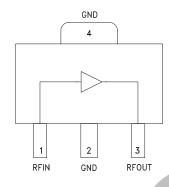


HMC482ST89 / 482ST89E

v04.0710


SiGe HBT GAIN BLOCK MMIC AMPLIFIER, DC - 5 GHz

Typical Applications

The HMC482ST89 / HMC482ST89E is an ideal RF/IF gain block & LO or PA driver for:

- Cellular / PCS / 3G
- Fixed Wireless, WLAN & WiMAX
- CATV, Cable Modem & DBS
- Microwave Radio & Test Equipment

Functional Diagram

Features

P1dB Output Power: +22 dBm

Gain: 20 dB

Output IP3: +36 dBm

Cascadable 50 Ohm I/Os

Single Supply: +6V to +12V

Industry Standard SOT89 Package

Included in the HMC-DK001 Designer's Kit

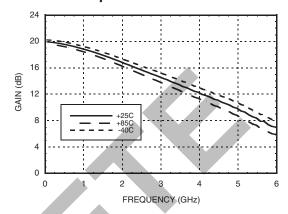
General Description

The HMC482ST89 & HMC482ST89E are SiGe Heterojunction Bipolar Transistor (HBT) Gain Block MMIC SMT amplifiers covering DC to 5 GHz. Packaged in an industry standard SOT89, the amplifier can be used as a cascadable 50 Ohm RF/IF gain stage as well as a LO or PA driver with up to +24 dBm output power. The Darlington feedback pair results in reduced sensitivity to normal process variations and excellent gain stability over temperature while requiring a minimal number of external bias components.

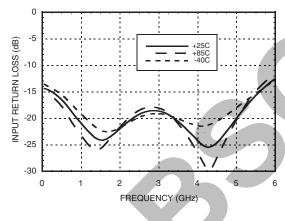
Electrical Specifications, Vs=8.0 V, Rbias=27 Ohm, $T_A=+25^{\circ} \text{ C}$

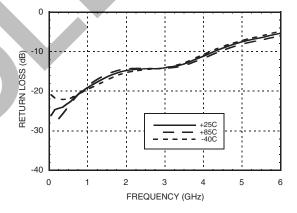
Parameter		Min.	Тур.	Max.	Units
Gain	DC - 1.0 GHz 1.0 - 2.0 GHz 2.0 - 3.0 GHz 3.0 - 4.0 GHz 4.0 - 5.0 GHz	17 15 12.5 10 8	19 17 14.5 12 10		dB dB dB dB dB
Gain Variation Over Temperature	DC - 5 GHz		0.008	0.016	dB/ °C
Input Return Loss	DC - 1.0 GHz 1.0 - 5.0 GHz		15 18		dB dB
Output Return Loss	DC - 1.0 GHz 1.0 - 3.0 GHz 3.0 - 4.0 GHz 4.0 - 5.0 GHz		20 14 12 8		dB dB dB dB
Reverse Isolation	DC - 5 GHz		16		dB
Output Power for 1 dB Compression (P1dB)	0.5 - 1.0 GHz 1.0 - 2.0 GHz 2.0 - 3.0 GHz 3.0 - 4.0 GHz 4.0 - 5.0 GHz	19.5 17 14.5 12.5 10.5	22.5 20 17.5 15.5 13.5		dBm dBm dBm dBm dBm
Output Third Order Intercept (IP3) (Pout= 0 dBm per tone, 1 MHz spacing)	0.5 - 1.0 GHz 1.0 - 2.0 GHz 2.0 - 3.0 GHz 3.0 - 4.0 GHz 4.0 - 5.0 GHz		36 35 32 30 28		dBm dBm dBm dBm dBm
Noise Figure	DC - 2.0 GHz 2.0 - 4.0 GHz 4.0 - 5.0 GHz		4 5 5.5		dB dB dB
Supply Current (Icq)			110		mA

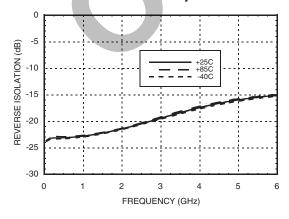

Note: Data taken with broadband bias tee on device output.

