Broadband Low Noise Gain Block, 16 dB 0.03 - 8 GHz

MAAM-011305

Rev. V2

Features

- 16 dB flat Broadband Gain to 8 GHz
- Low Noise Figure:
 - 1.7 dB Noise Figure to 1.5 GHz
 - 2.5 dB Noise Figure @ 6 GHz
 - 3.4 dB Noise Figure @ 8 GHz
- High Linearity OIP3:
 - 35 dBm @ 2.5 GHz
 - 32 dBm @ 6 GHz
 - 27 dBm @ 8 GHz
- Internal Matching to 50 Ω
- Single Voltage Bias: 3 5 V
- Integrated Active Bias Circuit
- Current Adjustable 25 90 mA
- Lead-Free 2 mm 8-LD PDFN Package
- Halogen-Free "Green" Mold Compound
- RoHS* Compliant

Description

The MAAM-011305 is a broadband, low noise, high dynamic range, single stage MMIC gain block assembled in a lead-free 2 mm 8-LD PDFN plastic package. The amplifier is internally matched to provide flat gain and good return losses to 8 GHz without any external matching components. Use of external matching could extend usable frequency range beyond 8 GHz.

This amplifier has an integrated active bias circuit allowing direct connection to 3 V or 5 V bias and minimizing variations over temperature and process. The bias current can be set by an optional external resistor, so the user can customize the power consumption to fit the application. V_{BIAS} can be utilized as an enable pin to power the device up and down during operation.

Functional Block Diagram

Pin Configuration^{1,2}

Pin#	Pin Name	Description
1, 3, 4, 6, 8	N/C	No Connection
2	RF _{IN}	RF Input
5	V _{BIAS}	Bias Voltage
7	RF _{OUT} /V _{DD}	RF Output / Drain Voltage

- MACOM recommends connecting all No Connection (N/C) pins to ground.
- The exposed pad centered on the package bottom must be connected to RF, DC and thermal ground.

Ordering Information^{3,4}

Part Number	Package
MAAM-011305-TR1000	1000 piece reel
MAAM-011305-TR3000	3000 piece reel
MAAM-011305-SMB	Sample Board

- 3. Reference Application Note M513 for reel size information.
- 4. All sample boards include 5 loose parts.

^{*} Restrictions on Hazardous Substances, compliant to current RoHS EU directive.

Rev. V2

Electrical Specifications: $V_{DD} = 5 \text{ V}$, +25°C, $Z_0 = 50 \Omega$

Parameter	Test Conditions	Units	Min.	Тур.	Max.
Gain	0.03 - 8 GHz	dB	12.75	15.25	_
Gain Variation vs. Freq	0.03 - 8 GHz	dB		<u>+</u> 0.6	
Noise Figure	0.1 - 1.5 GHz 6.0 GHz 8.0 GHz	dB	_	1.7 2.5 3.4	_
Input Return Loss	0.03 - 8 GHz	dB	_	13	_
Output Return Loss	0.03 - 8 GHz	dB	_	10	_
Output IP3	P _{IN} = -15 dBm per tone, 6 MHz spacing 0.03 - 2.5 GHz 6 GHz 8 GHz	dBm	_	35 32 27	_
Output IP2	P _{IN} = -15 dBm per tone, 6 MHz spacing 0.03 - 3 GHz 6 GHz 8 GHz	dBm	_	44 47 52	_
Output P1dB	0.03 - 3 GHz 6 GHz 8 GHz	dBm	_	20 18 12	_
Current	I _{DD}	mA	_	65	80

Maximum Operating Ratings

Parameter	Maximum
RF Input Power CW	10 dBm
V_{DD}	6 V
I _{DQ}	100 mA
Operating Temperature	-40°C to +85°C
Junction Temperature ^{7,8}	+160°C

