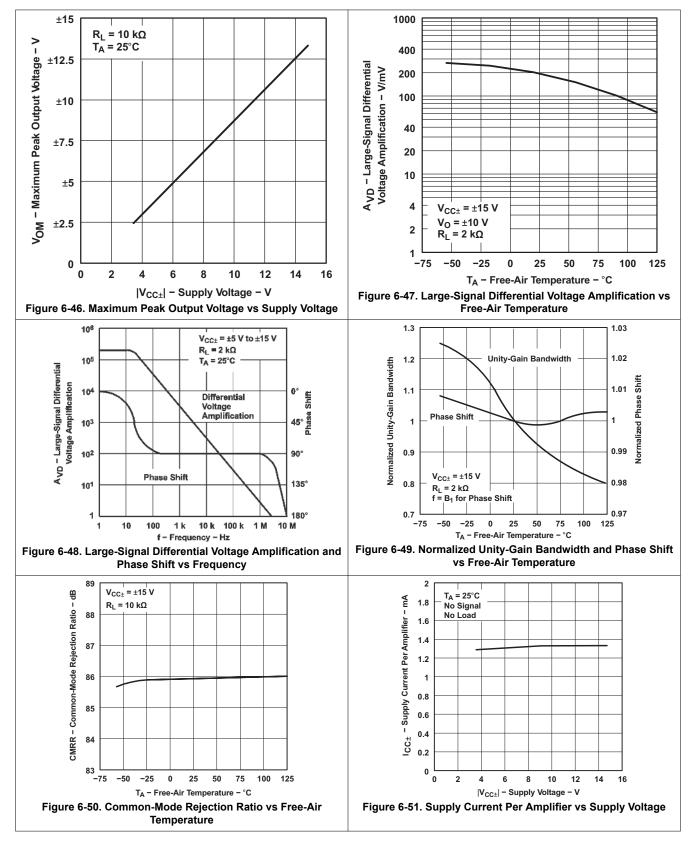
at $T_A = 25^{\circ}$ C, $V_S = 40$ V (±20 V), $V_{CM} = V_S / 2$, $R_{LOAD} = 10$ k Ω connected to $V_S / 2$, and $C_L = 20$ pF (unless otherwise noted)



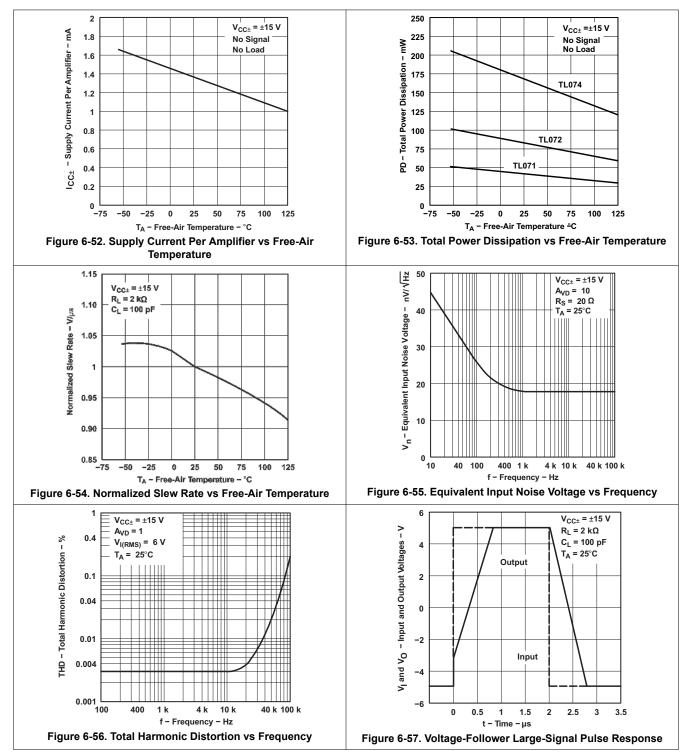
 $Copyright @ 2023 \ Texas \ Instruments \ Incorporated \\$


6.10 Typical Characteristics: TL07xH (continued)

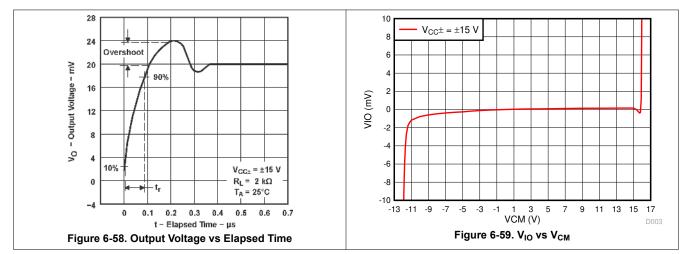
at $T_A = 25^{\circ}$ C, $V_S = 40$ V (±20 V), $V_{CM} = V_S / 2$, $R_{LOAD} = 10$ k Ω connected to $V_S / 2$, and $C_L = 20$ pF (unless otherwise noted)



6.11 Typical Characteristics: All Devices Except TL07xH



6.11 Typical Characteristics: All Devices Except TL07xH (continued)



6.11 Typical Characteristics: All Devices Except TL07xH (continued)

6.11 Typical Characteristics: All Devices Except TL07xH (continued)

7 Parameter Measurement Information

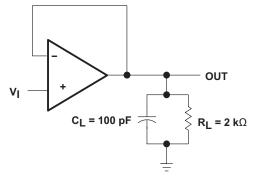


Figure 7-1. Unity-Gain Amplifier

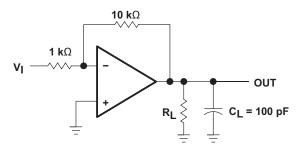


Figure 7-2. Gain-of-10 Inverting Amplifier

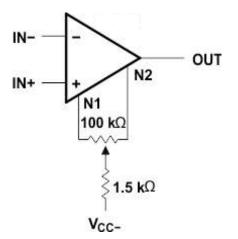
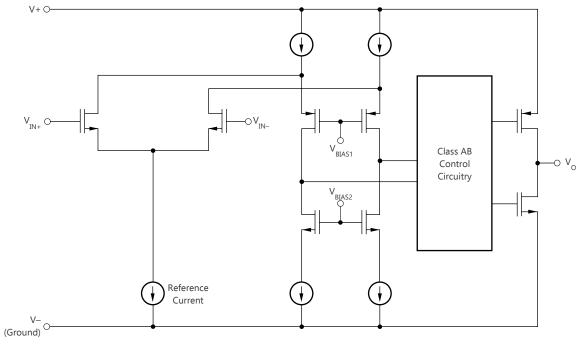


Figure 7-3. Input Offset-Voltage Null Circuit


8 Detailed Description

8.1 Overview

The TL07xH (TL071H, TL072H, and TL074H) family of devices are the next-generation versions of the industrystandard TL07x (TL071, TL072, and TL074) devices. These devices provide outstanding value for cost-sensitive applications, with features including low offset (1 mV, typical), high slew rate (20 V/µs, typical), and commonmode input to the positive supply. High ESD (2 kV, HBM), integrated EMI and RF filters, and operation across the full –40°C to 125°C enable the TL07xH devices to be used in the most rugged and demanding applications.

The C-suffix devices are characterized for operation from 0°C to 70°C. The I-suffix devices are characterized for operation from -40°C to +85°C. The M-suffix devices are characterized for operation over the full military temperature range of -55°C to +125°C.

8.2 Functional Block Diagram

8.3 Feature Description

The TL07xH family of devices improve many specifications as compared to the industry-standard TL07x family. Several comparisons of key specifications between these families are included in the following sections to show the advantages of the TL07xH family.

8.3.1 Total Harmonic Distortion

Harmonic distortions to an audio signal are created by electronic components in a circuit. Total harmonic distortion (THD) is a measure of harmonic distortions accumulated by a signal in an audio system. These devices have a very low THD of 0.003% meaning that the TL07x device adds little harmonic distortion when used in audio signal applications.

8.3.2 Slew Rate

The slew rate is the rate at which an operational amplifier can change the output when there is a change on the input. These devices have a 20-V/µs slew rate.

8.4 Device Functional Modes

These devices are powered on when the supply is connected. These devices can be operated as a single-supply operational amplifier or dual-supply amplifier depending on the application.

9 Application and Implementation

Note

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes, as well as validating and testing their design implementation to confirm system functionality.

9.1 Application Information

A typical application for an operational amplifier is an inverting amplifier. This amplifier takes a positive voltage on the input, and makes the voltage a negative voltage. In the same manner, the amplifier makes negative voltages positive.

9.2 Typical Application

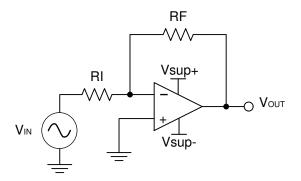


Figure 9-1. Inverting Amplifier

9.2.1 Design Requirements

The supply voltage must be selected so the supply voltage is larger than the input voltage range and output range. For instance, this application scales a signal of ± 0.5 V to ± 1.8 V. Setting the supply at ± 12 V is sufficient to accommodate this application.

9.2.2 Detailed Design Procedure

$$V_o = (V_i + V_{io}) \times \left(1 + \frac{1M\Omega}{1k\Omega}\right) \tag{1}$$

Determine the gain required by the inverting amplifier:

$$A_V = \frac{VOUT}{VIN} \tag{2}$$

$$A_V = \frac{1.8}{-0.5} = -3.6 \tag{3}$$

Once the desired gain is determined, select a value for RI or RF. Selecting a value in the kilohm range is desirable because the amplifier circuit uses currents in the milliamp range. This ensures the part does not draw too much current. This example uses 10 k Ω for RI which means 36 k Ω is used for RF. This is determined by Equation 4.

$$A_V = -\frac{RF}{RI} \tag{4}$$

9.2.3 Application Curve

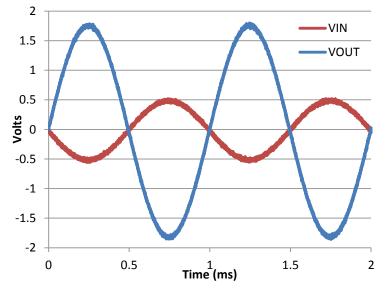
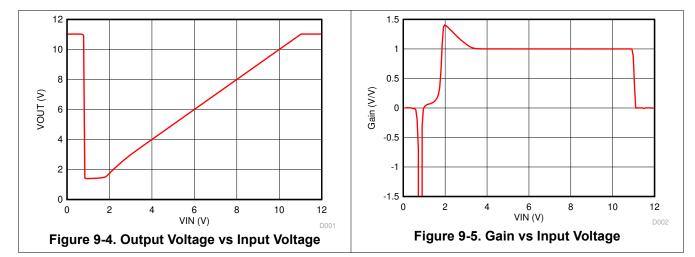


Figure 9-2. Input and Output Voltages of the Inverting Amplifier

9.3 Unity Gain Buffer

Figure 9-3. Single-Supply Unity Gain Amplifier

9.3.1 Design Requirements


- V_{CC} must be within valid range per *Recommended Operating Conditions*. This example uses a value of 12 V for V_{CC}.
- Input voltage must be within the recommended common-mode range, as shown in *Recommended Operating Conditions*. The valid common-mode range is 4 V to 12 V (V_{CC} + 4 V to V_{CC+}).
- Output is limited by output range, which is typically 1.5 V to 10.5 V, or V_{CC} + 1.5 V to V_{CC+} 1.5 V.

9.3.2 Detailed Design Procedure

- Avoid input voltage values below 1 V to prevent phase reversal where output goes high.
- Avoid input values below 4 V to prevent degraded V_{IO} that results in an apparent gain greater than 1. This
 may cause instability in some second-order filter designs.

9.3.3 Application Curves

9.4 System Examples

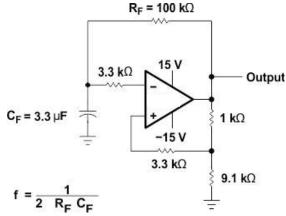
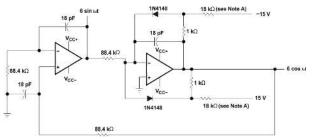
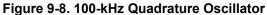




Figure 9-6. 0.5-Hz Square-Wave Oscillator

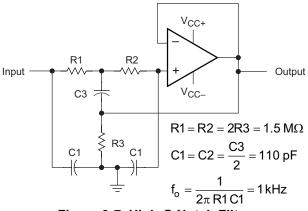


Figure 9-7. High-Q Notch Filter

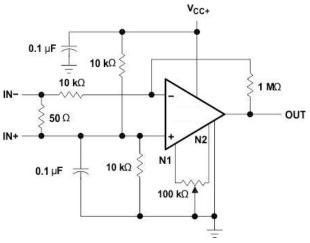


Figure 9-9. AC Amplifier

Copyright © 2023 Texas Instruments Incorporated

9.5 Power Supply Recommendations

CAUTION

Supply voltages larger than 36 V for a single-supply or outside the range of ± 18 V for a dual-supply can permanently damage the device (see Section 6.1).

