60mA 3-Channel Pulse Dimming Current Source LED Driver

General Description

The RT9302 is a high performance constant current driver for white LED. It supports up to 3 white LEDs and regulates a constant current for uniform intensity. Each channel supports up to 20mA output current with 1% typical current accuracy and 0.7% typical current matching. The RT9302 provides a 16-step brightness dimming control. The LED current can be easily configured from 1.25mA to 20mA. The dimming of white LEDs' current can be achieved by applying a pulse signal to the EN pin. The LED current can be turned off by EN pin with pull low for 20 μ s or longer. The typical leakage current is 4 μ A while shutdown condition.

RT9302 is available in a TSOT-23-8 package (1.0mm maximum height).

Ordering Information

RT9302

Package Type J8 : TSOT-23-8 Lead Plating System P : Pb Free

G : Green (Halogen Free and Pb Free)

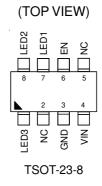
Note :

Richtek products are :

- RoHS compliant and compatible with the current requirements of IPC/JEDEC J-STD-020.
- Suitable for use in SnPb or Pb-free soldering processes.

Marking Information

For marking information, contact our sales representative directly or through a Richtek distributor located in your area.


Features

- Support Up to 3 White LEDs
- Output Current up to 20mA Each Channel
- Support Pulse and PWM Dimming
- 40mV Typical Current Source Dropout
- 1% Typical LED Current Accuracy
- 0.7% Typical LED Current Matching
- 16-Step Brightness Control
- Low Noise and EMI
- Low Shutdown Current 4µA Typical
- RoHS Compliant and 100% Lead (Pb)-Free

Applications

- Mobile Phone, DSC, MP3
- White LED Backlighting
- LCD Display Supply

Pin Configurations

Typical Application Circuit

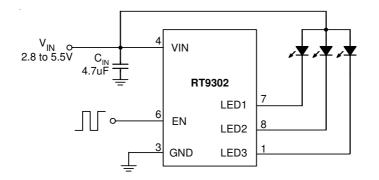


Figure 1. For 3-WLEDs Application Circuit

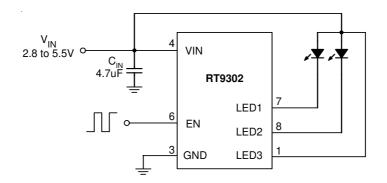


Figure 2. For 2-WLEDs Application Circuit

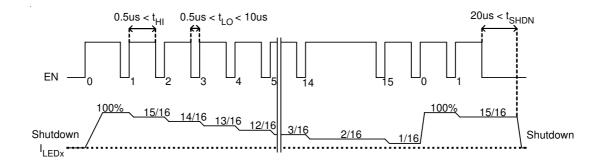
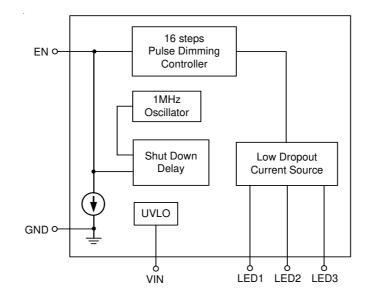



Figure 3. Brightness control by pulse dimming. RT9302 implements 16 steps brightness control

Functional Pin Description

Pin Number	Pin Name	Pin Function
1	LED3	Current Sink for LED3. (If not in use, this pin must be connected to VIN)
2, 5	NC	No Internal Connection.
3	GND	Power Ground.
4	VIN	Input Voltage.
6	EN	Chip Enable.
7	LED1	Current Sink for LED1. (If not in use, this pin must be connected to VIN)
8	LED2	Current Sink for LED2. (If not in use, this pin must be connected to VIN)

Function Block Diagram

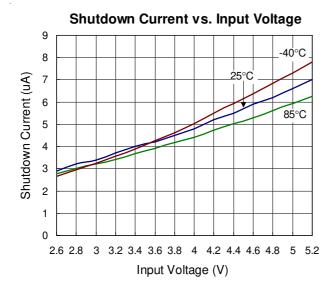
Absolute Maximum Ratings (Note 1)

 Supply Input Voltage Other I/O Pin Voltages VIN, EN to GND 	–0.3V to 6V
• Power Dissipation, $P_D @ T_A = 25^{\circ}C$	
TSOT-23-8Package Thermal Resistance (Note 2)	0.455W
TSOT-23-8, θ _{JA}	
Lead Temperature (Soldering, 10 sec.)	
Junction Temperature	
Storage Temperature Range	–65°C to 150°C
ESD Susceptibility (Note 3)	01.)/
HBM (Human Body Mode)	
MM (Machine Mode)	200V