- 5. Exceeding any one or combination of these limits may cause permanent damage to this device.
- MACOM does not recommend sustained operation near these survivability limits.
- Operating at nominal conditions with T_J ≤ 160°C will ensure MTTF > 1 x 10⁶ hours.
- 8. Junction Temperature (T_J) = T_C + Θ _{JC} * ((V * I) (P_{OUT} P_{IN})) Typical thermal resistance (Θ _{JC}) = 43°C/W

a) For $T_C = 25^{\circ}C$,

T_J = 39°C @ 5 V, 63 mA

b) For $T_C = 85^{\circ}C$,

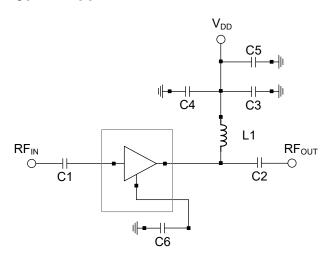
T_J = 99°C @ 5 V, 63 mA

Absolute Maximum Ratings^{5,6}

Parameter	Absolute Maximum
RF Input Power CW	22.5 dBm
V_{DD}	7 V
Storage Temperature	-55°C to +150°C

Handling Procedures

Please observe the following precautions to avoid damage:


Static Sensitivity

Gallium Arsenide Integrated Circuits are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these HBM 1C devices.

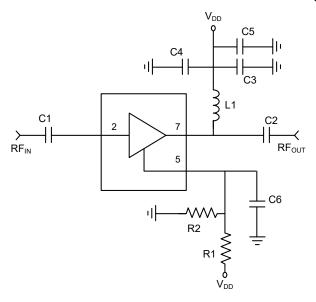
Rev. V2

Typical Application Circuit

Typical Parts List, $V_{DD} = 5 \text{ V}$

Component	Value	Package
C1 - C3, C6	1000 pF	0402
C4	47 pF	0402
C5	0.1 μF	0402
L1	Ferrite Bead ⁹	0402

9. Murata, part number BLM15HD182SN.

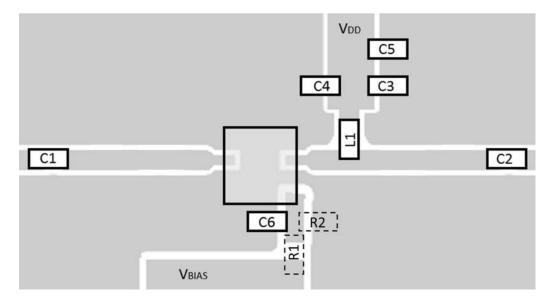

Higher Linearity Options

The MAAM-011305 can be tuned for better linearity by replacing L1 (Ferrite Bead) with an inductor choke and trading off low end bandwidth. Inductor value of 30nH covers frequency band from 0.5 - 8 GHz.

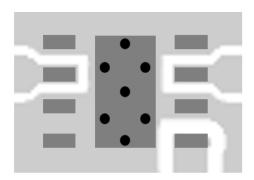
Current Adjust Options

The V_{BIAS} (pin 5) of MAAM-011305 may be used to adjust the DC operating current by placing either R1 or R2 as shown the schematic below. Placing resistor R2 to ground will reduce the current from typical application level. When using R2 to reduce current do not place (DNP) R1. To increase current from typical application circuit install resistor R1 and connect to V_{DD} .

The table below shows values of R1 and R2 for a range of operating currents for V_{DD} = 5 V.

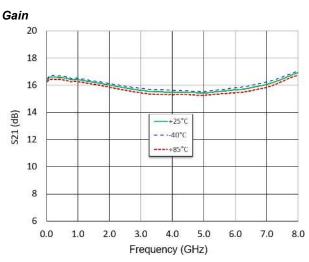


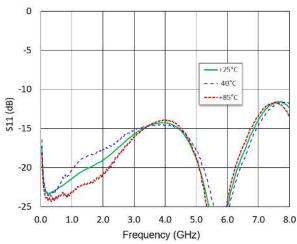
1	V _{DD} = 5 V		
(mA)	R1	R2	
25	DNP	1.5 kΩ	
35	DNP	2.5 kΩ	
45	DNP	4.3 kΩ	
63	Typical application without R1 and R2		
75	18 kΩ	DNP	
90	6.8 kΩ	DNP	


Rev. V2

Recommended PCB Layout

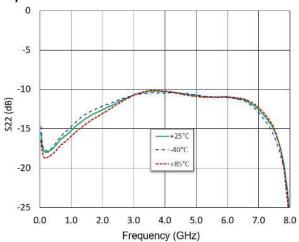
FR4, RF Layer Thickness = 0.711 mm, Trace = 0.55 mm, Gap = 0.18 mm