Place 0.1-µF bypass capacitors close to the power-supply pins to reduce errors coupling in from noisy or high-impedance power supplies. For more detailed information on bypass capacitor placement, see Section 9.6.

9.6 Layout

9.6.1 Layout Guidelines

For best operational performance of the device, use good PCB layout practices, including:

- Noise can propagate into analog circuitry through the power pins of the circuit as a whole, as well as the
 operational amplifier. Bypass capacitors are used to reduce the coupled noise by providing low impedance
 power sources local to the analog circuitry.
 - Connect low-ESR, 0.1-µF ceramic bypass capacitors between each supply pin and ground, placed as close to the device as possible. A single bypass capacitor from V_{CC+} to ground is applicable for singlesupply applications.
- Separate grounding for analog and digital portions of circuitry is one of the simplest and most-effective methods of noise suppression. One or more layers on multilayer PCBs are usually devoted to ground planes. A ground plane helps distribute heat and reduces EMI noise pickup. Take care to physically separate digital and analog grounds, paying attention to the flow of the ground current.
- To reduce parasitic coupling, run the input traces as far away from the supply or output traces as possible. If it is not possible to keep them separate, it is much better to cross the sensitive trace perpendicular as opposed to in parallel with the noisy trace.
- Place the external components as close to the device as possible. Keeping RF and RG close to the inverting input minimizes parasitic capacitance. For more information, see Section 9.6.2.
- Keep the length of input traces as short as possible. Always remember that the input traces are the most sensitive part of the circuit.
- Consider a driven, low-impedance guard ring around the critical traces. A guard ring can significantly reduce leakage currents from nearby traces that are at different potentials.

9.6.2 Layout Example

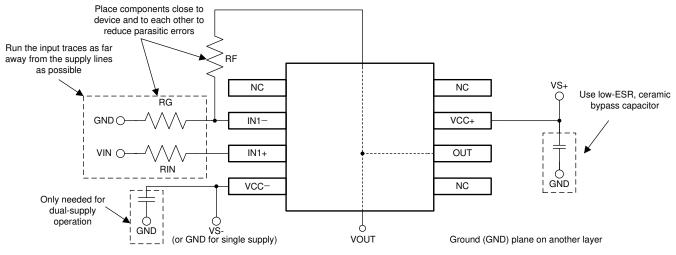


Figure 9-10. Operational Amplifier Board Layout for Noninverting Configuration

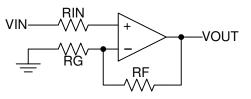


Figure 9-11. Operational Amplifier Schematic for Noninverting Configuration

10 Device and Documentation Support

10.1 Receiving Notification of Documentation Updates

To receive notification of documentation updates, navigate to the device product folder on ti.com. Click on *Subscribe to updates* to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document.

10.2 Support Resources

TI E2E[™] support forums are an engineer's go-to source for fast, verified answers and design help — straight from the experts. Search existing answers or ask your own question to get the quick design help you need.

Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

10.3 Trademarks

TI E2E[™] is a trademark of Texas Instruments.

All trademarks are the property of their respective owners.

10.4 Electrostatic Discharge Caution

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

10.5 Glossary

TI Glossary This glossary lists and explains terms, acronyms, and definitions.

11 Mechanical, Packaging, and Orderable Information

The following pages include mechanical packaging and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser based versions of this data sheet, refer to the left hand navigation.

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead finish/ Ball material (6)	MSL Peak Temp (3)	Op Temp (°C)	Device Marking (4/5)	Samples
81023052A	ACTIVE	LCCC	FK	20	1	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	81023052A TL072MFKB	Samples
8102305HA	ACTIVE	CFP	U	10	1	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	8102305HA TL072M	Samples
8102305PA	ACTIVE	CDIP	JG	8	1	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	8102305PA TL072M	Samples
81023062A	ACTIVE	LCCC	FK	20	1	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	81023062A TL074MFKB	Samples
8102306CA	ACTIVE	CDIP	J	14	1	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	8102306CA TL074MJB	Samples
8102306DA	ACTIVE	CFP	W	14	1	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	8102306DA TL074MWB	Samples
JM38510/11905BPA	ACTIVE	CDIP	JG	8	1	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	JM38510 /11905BPA	Samples
M38510/11905BPA	ACTIVE	CDIP	JG	8	1	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	JM38510 /11905BPA	Samples
TL071ACD	LIFEBUY	SOIC	D	8	75	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	071AC	
TL071ACDG4	LIFEBUY	SOIC	D	8	75	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	071AC	
TL071ACDR	ACTIVE	SOIC	D	8	2500	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	071AC	Samples
TL071ACP	ACTIVE	PDIP	Р	8	50	RoHS & Green	NIPDAU	N / A for Pkg Type	0 to 70	TL071ACP	Samples
TL071BCD	LIFEBUY	SOIC	D	8	75	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	071BC	
TL071BCDR	ACTIVE	SOIC	D	8	2500	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	071BC	Samples
TL071BCP	ACTIVE	PDIP	Р	8	50	RoHS & Green	NIPDAU	N / A for Pkg Type	0 to 70	TL071BCP	Samples
TL071CD	LIFEBUY	SOIC	D	8	75	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	TL071C	
TL071CDR	ACTIVE	SOIC	D	8	2500	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	TL071C	Samples
TL071CDRE4	LIFEBUY	SOIC	D	8	2500	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	TL071C	
TL071CDRG4	LIFEBUY	SOIC	D	8	2500	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	TL071C	
TL071CP	ACTIVE	PDIP	Ρ	8	50	RoHS & Green	NIPDAU	N / A for Pkg Type	0 to 70	TL071CP	Samples

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead finish/ Ball material (6)	MSL Peak Temp (3)	Op Temp (°C)	Device Marking (4/5)	Samples
TL071CPE4	LIFEBUY	PDIP	Р	8	50	RoHS & Green	NIPDAU	N / A for Pkg Type	0 to 70	TL071CP	
TL071CPSR	ACTIVE	SO	PS	8	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	T071	Samples
TL071HIDBVR	ACTIVE	SOT-23	DBV	5	3000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	T71V	Samples
TL071HIDCKR	ACTIVE	SC70	DCK	5	3000	RoHS & Green	SN	Level-1-260C-UNLIM	-40 to 125	110	Samples
TL071HIDR	ACTIVE	SOIC	D	8	3000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	TL071D	Samples
TL071ID	LIFEBUY	SOIC	D	8	75	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	TL071I	
TL071IDR	ACTIVE	SOIC	D	8	2500	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	TL071I	Samples
TL071IDRG4	LIFEBUY	SOIC	D	8	2500	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	TL071I	
TL071IP	ACTIVE	PDIP	Р	8	50	RoHS & Green	NIPDAU	N / A for Pkg Type	-40 to 85	TL071IP	Samples
TL072ACD	LIFEBUY	SOIC	D	8	75	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	072AC	
TL072ACDE4	LIFEBUY	SOIC	D	8	75	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	072AC	
TL072ACDR	ACTIVE	SOIC	D	8	2500	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	072AC	Samples
TL072ACDRE4	ACTIVE	SOIC	D	8	2500	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	072AC	Samples
TL072ACDRG4	ACTIVE	SOIC	D	8	2500	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	072AC	Samples
TL072ACP	ACTIVE	PDIP	Р	8	50	RoHS & Green	NIPDAU	N / A for Pkg Type	0 to 70	TL072ACP	Samples
TL072ACPE4	LIFEBUY	PDIP	Р	8	50	RoHS & Green	NIPDAU	N / A for Pkg Type	0 to 70	TL072ACP	
TL072BCD	LIFEBUY	SOIC	D	8	75	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	072BC	
TL072BCDE4	LIFEBUY	SOIC	D	8	75	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	072BC	
TL072BCDG4	LIFEBUY	SOIC	D	8	75	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	072BC	
TL072BCDR	ACTIVE	SOIC	D	8	2500	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	072BC	Samples
TL072BCP	ACTIVE	PDIP	Р	8	50	RoHS & Green	NIPDAU	N / A for Pkg Type	0 to 70	TL072BCP	Samples
TL072CD	LIFEBUY	SOIC	D	8	75	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	TL072C	
TL072CDE4	LIFEBUY	SOIC	D	8	75	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	TL072C	
TL072CDG4	LIFEBUY	SOIC	D	8	75	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	TL072C	
TL072CDR	ACTIVE	SOIC	D	8	2500	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	TL072C	Samples

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead finish/ Ball material (6)	MSL Peak Temp (3)	Op Temp (°C)	Device Marking (4/5)	Samples
TL072CDRE4	LIFEBUY	SOIC	D	8	2500	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	TL072C	
TL072CDRG4	LIFEBUY	SOIC	D	8	2500	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	TL072C	
TL072CP	ACTIVE	PDIP	Р	8	50	RoHS & Green	NIPDAU	N / A for Pkg Type	0 to 70	TL072CP	Samples
TL072CPE4	LIFEBUY	PDIP	Р	8	50	RoHS & Green	NIPDAU	N / A for Pkg Type	0 to 70	TL072CP	
TL072CPS	ACTIVE	SO	PS	8	80	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	T072	Samples
TL072CPSR	ACTIVE	SO	PS	8	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	T072	Samples
TL072CPSRG4	ACTIVE	SO	PS	8	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	T072	Samples
TL072CPWR	ACTIVE	TSSOP	PW	8	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	T072	Samples
TL072CPWRE4	LIFEBUY	TSSOP	PW	8	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	T072	
TL072CPWRG4	LIFEBUY	TSSOP	PW	8	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	T072	
TL072HIDDFR	ACTIVE	SOT-23-THIN	DDF	8	3000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	072F	Samples
TL072HIDR	ACTIVE	SOIC	D	8	3000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	TL072D	Samples
TL072HIPWR	ACTIVE	TSSOP	PW	8	3000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	072HPW	Samples
TL072ID	LIFEBUY	SOIC	D	8	75	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	TL072I	
TL072IDE4	LIFEBUY	SOIC	D	8	75	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	TL072I	
TL072IDG4	LIFEBUY	SOIC	D	8	75	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	TL072I	
TL072IDR	ACTIVE	SOIC	D	8	2500	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	TL072I	Samples
TL072IDRE4	LIFEBUY	SOIC	D	8	2500	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	TL072I	
TL072IDRG4	LIFEBUY	SOIC	D	8	2500	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	TL072I	
TL072IP	ACTIVE	PDIP	Ρ	8	50	RoHS & Green	NIPDAU	N / A for Pkg Type	-40 to 85	TL072IP	Samples
TL072IPE4	LIFEBUY	PDIP	Р	8	50	RoHS & Green	NIPDAU	N / A for Pkg Type	-40 to 85	TL072IP	
TL072MFKB	ACTIVE	LCCC	FK	20	1	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	81023052A TL072MFKB	Samples
TL072MJG	ACTIVE	CDIP	JG	8	1	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	TL072MJG	Samples
TL072MJGB	ACTIVE	CDIP	JG	8	1	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	8102305PA TL072M	Samples