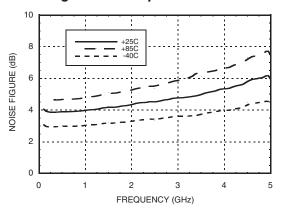


SiGe HBT GAIN BLOCK MMIC AMPLIFIER, DC - 5 GHz


Broadband Gain & Return Loss

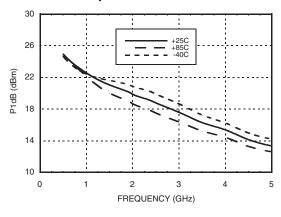

Gain vs. Temperature

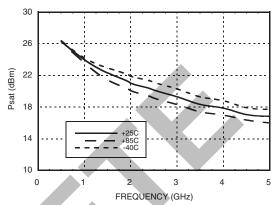

Input Return Loss vs. Temperature


Output Return Loss vs. Temperature

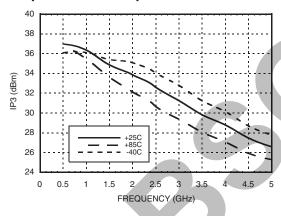
Reverse Isolation vs. Temperature

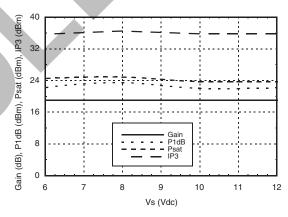
Noise Figure vs. Temperature

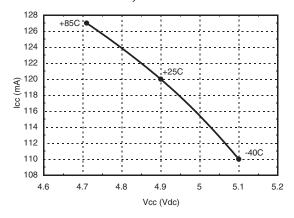




SiGe HBT GAIN BLOCK MMIC AMPLIFIER, DC - 5 GHz


P1dB vs. Temperature


Psat vs. Temperature

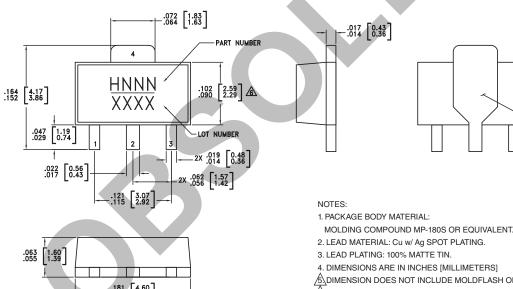

Output IP3 vs. Temperature

Gain, Power & OIP3 vs. Supply Voltage for Constant Icc= 110 mA @ 850 MHz

Vcc vs. Icc Over Temperature for Fixed Vs= 8V, RBIAS= 27 Ohms

EXPOSED GROUND PADDLE

v04.0710


SiGe HBT GAIN BLOCK MMIC AMPLIFIER, DC - 5 GHz

Absolute Maximum Ratings

Collector Bias Voltage (Vcc)	+6.0 Vdc
RF Input Power (RFIN)(Vcc = +5 Vdc)	+14 dBm
Junction Temperature	150 °C
Continuous Pdiss (T = 85 °C) (derate 14.5 mW/°C above 85 °C)	0.94 W
Thermal Resistance (junction to lead)	69 °C/W
Storage Temperature	-65 to +150 °C
Operating Temperature	-40 to +85 °C
ESD Sensitivity (HBM)	Class 1A

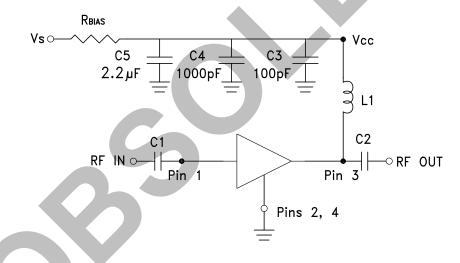
Outline Drawing

- ⚠DIMENSION DOES NOT INCLUDE MOLDFLASH OF 0.15mm PER SIDE. DIMENSION DOES NOT INCLUDE MOLDFLASH OF 0.25mm PER SIDE.
- 7. ALL GROUND LEADS MUST BE SOLDERED TO PCB RF GROUND.

