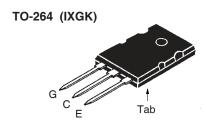
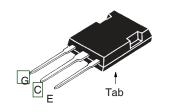

Advance Technical Information

GenX3[™] 1200V IGBTs w/ Diode

IXGK55N120A3H1 IXGX55N120A3H1


Ultra-Low-Vsat PT IGBTs for up to 3kHz Switching



Symbol (T _J = 25°C, U	Test Conditions Unless Otherwise Specified)	Chara Min.	cteristic Typ.	Value: Max.	
V _{GE(th)}	$I_{\rm C} = 1 \text{mA}, V_{\rm CE} = V_{\rm GE}$	3.0		5.0	V
I _{CES}	$V_{CE} = V_{CES}, V_{GE} = 0V$			100	μΑ
	Note 1, $T_J = 125^{\circ}C$			2.0	mΑ
GES	$V_{CE} = 0V, V_{GE} = \pm 20V$			±100	nA
V _{CE(sat)}	$I_{c} = I_{C110}, V_{GE} = 15V, \text{ Note 2}$ $T_{J} = 125^{\circ}\text{C}$		1.85 1.90	2.3	V

 $V_{CES} = 1200V$ $I_{C110} = 55A$ $V_{CES} \le 2.3V$

PLUS247™ (IXGX)

G = Gate	E = Emitte	r
C = Collector	Tab = Collect	tor

Features

- Optimized for Low Conduction Losses
- Anti-Parallel Ultra Fast Diode

Advantages

- High Power Density
- Low Gate Drive Requirement

Applications

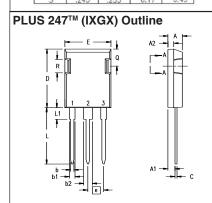
- Power Inverters
- UPS
- Motor Drives
- SMPS
- PFC Circuits
- Battery Chargers
- Welding Machines
- Lamp Ballasts
- Inrush Current Protection Circuits

Symbol	Test Conditions	Char	acteristic	Values
$(T_{J} = 25^{\circ}C,$	Unless Otherwise Specified)	Min.	Тур.	Max.
g _{fs}	I _C = I _{C110} , V _{CE} = 10V, Note 2	30	45	S
C _{ies}			4340	pF
C _{oes}	$V_{CE} = 25V, V_{GE} = 0V, f = 1 MHz$		300	pF
C _{res}			115	pF
Q _{g(on)}			185	nC
Q_{ge}	$I_{\rm C} = I_{\rm C110}, V_{\rm GE} = 15 \rm V, V_{\rm CE} = 0.5 \bullet \rm V_{\rm CES}$		25	nC
Q _{gc}			75	nC
t _{d(on)}			23	ns
t _{ri}	Inductive load, T _J = 25°C		42	ns
E _{on}	$I_{\rm C} = I_{\rm C110}, V_{\rm GE} = 15V$		5.1	mJ
t _{d(off)}	$V_{CE} = 0.8 \cdot V_{CES}, R_{G} = 3\Omega$		365	ns
t _{fi}	Note 3		282	ns
E _{off}			13.3	mJ
t _{d(on)}			24	ns
t _{ri}	Inductive load, T _J = 125°C		46	ns
E _{on}	$I_{C} = I_{C110}, V_{GE} = 15V$		9.5	mJ
t _{d(off)}	$V_{CE} = 0.8 \cdot V_{CES}, R_{G} = 3\Omega$		618	ns
t _{fi}	Note 3		635	ns
E _{off}			29.0	mJ
R _{thJC}				0.27 °C/W
R _{thCK}			0.15	°C/W

Reverse Diode (FRED)

Symbol $(T_J = 2)$		Test Conditions Unless Otherwise Specified)	Char Min.	acteristic Typ.	Values Max.	
V _F		$I_F = 60A$, $V_{GE} = 0V$, Note 2 $T_J = 150$ °C		1.85 1.90	2.5	V V
t _{rr}	}	$I_{F} = 60A, V_{GE} = 0V,$		200	ı	ns
I _{RM}	J	$-di_{F}/dt = 350A/\mu s, V_{R} = 600V, T_{J} = 100^{\circ}C$		24.6		Α
R _{thJC}					0.42 °C/	/W

Notes:


- 1. Part must be heatsunk for high-temp Ices measurement.
- 2. Pulse test, $t \le 300 \mu s$, duty cycle, $d \le 2\%$.
- 3. Switching times & energy losses may increase for higher $V_{CE}(Clamp)$, T_J or R_G .

ADVANCE TECHNICAL INFORMATION

The product presented herein is under development. The Technical Specifications offered are derived from a subjective evaluation of the design, based upon prior knowledge and experience, and constitute a "considered reflection" of the anticipated result. IXYS reserves the right to change limits, test conditions, and dimensions without notice.

IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions.

Terminals: 1 = Gate 2 = Collector 3 = Emitter

Dim.	Milli	meter	Inches	
	Min.	Max.	Min.	Max.
Α	4.83	5.21	.190	.205
A,	2.29	2.54	.090	.100
A ₂	1.91	2.16	.075	.085
b	1.14	1.40	.045	.055
b₁	1.91	2.13	.075	.084
b ₂	2.92	3.12	.115	.123
С	0.61	0.80	.024	.031
D	20.80	21.34	.819	.840
Е	15.75	16.13	.620	.635
е	5.45 BSC .215 BSC			BSC
L	19.81	20.32	.780	.800
L1	3.81	4.32	.150	.170
Q	5.59	6.20	.220	0.244
R	4.32	4.83	.170	.190