PACKAGE OPTION ADDENDUM

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead finish/ Ball material (6)	MSL Peak Temp (3)	Op Temp (°C)	Device Marking (4/5)	Samples
TL072MUB	ACTIVE	CFP	U	10	1	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	8102305HA TL072M	Samples
TL074ACD	LIFEBUY	SOIC	D	14	50	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	TL074AC	
TL074ACDE4	LIFEBUY	SOIC	D	14	50	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	TL074AC	
TL074ACDR	ACTIVE	SOIC	D	14	2500	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	TL074AC	Samples
TL074ACDRE4	LIFEBUY	SOIC	D	14	2500	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	TL074AC	
TL074ACN	ACTIVE	PDIP	N	14	25	RoHS & Green	NIPDAU	N / A for Pkg Type	0 to 70	TL074ACN	Samples
TL074ACNE4	LIFEBUY	PDIP	N	14	25	RoHS & Green	NIPDAU	N / A for Pkg Type	0 to 70	TL074ACN	
TL074ACNSR	ACTIVE	SO	NS	14	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	TL074A	Samples
TL074BCD	LIFEBUY	SOIC	D	14	50	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	TL074BC	
TL074BCDE4	LIFEBUY	SOIC	D	14	50	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	TL074BC	
TL074BCDR	ACTIVE	SOIC	D	14	2500	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	TL074BC	Samples
TL074BCDRE4	ACTIVE	SOIC	D	14	2500	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	TL074BC	Samples
TL074BCDRG4	ACTIVE	SOIC	D	14	2500	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	TL074BC	Samples
TL074BCN	ACTIVE	PDIP	N	14	25	RoHS & Green	NIPDAU	N / A for Pkg Type	0 to 70	TL074BCN	Samples
TL074BCNE4	LIFEBUY	PDIP	N	14	25	RoHS & Green	NIPDAU	N / A for Pkg Type	0 to 70	TL074BCN	
TL074CD	LIFEBUY	SOIC	D	14	50	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	TL074C	
TL074CDBR	ACTIVE	SSOP	DB	14	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	T074	Samples
TL074CDG4	LIFEBUY	SOIC	D	14	50	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	TL074C	
TL074CDR	ACTIVE	SOIC	D	14	2500	RoHS & Green	NIPDAU SN	Level-1-260C-UNLIM	0 to 70	TL074C	Samples
TL074CDRG4	ACTIVE	SOIC	D	14	2500	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	TL074C	Samples
TL074CN	ACTIVE	PDIP	N	14	25	RoHS & Green	NIPDAU	N / A for Pkg Type	0 to 70	TL074CN	Samples
TL074CNE4	LIFEBUY	PDIP	N	14	25	RoHS & Green	NIPDAU	N / A for Pkg Type	0 to 70	TL074CN	
TL074CNSR	ACTIVE	SO	NS	14	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	TL074	Samples
TL074CPW	LIFEBUY	TSSOP	PW	14	90	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	T074	

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead finish/ Ball material (6)	MSL Peak Temp (3)	Op Temp (°C)	Device Marking (4/5)	Samples
TL074CPWR	ACTIVE	TSSOP	PW	14	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	T074	Samples
TL074CPWRE4	ACTIVE	TSSOP	PW	14	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	T074	Samples
TL074CPWRG4	ACTIVE	TSSOP	PW	14	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	T074	Samples
TL074HIDR	ACTIVE	SOIC	D	14	2500	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	TL074HID	Samples
TL074HIDYYR	ACTIVE	SOT-23-THIN	DYY	14	3000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	T074HDYY	Samples
TL074HIPWR	ACTIVE	TSSOP	PW	14	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	TL074PW	Samples
TL074ID	LIFEBUY	SOIC	D	14	50	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	TL074I	
TL074IDE4	LIFEBUY	SOIC	D	14	50	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	TL074I	
TL074IDG4	LIFEBUY	SOIC	D	14	50	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	TL074I	
TL074IDR	ACTIVE	SOIC	D	14	2500	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	TL074I	Samples
TL074IDRE4	ACTIVE	SOIC	D	14	2500	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	TL074I	Samples
TL074IDRG4	ACTIVE	SOIC	D	14	2500	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	TL074I	Samples
TL074IN	ACTIVE	PDIP	Ν	14	25	RoHS & Green	NIPDAU	N / A for Pkg Type	-40 to 85	TL074IN	Samples
TL074MFK	ACTIVE	LCCC	FK	20	1	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	TL074MFK	Samples
TL074MFKB	ACTIVE	LCCC	FK	20	1	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	81023062A TL074MFKB	Samples
TL074MJ	ACTIVE	CDIP	J	14	1	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	TL074MJ	Samples
TL074MJB	ACTIVE	CDIP	J	14	1	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	8102306CA TL074MJB	Samples
TL074MWB	ACTIVE	CFP	W	14	1	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	8102306DA TL074MWB	Samples

⁽¹⁾ The marketing status values are defined as follows: **ACTIVE:** Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. **PREVIEW:** Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

⁽⁵⁾ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

⁽⁶⁾ Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF TL072, TL072M, TL074, TL074M :

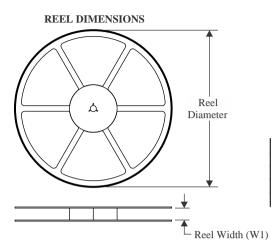
Catalog : TL072, TL074

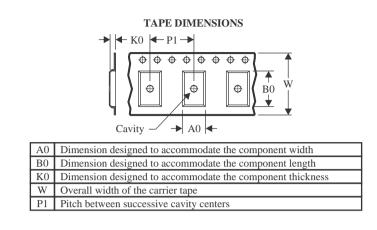
• Enhanced Product : TL072-EP, TL072-EP, TL074-EP, TL074-EP

• Military : TL072M, TL074M

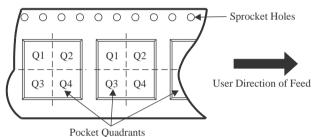
NOTE: Qualified Version Definitions:

Catalog - TI's standard catalog product




- Enhanced Product Supports Defense, Aerospace and Medical Applications
- Military QML certified for Military and Defense Applications

Texas

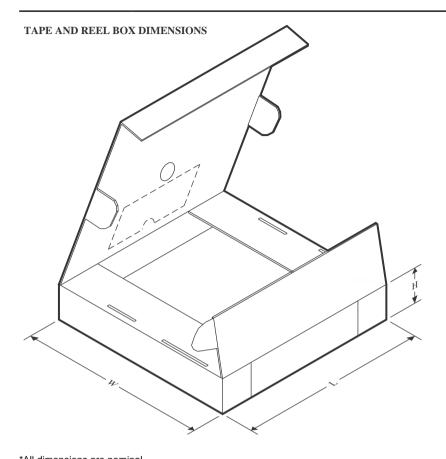

STRUMENTS

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

Device	-	Package Drawing		SPQ	Reel Diameter	Reel Width	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
	Туре	Drawing			(mm)	W1 (mm)	· ·	(11111)	(11111)	(1111)	(1111)	Quaurant
TL071ACDR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
TL071ACDR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
TL071BCDR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
TL071BCDR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
TL071CDR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
TL071CPSR	SO	PS	8	2000	330.0	16.4	8.35	6.6	2.4	12.0	16.0	Q1
TL071HIDBVR	SOT-23	DBV	5	3000	180.0	8.4	3.2	3.2	1.4	4.0	8.0	Q3
TL071HIDCKR	SC70	DCK	5	3000	178.0	9.0	2.4	2.5	1.2	4.0	8.0	Q3
TL071HIDR	SOIC	D	8	3000	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
TL071IDR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
TL071IDR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
TL072ACDR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
TL072ACDR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
TL072BCDR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
TL072CDR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
TL072CPSR	SO	PS	8	2000	330.0	16.4	8.35	6.6	2.4	12.0	16.0	Q1

PACKAGE MATERIALS INFORMATION



www.ti.com

Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TL072CPWR	TSSOP	PW	8	2000	330.0	12.4	7.0	3.6	1.6	8.0	12.0	Q1
TL072CPWR	TSSOP	PW	8	2000	330.0	12.4	7.0	3.6	1.6	8.0	12.0	Q1
TL072HIDDFR	SOT-23- THIN	DDF	8	3000	180.0	8.4	3.2	3.2	1.4	4.0	8.0	Q3
TL072HIDR	SOIC	D	8	3000	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
TL072HIPWR	TSSOP	PW	8	3000	330.0	12.4	7.0	3.6	1.6	8.0	12.0	Q1
TL072IDR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
TL074ACDR	SOIC	D	14	2500	330.0	16.4	6.5	9.0	2.1	8.0	16.0	Q1
TL074ACNSR	SO	NS	14	2000	330.0	16.4	8.2	10.5	2.5	12.0	16.0	Q1
TL074BCDR	SOIC	D	14	2500	330.0	16.4	6.5	9.0	2.1	8.0	16.0	Q1
TL074CDBR	SSOP	DB	14	2000	330.0	16.4	8.35	6.6	2.4	12.0	16.0	Q1
TL074CDR	SOIC	D	14	2500	330.0	16.4	6.5	9.0	2.1	8.0	16.0	Q1
TL074CDRG4	SOIC	D	14	2500	330.0	16.4	6.5	9.0	2.1	8.0	16.0	Q1
TL074CNSR	SO	NS	14	2000	330.0	16.4	8.2	10.5	2.5	12.0	16.0	Q1
TL074CPWR	TSSOP	PW	14	2000	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1
TL074HIDR	SOIC	D	14	2500	330.0	16.4	6.5	9.0	2.1	8.0	16.0	Q1
TL074HIDYYR	SOT-23- THIN	DYY	14	3000	330.0	12.4	4.8	3.6	1.6	8.0	12.0	Q3
TL074HIPWR	TSSOP	PW	14	2000	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1
TL074IDR	SOIC	D	14	2500	330.0	16.4	6.5	9.0	2.1	8.0	16.0	Q1

PACKAGE MATERIALS INFORMATION

*All dimensions are nominal	Deckers Tree	Deckers Drewing	Dine	600			
Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
TL071ACDR	SOIC	D	8	2500	356.0	356.0	35.0
TL071ACDR	SOIC	D	8	2500	340.5	336.1	25.0
TL071BCDR	SOIC	D	8	2500	340.5	336.1	25.0
TL071BCDR	SOIC	D	8	2500	356.0	356.0	35.0
TL071CDR	SOIC	D	8	2500	340.5	336.1	25.0
TL071CPSR	SO	PS	8	2000	356.0	356.0	35.0
TL071HIDBVR	SOT-23	DBV	5	3000	210.0	185.0	35.0
TL071HIDCKR	SC70	DCK	5	3000	190.0	190.0	30.0
TL071HIDR	SOIC	D	8	3000	356.0	356.0	35.0
TL071IDR	SOIC	D	8	2500	340.5	336.1	25.0
TL071IDR	SOIC	D	8	2500	356.0	356.0	35.0
TL072ACDR	SOIC	D	8	2500	356.0	356.0	35.0
TL072ACDR	SOIC	D	8	2500	340.5	336.1	25.0
TL072BCDR	SOIC	D	8	2500	340.5	336.1	25.0
TL072CDR	SOIC	D	8	2500	340.5	336.1	25.0
TL072CPSR	SO	PS	8	2000	356.0	356.0	35.0
TL072CPWR	TSSOP	PW	8	2000	356.0	356.0	35.0
TL072CPWR	TSSOP	PW	8	2000	356.0	356.0	35.0

PACKAGE MATERIALS INFORMATION

www.ti.com

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
TL072HIDDFR	SOT-23-THIN	DDF	8	3000	210.0	185.0	35.0
TL072HIDR	SOIC	D	8	3000	356.0	356.0	35.0
TL072HIPWR	TSSOP	PW	8	3000	356.0	356.0	35.0
TL072IDR	SOIC	D	8	2500	340.5	336.1	25.0
TL074ACDR	SOIC	D	14	2500	340.5	336.1	32.0
TL074ACNSR	SO	NS	14	2000	356.0	356.0	35.0
TL074BCDR	SOIC	D	14	2500	340.5	336.1	32.0
TL074CDBR	SSOP	DB	14	2000	356.0	356.0	35.0
TL074CDR	SOIC	D	14	2500	340.5	336.1	32.0
TL074CDRG4	SOIC	D	14	2500	340.5	336.1	32.0
TL074CNSR	SO	NS	14	2000	356.0	356.0	35.0
TL074CPWR	TSSOP	PW	14	2000	356.0	356.0	35.0
TL074HIDR	SOIC	D	14	2500	356.0	356.0	35.0
TL074HIDYYR	SOT-23-THIN	DYY	14	3000	336.6	336.6	31.8
TL074HIPWR	TSSOP	PW	14	2000	356.0	356.0	35.0
TL074IDR	SOIC	D	14	2500	340.5	336.1	32.0