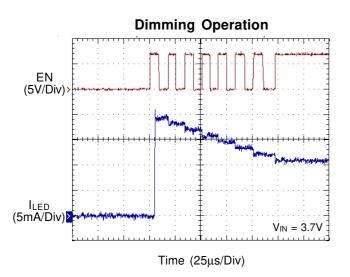
Recommended Operating Conditions (Note 4)

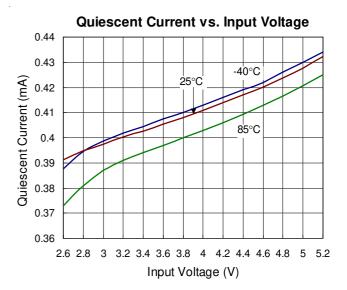
Junction Temperature Range	–40°C to 125°C
Ambient Temperature Range	–40°C to 85°C

Electrical Characteristics

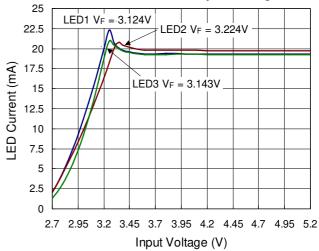

 $(V_{\text{IN}}=3.6\text{V},\,C_{\text{IN}}=1\text{uF},\,\text{ESR}=0.03\Omega,\,V_{\text{F}}=3.4\text{V},\,I_{\text{LED1}}=I_{\text{LED2}}=1_{\text{LED3}}=20\text{mA},\,T_{\text{A}}=25^{\circ}\text{C},\,\text{unless otherwise specified})$

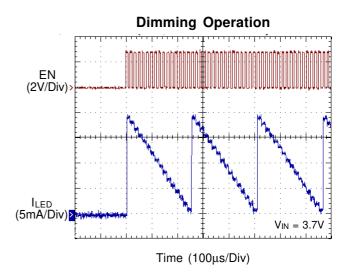

Parameter		Symbol	Test Conditions	Min	Тур	Max	Unit	
Input								
Input Supply Voltage		V _{IN}		2.8		5.5	V	
Under Voltage Lockout Threshold			V _{IN} falling		2.0		V	
Under Voltage Lockout Hysteresis					200		mV	
Shutdown Current		I _{SHDN}	V _{EN} = 0V		4	10	μA	
Quiescent Current		l _Q	V _{EN} = High, I _{OUT} = 0		0.4		mA	
Output								
Output Current		I _{LED}	100% setting, V _{LED} = 1V	18.4	20	21.6	mA	
Current Matching		ILED-LED	100% setting, V _{LED} = 1V	-5	0	+5	%	
Dropout Voltage		V _{LED}	90% of full output current		40	150	mV	
Enable					•		<u> </u>	
EN Threshold Voltage	Logic-High	V _{IH}		1.5			v	
EN ITTESTION VOILAGE	Logic-Low	V _{IL}		40 1.5 0.5		0.4		
Time of EN Logic	Logic-High	т _{ні}	Duration of EN Logic High for pulse dimming	c High for pulse 0.5				
	Logic-Low	T _{LO}	Duration of EN Logic Low for pulse dimming	0.5		10	μs	
Shutdown Delay		T _{SHDN}	From EN Low to Shutdown	10	16	20	μS	
EN Input Current		I _{EN}	V _{EN} = 1.8V		1		μA	

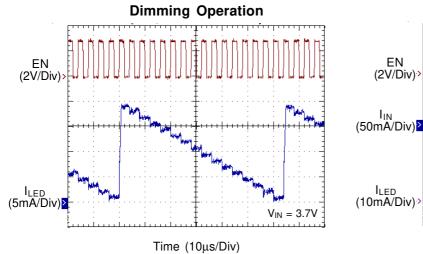

- Note 1. Stresses listed as the above "Absolute Maximum Ratings" may cause permanent damage to the device. These are for stress ratings. Functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may remain possibility to affect device reliability.
- Note 2. θ_{JA} is measured in the natural convection at $T_A = 25^{\circ}C$ on a low effective thermal conductivity test board of JEDEC 51-3 thermal measurement standard.
- Note 3. Devices are ESD sensitive. Handling precaution recommended.
- Note 4. The device is not guaranteed to function outside its operating conditions.