PCB Land Pattern


MAAM-011305 Rev. V2

Typical Performance Curves @ 5 V / 63 mA, $Z_0 = 50 \Omega$

Input Return Loss


Output Return Loss

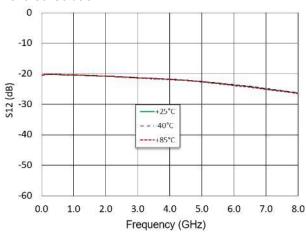
4

0

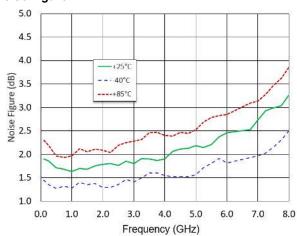
0.0

Gain to 12 GHz

6.0


Frequency (GHz)

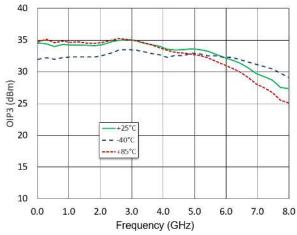
8.0

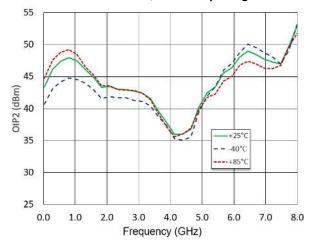

10.0

12.0

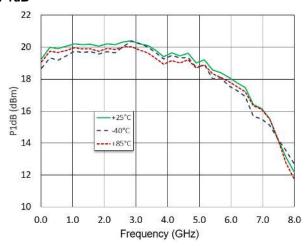
Reverse Isolation

Noise Figure



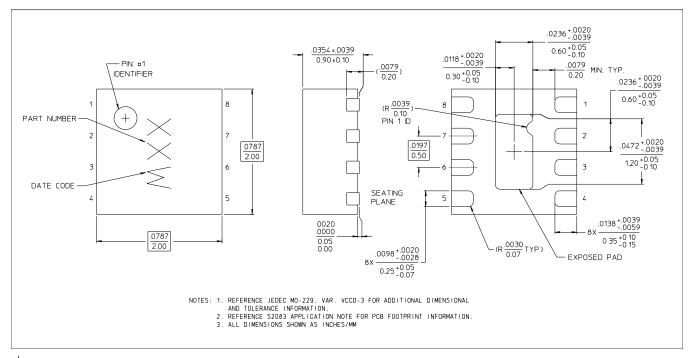

Rev. V2

Typical Performance Curves @ 5 V / 63 mA, $Z_0 = 50 \Omega$


OIP3 at P_{IN} = -15 dBm/tone, 10 MHz Spacing

OIP2 at P_{IN} = -15 dBm/tone, 10 MHz Spacing

P1dB


Broadband Low Noise Gain Block, 16 dB 0.03 - 8 GHz

MAAM-011305

Rev. V2

Lead-Free 2 mm 8-Lead PDFN[†]

[†] Reference Application Note M2083 for lead-free solder reflow recommendations. Meets JEDEC moisture sensitivity level (MSL) 1 requirements. Plating is 100% matte tin over copper.

Broadband Low Noise Gain Block, 16 dB 0.03 - 8 GHz

MAAM-011305

Rev. V2

MACOM Technology Solutions Inc. ("MACOM"). All rights reserved.

These materials are provided in connection with MACOM's products as a service to its customers and may be used for informational purposes only. Except as provided in its Terms and Conditions of Sale or any separate agreement, MACOM assumes no liability or responsibility whatsoever, including for (i) errors or omissions in these materials; (ii) failure to update these materials; or (iii) conflicts or incompatibilities arising from future changes to specifications and product descriptions, which MACOM may make at any time, without notice. These materials grant no license, express or implied, to any intellectual property rights.

THESE MATERIALS ARE PROVIDED "AS IS" WITH NO WARRANTY OR LIABILITY, EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF MACOM PRODUCTS INCLUDING FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHT, ACCURACY OR COMPLETENESS, OR SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES WHICH MAY RESULT FROM USE OF THESE MATERIALS.

MACOM products are not intended for use in medical, lifesaving or life sustaining applications. MACOM customers using or selling MACOM products for use in such applications do so at their own risk and agree to fully indemnify MACOM for any damages resulting from such improper use or sale.