TEXAS INSTRUMENTS

www.ti.com

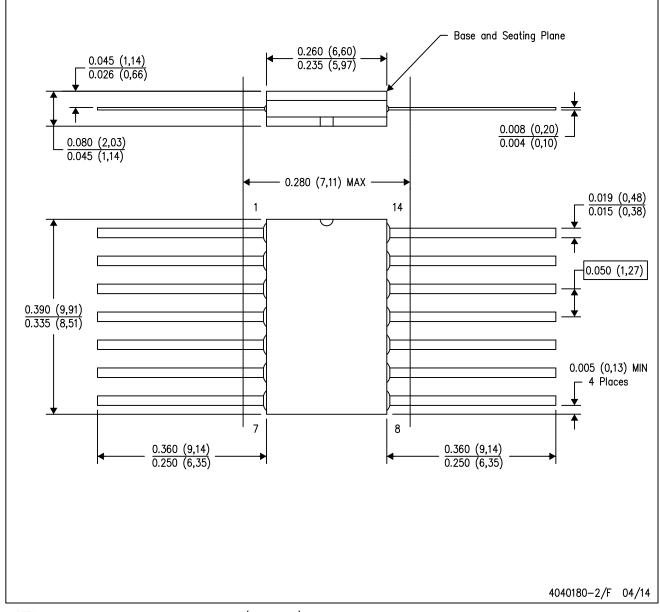
TUBE

- B - Alignment groove width

*All dimensions are nomina	
----------------------------	--

Device	Package Name	Package Type	Pins	SPQ	L (mm)	W (mm)	Τ (μm)	B (mm)
81023052A	FK	LCCC	20	1	506.98	12.06	2030	NA
8102305HA	U	CFP	10	1	506.98	26.16	6220	NA
81023062A	FK	LCCC	20	1	506.98	12.06	2030	NA
8102306DA	W	CFP	14	1	506.98	26.16	6220	NA
TL071ACD	D	SOIC	8	75	507	8	3940	4.32
TL071ACDG4	D	SOIC	8	75	507	8	3940	4.32
TL071ACP	Р	PDIP	8	50	506	13.97	11230	4.32
TL071BCD	D	SOIC	8	75	507	8	3940	4.32
TL071BCP	Р	PDIP	8	50	506	13.97	11230	4.32
TL071CD	D	SOIC	8	75	506.6	8	3940	4.32
TL071CD	D	SOIC	8	75	507	8	3940	4.32
TL071CP	Р	PDIP	8	50	506	13.97	11230	4.32
TL071CPE4	Р	PDIP	8	50	506	13.97	11230	4.32
TL071ID	D	SOIC	8	75	507	8	3940	4.32
TL071IP	Р	PDIP	8	50	506	13.97	11230	4.32
TL072ACD	D	SOIC	8	75	507	8	3940	4.32
TL072ACDE4	D	SOIC	8	75	507	8	3940	4.32
TL072ACP	Р	PDIP	8	50	506	13.97	11230	4.32
TL072ACPE4	Р	PDIP	8	50	506	13.97	11230	4.32
TL072BCD	D	SOIC	8	75	507	8	3940	4.32
TL072BCDE4	D	SOIC	8	75	507	8	3940	4.32
TL072BCDG4	D	SOIC	8	75	507	8	3940	4.32
TL072BCP	Р	PDIP	8	50	506	13.97	11230	4.32
TL072CD	D	SOIC	8	75	506.6	8	3940	4.32
TL072CD	D	SOIC	8	75	507	8	3940	4.32
TL072CDE4	D	SOIC	8	75	507	8	3940	4.32
TL072CDE4	D	SOIC	8	75	506.6	8	3940	4.32
TL072CDG4	D	SOIC	8	75	506.6	8	3940	4.32
TL072CDG4	D	SOIC	8	75	507	8	3940	4.32

PACKAGE MATERIALS INFORMATION



www.ti.com

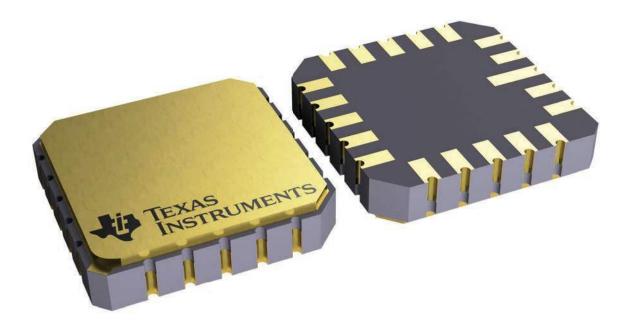
Device	Package Name	Package Type	Pins	SPQ	L (mm)	W (mm)	Τ (μm)	B (mm)
TL072CP	Р	PDIP	8	50	506	13.97	11230	4.32
TL072CPE4	Р	PDIP	8	50	506	13.97	11230	4.32
TL072CPS	PS	SOP	8	80	530	10.5	4000	4.1
TL072ID	D	SOIC	8	75	507	8	3940	4.32
TL072ID	D	SOIC	8	75	506.6	8	3940	4.32
TL072IDE4	D	SOIC	8	75	507	8	3940	4.32
TL072IDE4	D	SOIC	8	75	506.6	8	3940	4.32
TL072IDG4	D	SOIC	8	75	507	8	3940	4.32
TL072IDG4	D	SOIC	8	75	506.6	8	3940	4.32
TL072IP	Р	PDIP	8	50	506	13.97	11230	4.32
TL072IPE4	Р	PDIP	8	50	506	13.97	11230	4.32
TL072MFKB	FK	LCCC	20	1	506.98	12.06	2030	NA
TL072MUB	U	CFP	10	1	506.98	26.16	6220	NA
TL074ACD	D	SOIC	14	50	507	8	3940	4.32
TL074ACDE4	D	SOIC	14	50	507	8	3940	4.32
TL074ACN	N	PDIP	14	25	506	13.97	11230	4.32
TL074ACNE4	N	PDIP	14	25	506	13.97	11230	4.32
TL074BCD	D	SOIC	14	50	507	8	3940	4.32
TL074BCDE4	D	SOIC	14	50	507	8	3940	4.32
TL074BCN	N	PDIP	14	25	506	13.97	11230	4.32
TL074BCNE4	N	PDIP	14	25	506	13.97	11230	4.32
TL074CD	D	SOIC	14	50	507	8	3940	4.32
TL074CDG4	D	SOIC	14	50	507	8	3940	4.32
TL074CN	N	PDIP	14	25	506	13.97	11230	4.32
TL074CN	N	PDIP	14	25	506	13.97	11230	4.32
TL074CNE4	N	PDIP	14	25	506	13.97	11230	4.32
TL074CNE4	N	PDIP	14	25	506	13.97	11230	4.32
TL074CPW	PW	TSSOP	14	90	530	10.2	3600	3.5
TL074ID	D	SOIC	14	50	507	8	3940	4.32
TL074IDE4	D	SOIC	14	50	507	8	3940	4.32
TL074IDG4	D	SOIC	14	50	507	8	3940	4.32
TL074IN	N	PDIP	14	25	506	13.97	11230	4.32
TL074MFK	FK	LCCC	20	1	506.98	12.06	2030	NA
TL074MFKB	FK	LCCC	20	1	506.98	12.06	2030	NA
TL074MWB	W	CFP	14	1	506.98	26.16	6220	NA

W (R-GDFP-F14)

CERAMIC DUAL FLATPACK

- NOTES: A. All linear dimensions are in inches (millimeters).
 - B. This drawing is subject to change without notice.
 - C. This package can be hermetically sealed with a ceramic lid using glass frit.
 - D. Index point is provided on cap for terminal identification only.
 - E. Falls within MIL STD 1835 GDFP1-F14

FK 20

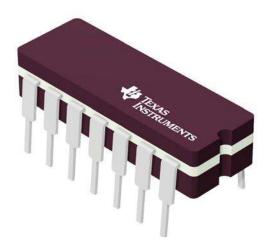

8.89 x 8.89, 1.27 mm pitch

GENERIC PACKAGE VIEW

LCCC - 2.03 mm max height

LEADLESS CERAMIC CHIP CARRIER

This image is a representation of the package family, actual package may vary. Refer to the product data sheet for package details.

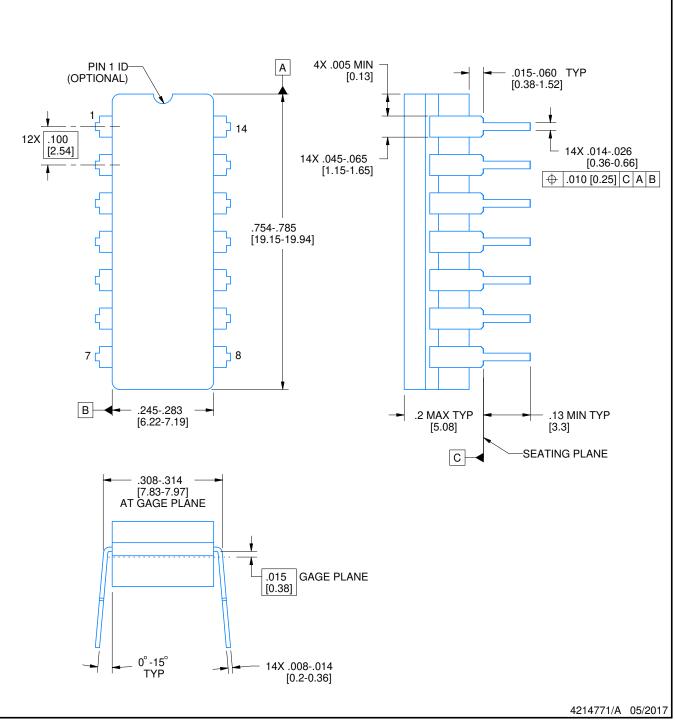


GENERIC PACKAGE VIEW

CDIP - 5.08 mm max height

CERAMIC DUAL IN LINE PACKAGE

Images above are just a representation of the package family, actual package may vary. Refer to the product data sheet for package details.


J0014A

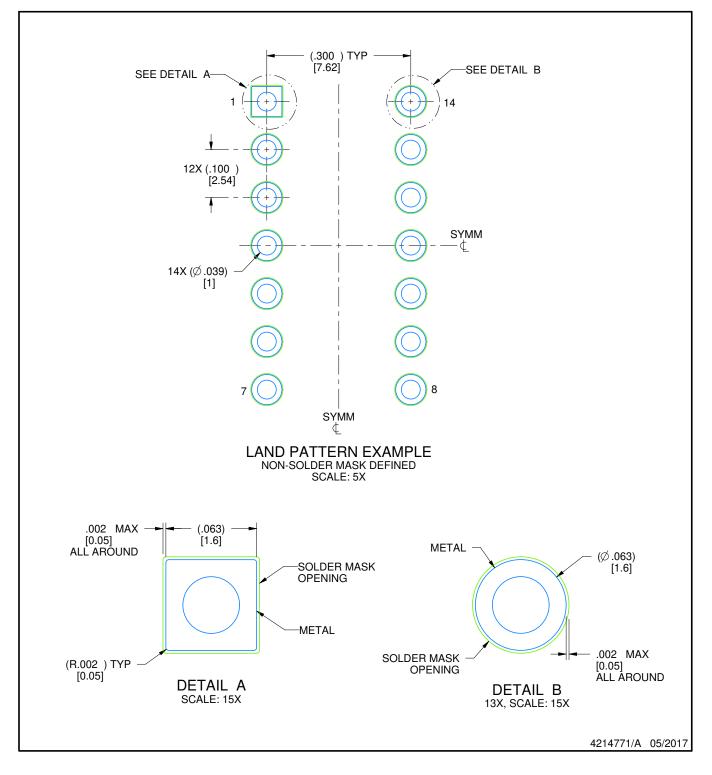
PACKAGE OUTLINE

CDIP - 5.08 mm max height

CERAMIC DUAL IN LINE PACKAGE

NOTES:

- 1. All controlling linear dimensions are in inches. Dimensions in brackets are in millimeters. Any dimension in brackets or parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
- 2. This drawing is subject to change without notice.
- 3. This package is hermitically sealed with a ceramic lid using glass frit.
- Index point is provided on cap for terminal identification only and on press ceramic glass frit seal only.
 Falls within MIL-STD-1835 and GDIP1-T14.