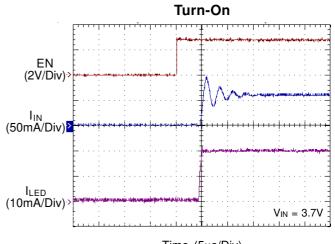


Typical Operating Characteristics

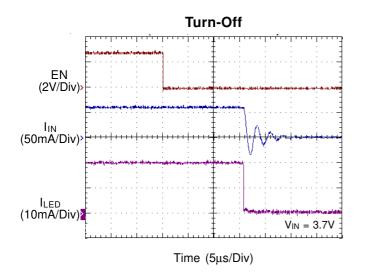








LED Current vs. Input Voltage



Time (5µs/Div)

Application Information

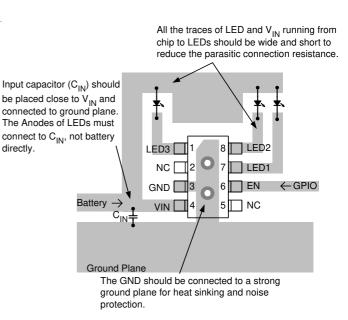
Input UVLO

The input operating voltage range of the RT9302 is 2.8V to 5.5V. An input capacitor at the VIN pin could reduce ripple voltage. It is recommended to use a ceramic 1µF or larger capacitance as the input capacitor. This IC provides an under voltage lockout (UVLO) function to prevent it from unstable issue when startup. The UVLO threshold of input falling voltage is set at 2V typically with a hysteresis 0.2V.

Output Current

RT9302 provides a constant output current for white LED. Figure 1 shows a typical application circuit for 3 white LEDs. Each channel supports up to 20mA output current and regulates a constant current for uniform intensity. For two or one LED application, the non-used channel must be connected to V_{IN} as shown in Figure 2.

Brightness Dimming Control

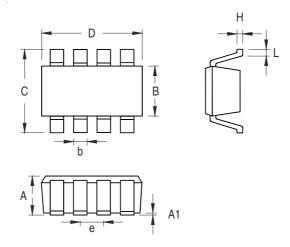

The RT9302 provides a 16-step brightness dimming control. The LED current can be easily configured from 1.25mA to 20mA. The dimming of white LEDs' current can be achieved by applying a pulse signal to the EN pin. Figure 3 shows the configuration of the 16-step pulse dimming control operation. The output current is set at 100% of 20mA typical output current when EN pin pull high initially from shutdown condition. The step change of pulse dimming can be implemented by EN pin changing with a logic Low pulse. Each step change 1/16 of full output current setting. The output current change of pulse dimming is designed in decreasing sequence in terms of (16/16, 15/16,, 1/16) and then (16/16, 15/16,) cycle by cycle. The duration of logic Low pulse is between 0.5us and 10us. The duration of EN logic High pulse should be longer than 0.5µs.

The LED current can be turned off by EN pin with pulling low for 20µs or longer. The typical leakage current is 4µA while shutdown condition.

Layout Consideration

For best performance, careful PCB layout is necessary. All peripheral components should be placed as close to the IC as possible. A short connection is highly recommended. The following guidelines should be strictly followed when designing a PCB layout for the RT9302.

- 1. All the traces of LED and V_{IN} running from chip to LEDs should be wide and short to reduce the parasitic connection resistance.
- 2. Input capacitor (CIN) should be placed close to VIN and connected to ground plane. The anodes of LEDs must be connected to C_{IN}, not battery directly.
- 3. The GND should be connected to a strong ground plane for heat sinking and noise protection.



directly.

Outline Dimension

Symbol	Dimensions I	n Millimeters	Dimensions In Inches		
	Min	Max	Min	Max	
А	0.700	1.000	0.028	0.039	
A1	0.000	0.100	0.000	0.004	
В	1.397	1.803	0.055	0.071	
b	0.220	0.380	0.009	0.015	
С	2.591	3.000	0.102	0.118	
D	2.692	3.099	0.106	0.122	
е	0.585	0.715	0.023	0.028	
Н	0.080	0.254	0.003	0.010	
L	0.300	0.610	0.012	0.024	

TSOT-23-8 Surface Mount Package

Richtek Technology Corporation

Headquarter 5F, No. 20, Taiyuen Street, Chupei City Hsinchu, Taiwan, R.O.C. Tel: (8863)5526789 Fax: (8863)5526611

Richtek Technology Corporation

Taipei Office (Marketing) 5F, No. 95, Minchiuan Road, Hsintien City Taipei County, Taiwan, R.O.C. Tel: (8862)86672399 Fax: (8862)86672377 Email: marketing@richtek.com

Information that is provided by Richtek Technology Corporation is believed to be accurate and reliable. Richtek reserves the right to make any change in circuit design, specification or other related things if necessary without notice at any time. No third party intellectual property infringement of the applications should be guaranteed by users when integrating Richtek products into any application. No legal responsibility for any said applications is assumed by Richtek.