Package Information

Part Number	Package Body Material	Lead Finish	MSL Rating	Package Marking [3]
HMC482ST89	Low Stress Injection Molded Plastic	Sn/Pb Solder	MSL1 [1]	H482 XXXX
HMC482ST89E	RoHS-compliant Low Stress Injection Molded Plastic	100% matte Sn	MSL1 [2]	H482 XXXX

- [1] Max peak reflow temperature of 235 °C
- [2] Max peak reflow temperature of 260 °C
- [3] 4-Digit lot number XXXX



SiGe HBT GAIN BLOCK MMIC AMPLIFIER, DC - 5 GHz

Pin Descriptions

Pin Number	Function	Description	Interface Schematic
1	RFIN	This pin is DC coupled. An off chip DC blocking capacitor is required.	RFOUT
3	RFOUT	RF output and DC Bias (Vcc) for the output stage.	
2, 4	GND	These pins and package bottom must be connected to RF/DC ground.	♥ GND =

Application Circuit

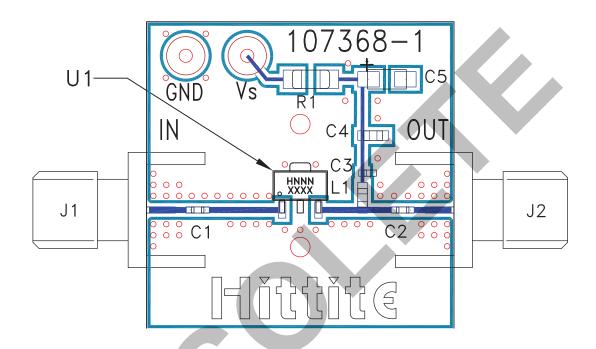
Recommended Bias Resistor Values for Icc= 110 mA, Rbias= (Vs - Vcc) / Icc

Supply Voltage (Vs)	6V	8V	10V	12V
RBIAS VALUE	9.1 Ω	27 Ω	47 Ω	62 Ω
RBIAS POWER RATING	1/4 W	1/2 W	1 W	1.5 W

Note:

- External blocking capacitors are required on RFIN and RFOUT.
- 2. RBIAS provides DC bias stability over temperature.

Recommended Component Values for Key Application Frequencies


Component	Frequency (MHz)						
Component	50	900	1900	2200	2400	3500	5000
L1	270 nH	56 nH	18 nH	18 nH	15 nH	8.2 nH	6.8 nH
C1, C2	0.01 μF	100 pF					

SiGe HBT GAIN BLOCK MMIC AMPLIFIER, DC - 5 GHz

Evaluation PCB

List of Materials for Evaluation PCB 109026 [1]

Item		Description
J1 - J2		PCB Mount SMA Connector
J3 - J4		DC Pin
C1, C2		Capacitor, 0402 Pkg.
C3		100 pF Capacitor, 0402 Pkg.
C4		1000 pF Capacitor, 0603 Pkg.
C5		2.2 µF Capacitor, Tantalum
R1		Resistor, 1210 Pkg.
L1		Inductor, 0603 Pkg.
U1		HMC482ST89 / HMC482ST89E
PCB [2]	·	107368 Evaluation PCB

[1] Reference this number when ordering complete evaluation PCB

[2] Circuit Board Material: Rogers 4350

The circuit board used in the final application should use RF circuit design techniques. Signal lines should have 50 Ohm impedance while the package ground leads and package bottom should be connected directly to the ground plane similar to that shown. A sufficient number of via holes should be used to connect the top and bottom ground planes. The evaluation board should be mounted to an appropriate heat sink. The evaluation circuit board shown is available from Hittite upon request.