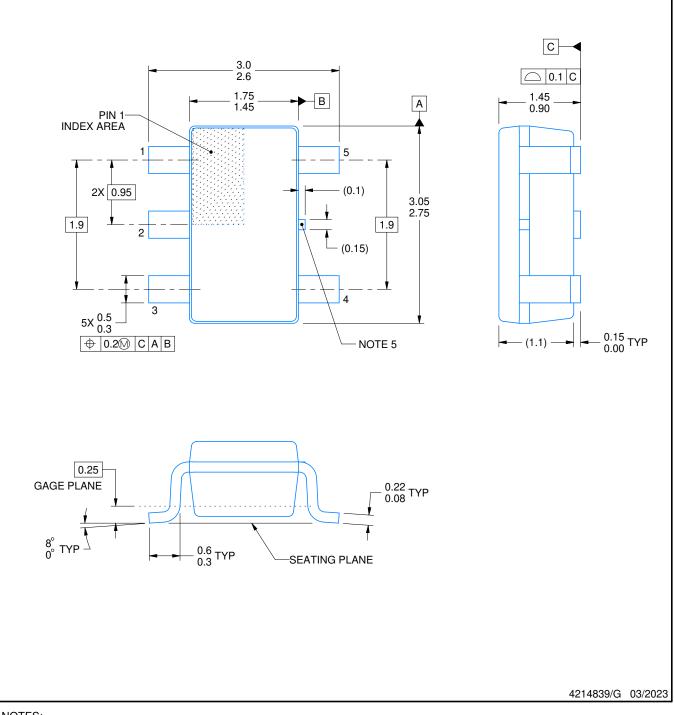


J0014A

EXAMPLE BOARD LAYOUT

CDIP - 5.08 mm max height

CERAMIC DUAL IN LINE PACKAGE


DBV0005A

PACKAGE OUTLINE

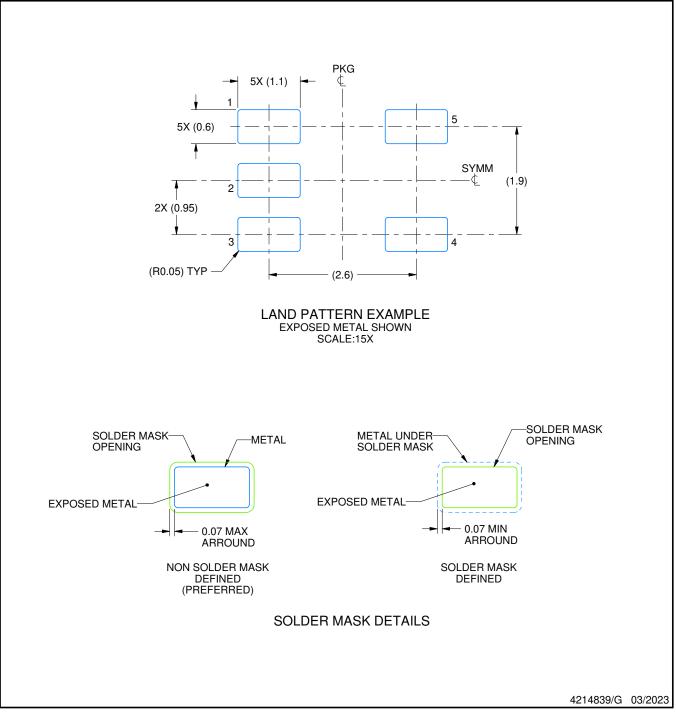
SOT-23 - 1.45 mm max height

SMALL OUTLINE TRANSISTOR

NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.This drawing is subject to change without notice.Refernce JEDEC MO-178.

- 4. Body dimensions do not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.25 mm per side.
- 5. Support pin may differ or may not be present.



DBV0005A

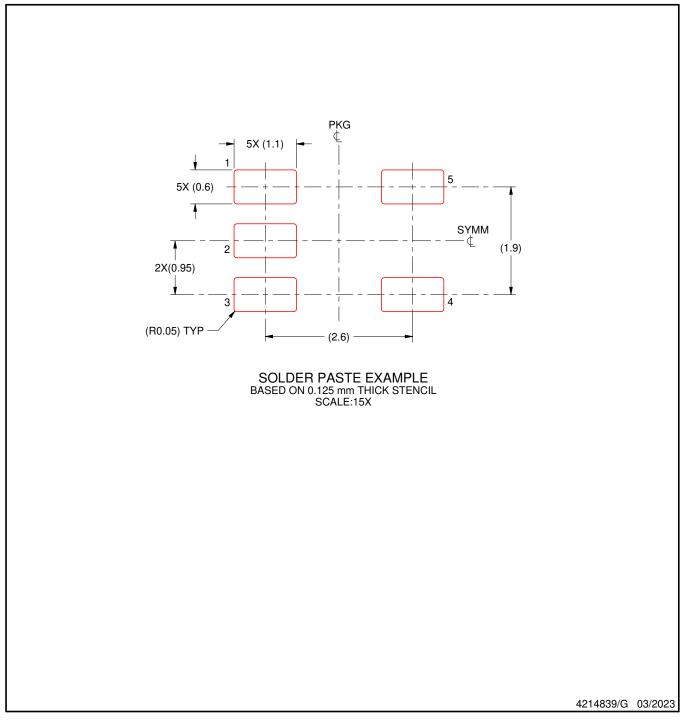
EXAMPLE BOARD LAYOUT

SOT-23 - 1.45 mm max height

SMALL OUTLINE TRANSISTOR

NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.



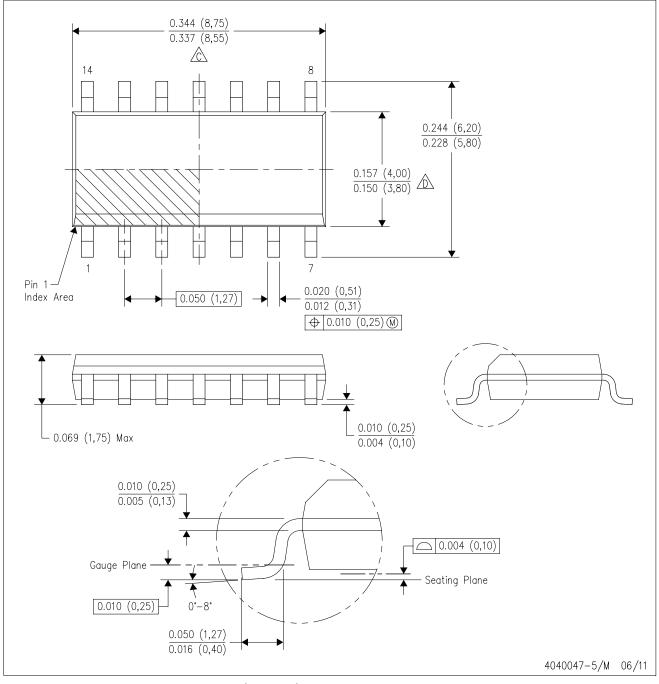
DBV0005A

EXAMPLE STENCIL DESIGN

SOT-23 - 1.45 mm max height

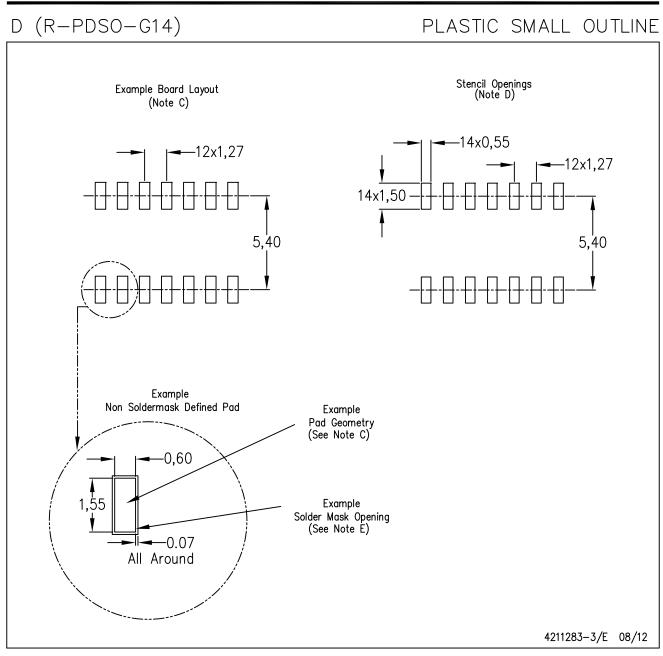
SMALL OUTLINE TRANSISTOR

NOTES: (continued)


8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

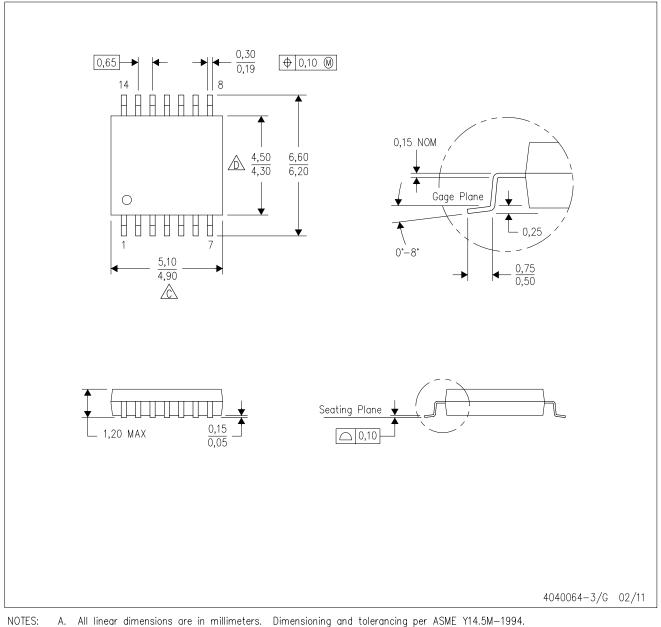
9. Board assembly site may have different recommendations for stencil design.

D (R-PDSO-G14)


PLASTIC SMALL OUTLINE

NOTES: A. All linear dimensions are in inches (millimeters).

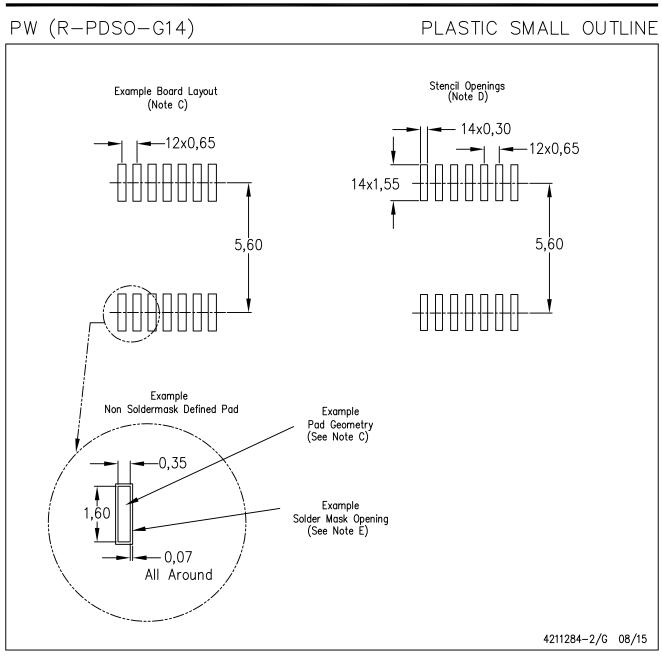
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side.
- E. Reference JEDEC MS-012 variation AB.


NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
 E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

PW (R-PDSO-G14)

PLASTIC SMALL OUTLINE


A. An integration of the information o

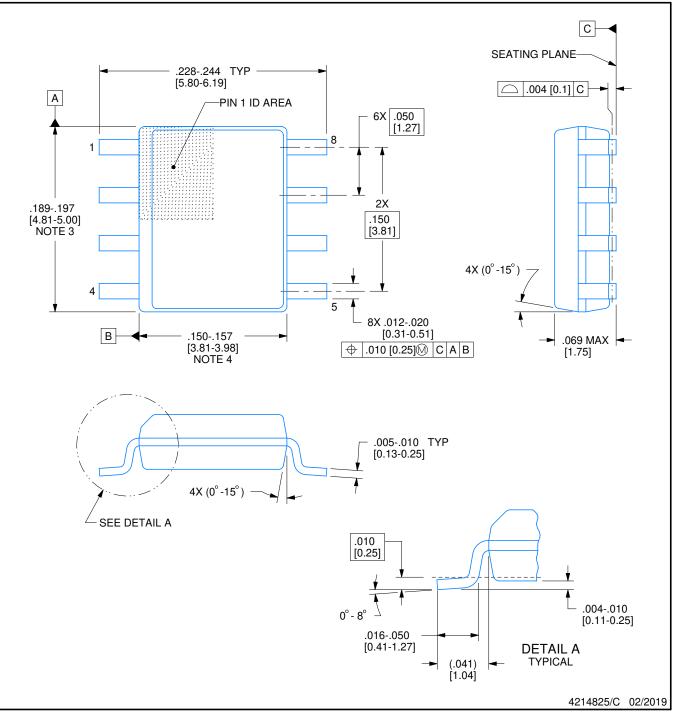
Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0,15 each side.

Body width does not include interlead flash. Interlead flash shall not exceed 0,25 each side.

E. Falls within JEDEC MO-153

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.


D0008A

PACKAGE OUTLINE

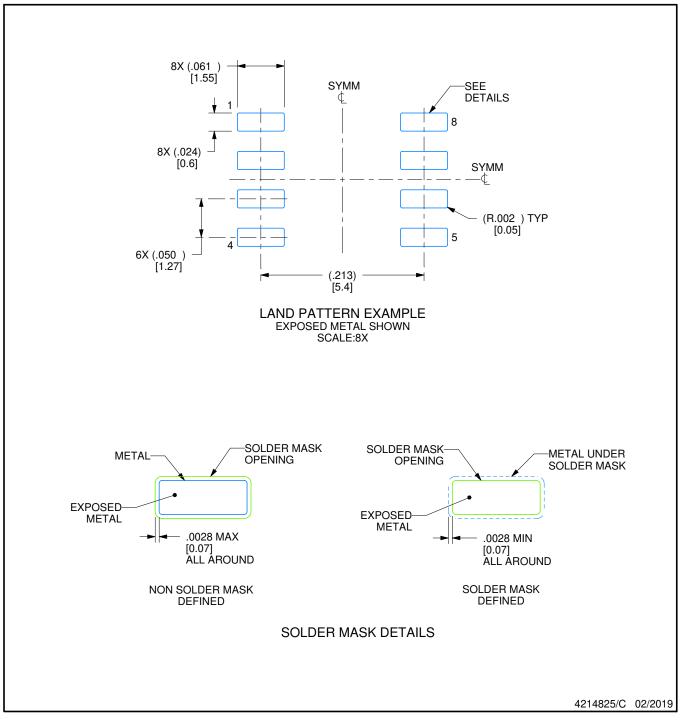
SOIC - 1.75 mm max height

SMALL OUTLINE INTEGRATED CIRCUIT

NOTES:

1. Linear dimensions are in inches [millimeters]. Dimensions in parenthesis are for reference only. Controlling dimensions are in inches. Dimensioning and tolerancing per ASME Y14.5M.

- 2. This drawing is subject to change without notice.
- 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed .006 [0.15] per side.
- This dimension does not include interlead flash.
 Reference JEDEC registration MS-012, variation AA.



D0008A

EXAMPLE BOARD LAYOUT

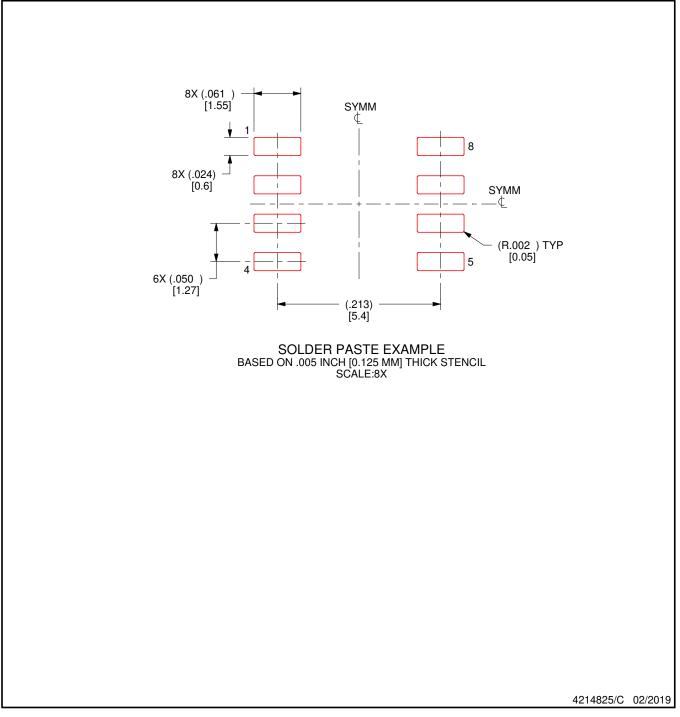
SOIC - 1.75 mm max height

SMALL OUTLINE INTEGRATED CIRCUIT

NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.



D0008A

EXAMPLE STENCIL DESIGN

SOIC - 1.75 mm max height

SMALL OUTLINE INTEGRATED CIRCUIT

NOTES: (continued)

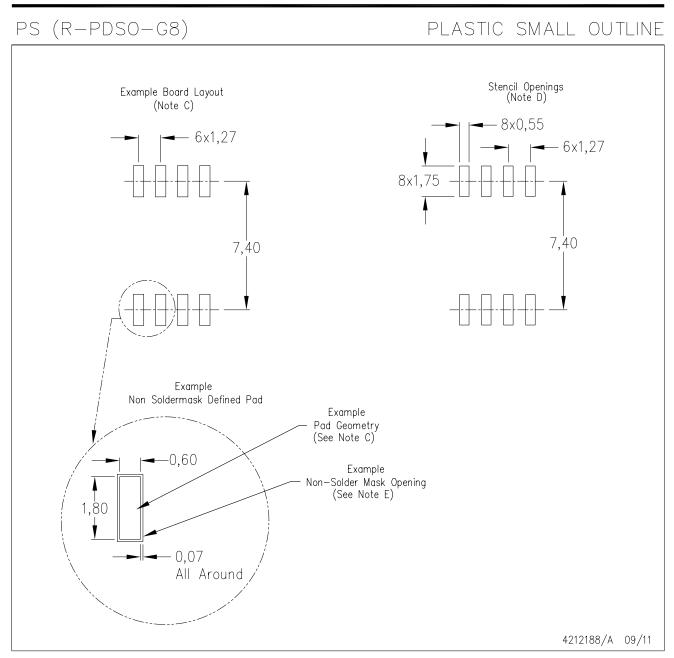
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

9. Board assembly site may have different recommendations for stencil design.

MECHANICAL DATA

PS (R-PDSO-G8)

PLASTIC SMALL-OUTLINE PACKAGE



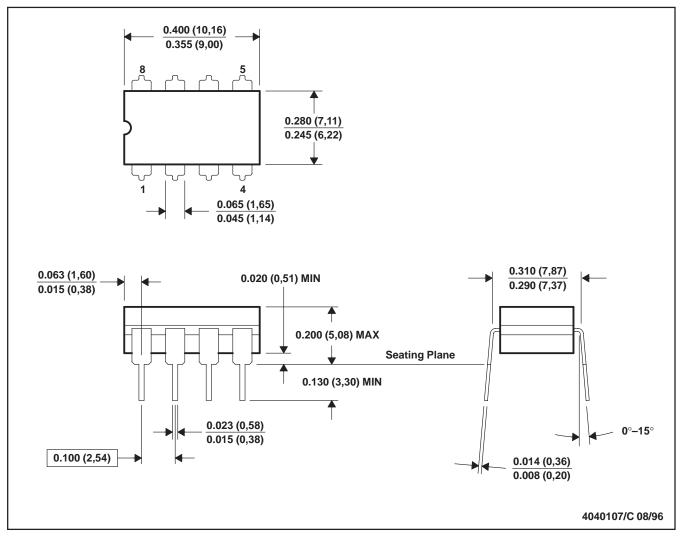
A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15.

NOTES:

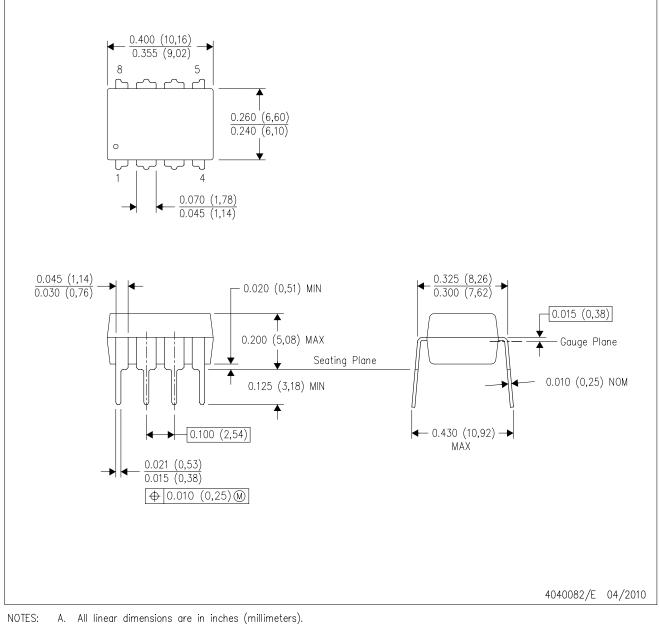
- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
 E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.



MECHANICAL DATA

MCER001A - JANUARY 1995 - REVISED JANUARY 1997

CERAMIC DUAL-IN-LINE


NOTES: A. All linear dimensions are in inches (millimeters).

- B. This drawing is subject to change without notice.
- C. This package can be hermetically sealed with a ceramic lid using glass frit.
- D. Index point is provided on cap for terminal identification.
- E. Falls within MIL STD 1835 GDIP1-T8

P(R-PDIP-T8)

PLASTIC DUAL-IN-LINE PACKAGE

- A. All linear dimensions are in inches (millimeters).B. This drawing is subject to change without notice.
- C. Falls within JEDEC MS-001 variation BA.

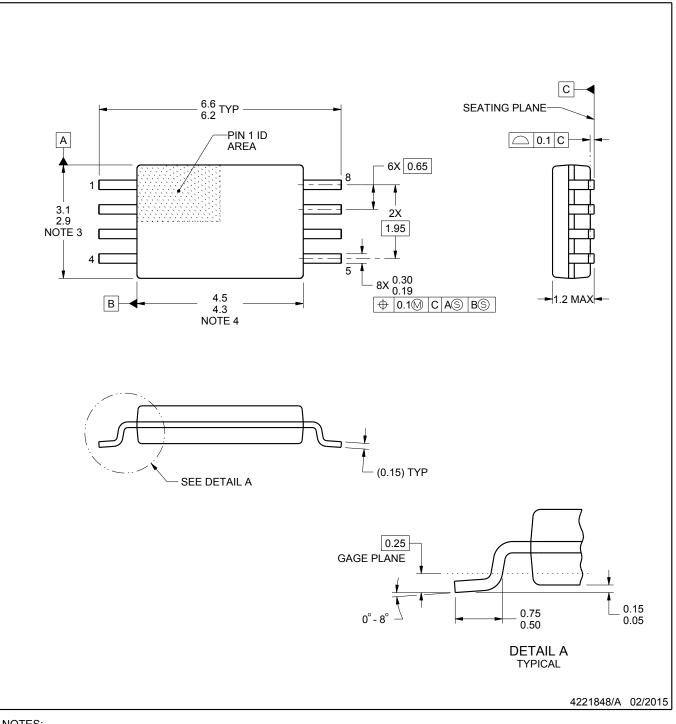
N (R-PDIP-T**)

PLASTIC DUAL-IN-LINE PACKAGE

16 PINS SHOWN

NOTES:

- A. All linear dimensions are in inches (millimeters).B. This drawing is subject to change without notice.
- Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A).
- \triangle The 20 pin end lead shoulder width is a vendor option, either half or full width.


PW0008A

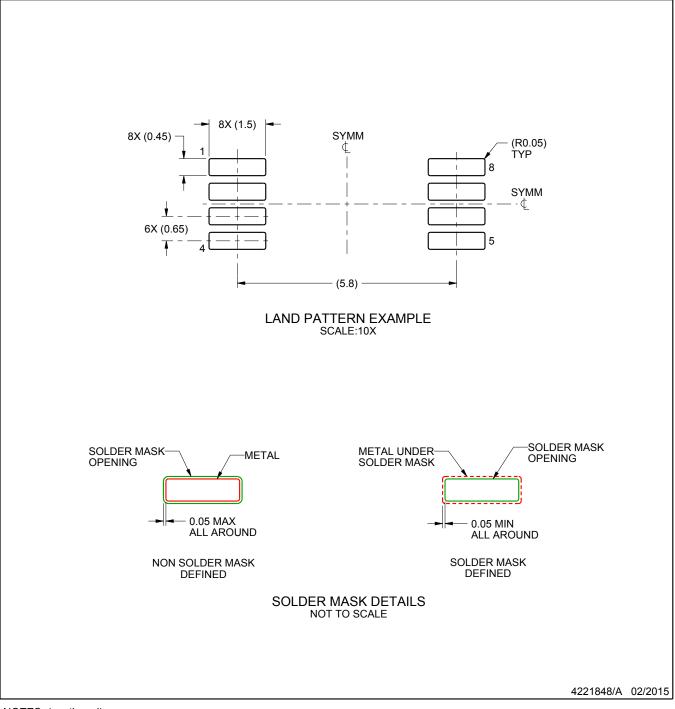
PACKAGE OUTLINE

TSSOP - 1.2 mm max height

SMALL OUTLINE PACKAGE

NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice. 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.
- 5. Reference JEDEC registration MO-153, variation AA.



PW0008A

EXAMPLE BOARD LAYOUT

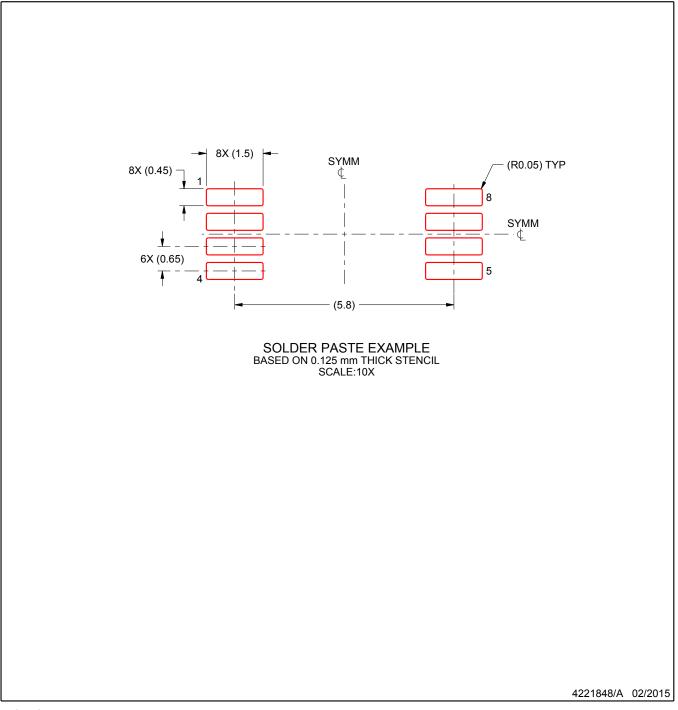
TSSOP - 1.2 mm max height

SMALL OUTLINE PACKAGE

NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.



PW0008A

EXAMPLE STENCIL DESIGN

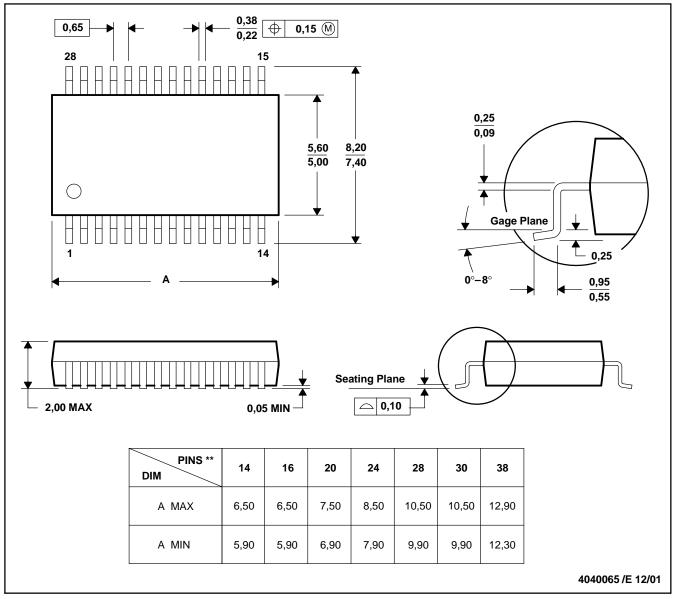
TSSOP - 1.2 mm max height

SMALL OUTLINE PACKAGE

NOTES: (continued)

9. Board assembly site may have different recommendations for stencil design.

^{8.} Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.


MECHANICAL DATA

MSSO002E - JANUARY 1995 - REVISED DECEMBER 2001

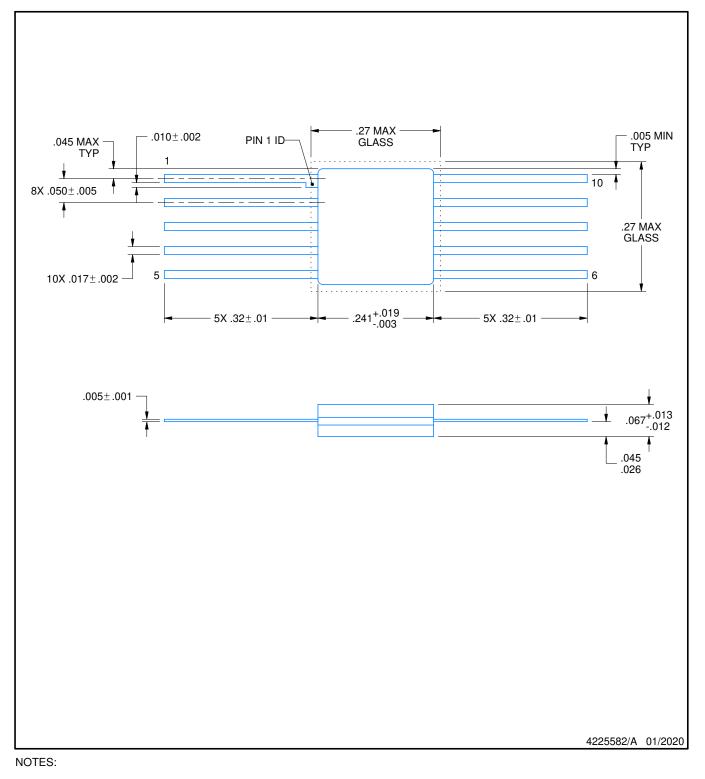
DB (R-PDSO-G**)

PLASTIC SMALL-OUTLINE

28 PINS SHOWN

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.
- D. Falls within JEDEC MO-150

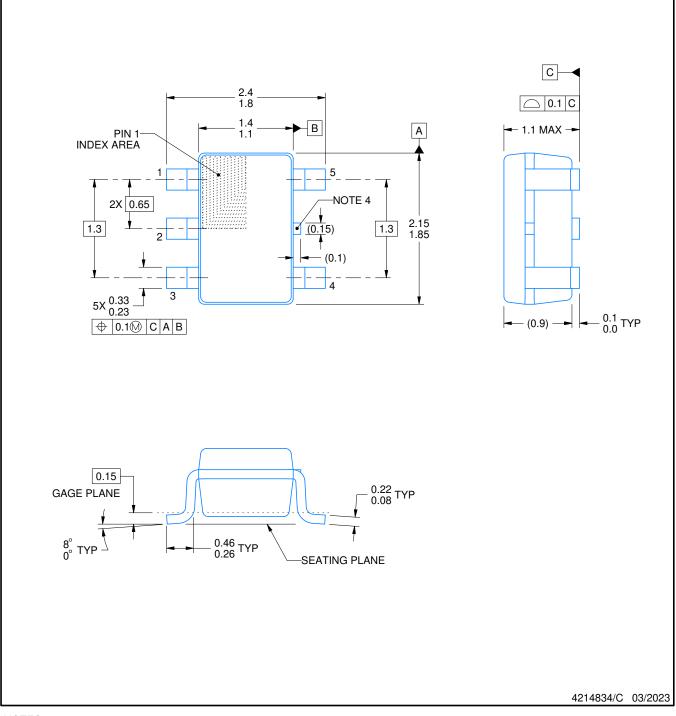

U0010A

PACKAGE OUTLINE

CFP - 2.03 mm max height

CERAMIC FLATPACK

1. All linear dimensions are in inches. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice.


DCK0005A

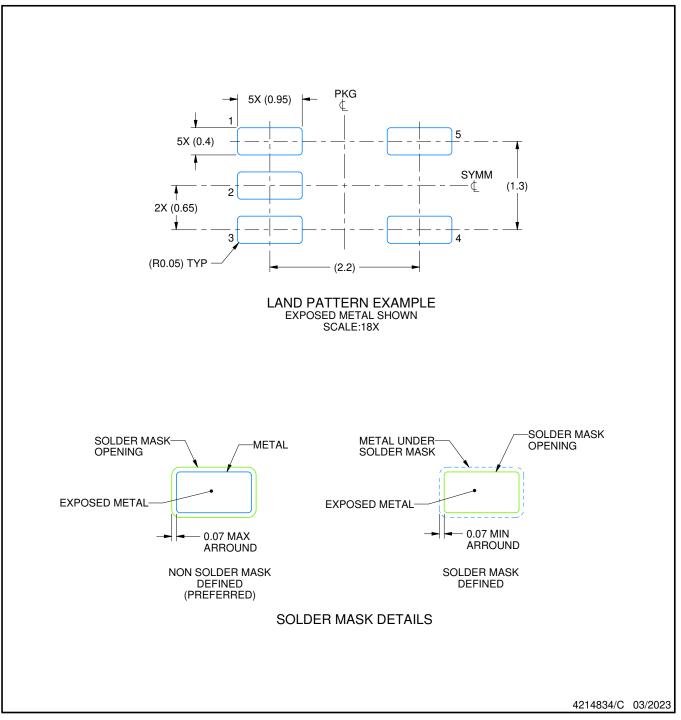
PACKAGE OUTLINE

SOT - 1.1 max height

SMALL OUTLINE TRANSISTOR

NOTES:

- All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
 This drawing is subject to change without notice.
 Reference JEDEC MO-203.
 Support pin may differ or may not be present.



DCK0005A

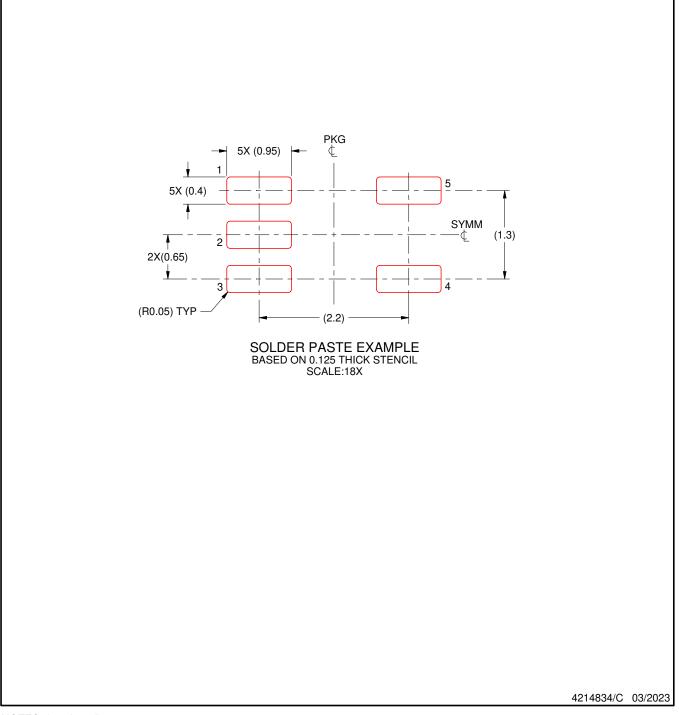
EXAMPLE BOARD LAYOUT

SOT - 1.1 max height

SMALL OUTLINE TRANSISTOR

NOTES: (continued)

4. Publication IPC-7351 may have alternate designs.5. Solder mask tolerances between and around signal pads can vary based on board fabrication site.



DCK0005A

EXAMPLE STENCIL DESIGN

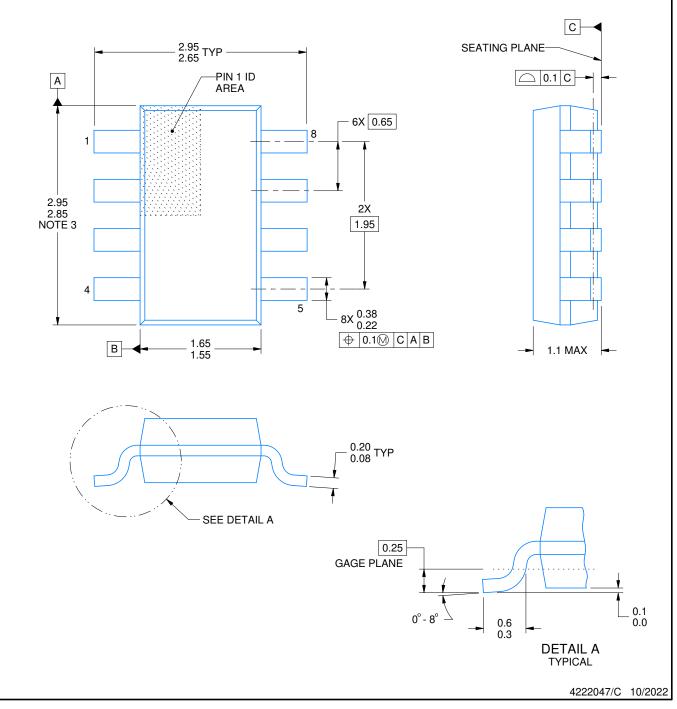
SOT - 1.1 max height

SMALL OUTLINE TRANSISTOR

NOTES: (continued)

7. Board assembly site may have different recommendations for stencil design.

^{6.} Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.


DDF0008A

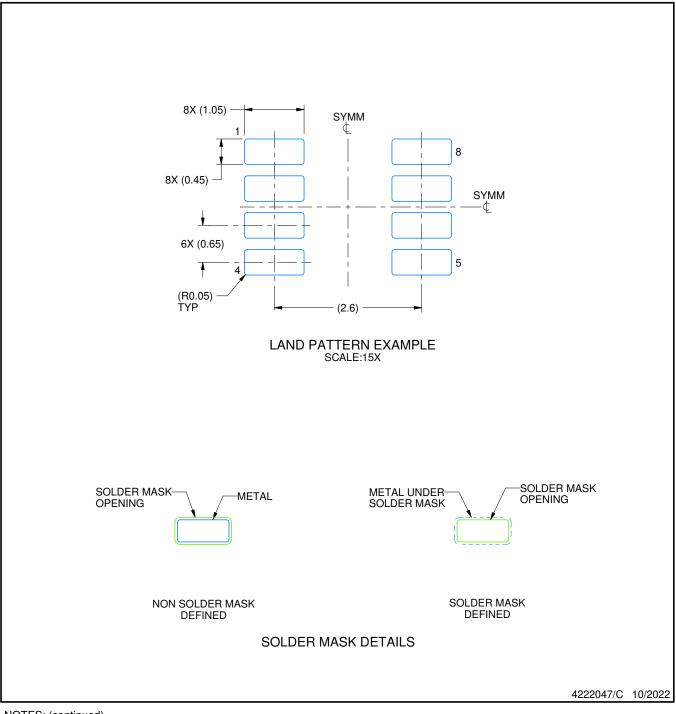
PACKAGE OUTLINE

SOT-23 - 1.1 mm max height

PLASTIC SMALL OUTLINE

NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice. 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.



DDF0008A

EXAMPLE BOARD LAYOUT

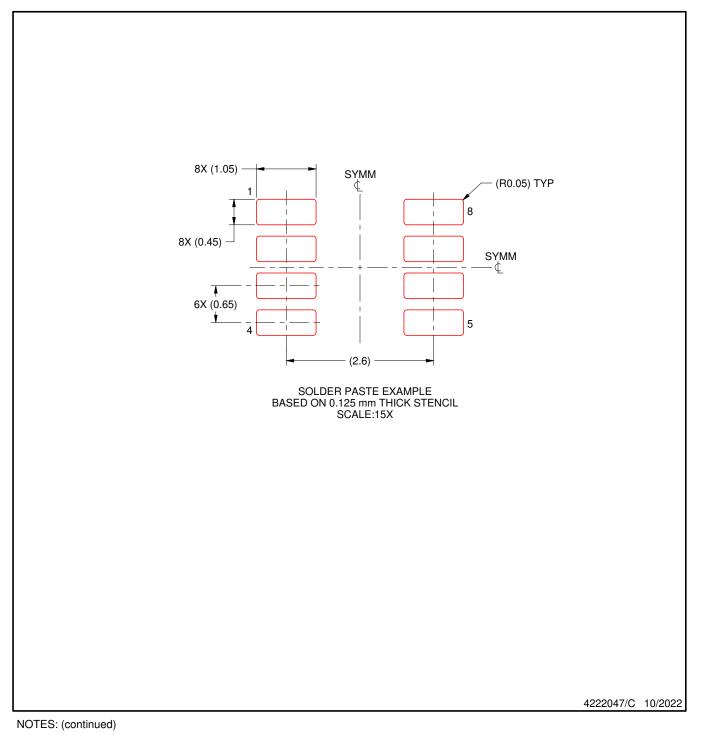
SOT-23 - 1.1 mm max height

PLASTIC SMALL OUTLINE

NOTES: (continued)

4. Publication IPC-7351 may have alternate designs.

5. Solder mask tolerances between and around signal pads can vary based on board fabrication site.



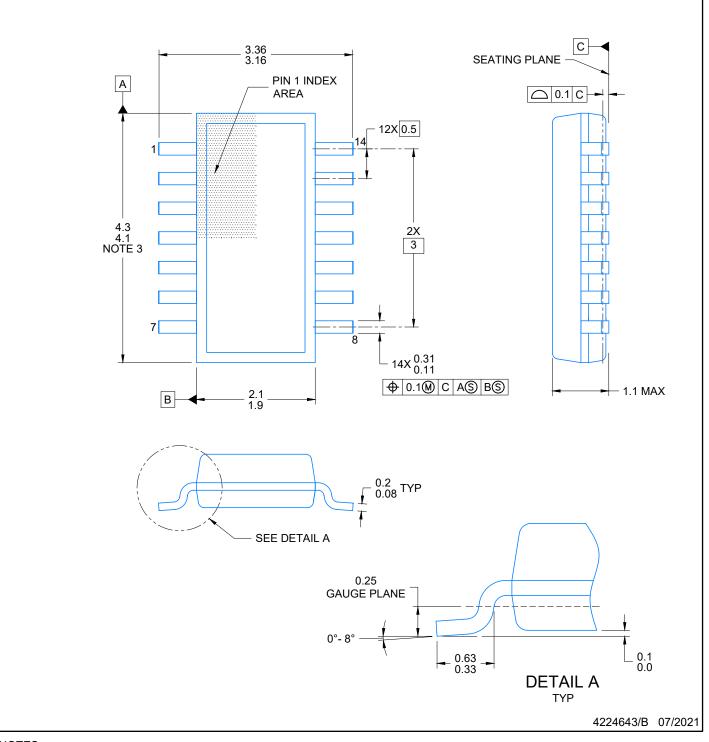
DDF0008A

EXAMPLE STENCIL DESIGN

SOT-23 - 1.1 mm max height

PLASTIC SMALL OUTLINE

^{6.} Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.



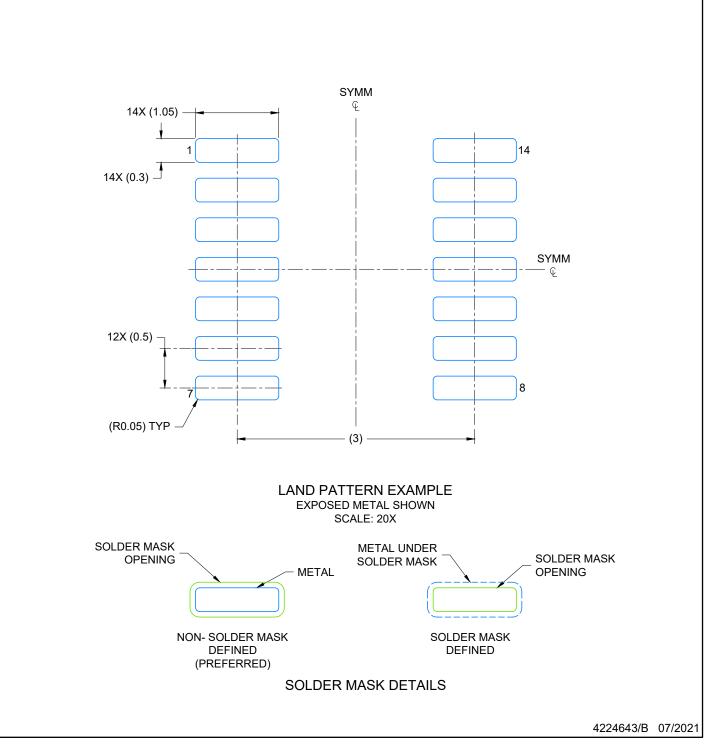
^{7.} Board assembly site may have different recommendations for stencil design.

DYY0014A

PACKAGE OUTLINE SOT-23-THIN - 1.1 mm max height

PLASTIC SMALL OUTLINE

NOTES:

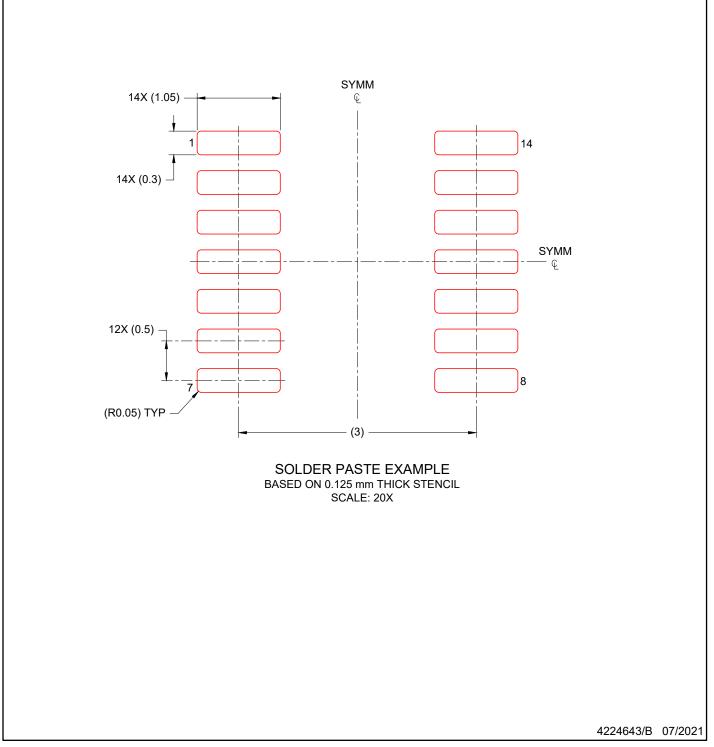

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
- 2. This drawing is subject to change without notice.
- 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.50 per side.
- 5. Reference JEDEC Registration MO-345, Variation AB

DYY0014A

EXAMPLE BOARD LAYOUT SOT-23-THIN - 1.1 mm max height

PLASTIC SMALL OUTLINE

NOTES: (continued)


- 6. Publication IPC-7351 may have alternate designs.
- 7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

DYY0014A

EXAMPLE STENCIL DESIGN SOT-23-THIN - 1.1 mm max height

PLASTIC SMALL OUTLINE

NOTES: (continued)

- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.

MECHANICAL DATA

PLASTIC SMALL-OUTLINE PACKAGE

0,51 0,35 ⊕0,25⊛ 1,27 8 14 0,15 NOM 5,60 8,20 5,00 7,40 \bigcirc Gage Plane ₽ 0,25 7 1 1,05 0,55 0°-10° Δ 0,15 0,05 Seating Plane — 2,00 MAX 0,10PINS ** 14 16 20 24 DIM 10,50 10,50 12,90 15,30 A MAX A MIN 9,90 9,90 12,30 14,70 4040062/C 03/03

NOTES: A. All linear dimensions are in millimeters.

NS (R-PDSO-G**)

14-PINS SHOWN

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2023, Texas Instruments Incorporated