

Single Supply Dual Operational Amplifiers

LM258, LM358, LM358A, LM358E, LM2904, LM2904A, LM2904E, LM2904V, NCV2904

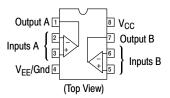
Utilizing the circuit designs perfected for Quad Operational Amplifiers, these dual operational amplifiers feature low power drain, a common mode input voltage range extending to ground/V_{EE}, and single supply or split supply operation. The LM358 series is equivalent to one-half of an LM324.

These amplifiers have several distinct advantages over standard operational amplifier types in single supply applications. They can operate at supply voltages as low as 3.0 V or as high as 32 V, with quiescent currents about one-fifth of those associated with the MC1741 (on a per amplifier basis). The common mode input range includes the negative supply, thereby eliminating the necessity for external biasing components in many applications. The output voltage range also includes the negative power supply voltage.

Features

- Short Circuit Protected Outputs
- True Differential Input Stage
- Single Supply Operation: 3.0 V to 32 V
- Low Input Bias Currents
- Internally Compensated
- Common Mode Range Extends to Negative Supply
- Single and Split Supply Operation
- ESD Clamps on the Inputs Increase Ruggedness of the Device without Affecting Operation
- NCV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable
- These Devices are Pb-Free, Halogen Free/BFR Free and are RoHS Compliant

PDIP-8 N, AN, VN SUFFIX **CASE 626**



SOIC-8 D, VD SUFFIX **CASE 751**

Micro8™ **DMR2 SUFFIX** CASE 846A

PIN CONNECTIONS

ORDERING INFORMATION

See detailed ordering and shipping information on page 10 of this data sheet

DEVICE MARKING INFORMATION

See general marking information in the device marking section on page 11 of this data sheet.

1

1.5 V to V_{CC(max)}

1.5 V to V_{EE(max)}

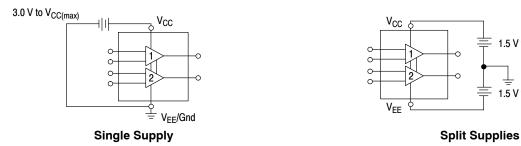


Figure 1.

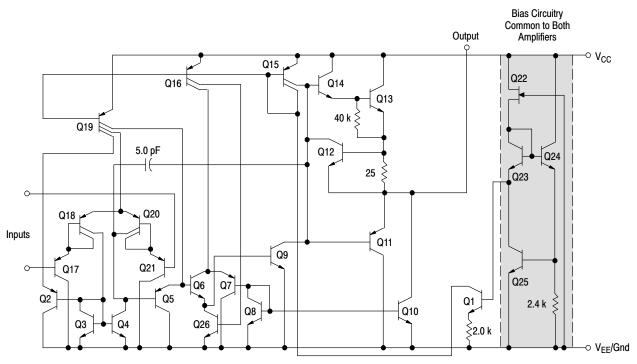


Figure 2. Representative Schematic Diagram (One-Half of Circuit Shown)

MAXIMUM RATINGS ($T_A = +25^{\circ}C$, unless otherwise noted.)

Rating	Symbol	Value	Unit
Power Supply Voltages Single Supply Split Supplies	V _{CC} V _{CC} , V _{EE}	32 ±16	Vdc
Input Differential Voltage Range (Note 1)	V _{IDR}	±32	Vdc
Input Common Mode Voltage Range	V _{ICR}	-0.3 to 32	Vdc
Output Short Circuit Duration	t _{SC}	Continuous	
Junction Temperature	T _J	150	°C
Thermal Resistance, Junction-to-Air (Note 2) Case Case Case	751	238 212 161	°C/W
Storage Temperature Range	T _{stg}	-65 to +150	°C
Operating Ambient Temperature Range LI LM358, LM358A, LM LM2904, LM2904A, LM2 LM2904V, NCV2904 (No	004E	-25 to +85 0 to +70 -40 to +105 -40 to +125	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

ESD RATINGS

Rating	нвм	ММ	Unit
ESD Protection at any Pin (Human Body Model – HBM, Machine Model – MM)			
NCV2904 (Note 3)	2000	200	V
LM358E, LM2904E	2000	200	V
LM358DG/DR2G, LM2904DG/DR2G	250	100	V
All Other Devices	2000	200	V

^{1.} Split Power Supplies.

All R_{θ,JA} measurements made on evaluation board with 1 oz. copper traces of minimum pad size. All device outputs were active.
 NCV2904 is qualified for automotive use.

ELECTRICAL CHARACTERISTICS ($V_{CC} = 5.0 \text{ V}$, $V_{EE} = GND$, $T_A = 25^{\circ}C$, unless otherwise noted.)

ELECTRICAL CHARACTERISTICS (V _{CC} = 8			LM258			58, LM			LM358A	\	
Characteristic	Symbol	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
Input Offset Voltage V_{CC} = 5.0 V to 30 V, V_{IC} = 0 V to V_{CC} -1.7 V, $V_{O} \simeq$ 1.4 V, R_{S} = 0 Ω	V _{IO}										mV
$T_A = 25^{\circ}C$		-	2.0	5.0	-	2.0	7.0	-	2.0	3.0	
$T_A = T_{high} \text{ (Note 4)}$		-	-	7.0	-	-	9.0	_	_	5.0	
$T_A = T_{low}$ (Note 4)		-	_	7.0	_	_	9.0	-	-	5.0	
Average Temperature Coefficient of Input Offset Voltage	$\Delta V_{IO}/\Delta T$	_	7.0	_	-	7.0	_	_	7.0	_	μV/°C
T _A = T _{high} to T _{low} (Note 4)											
Input Offset Current $T_A = T_{high}$ to T_{low} (Note 4)	I _{IO}	_	3.0	30 100	_	5.0 –	50 150	_	5.0	30 75	nA
Input Bias Current	I _{IB}	_	- -45	-150	_	- -45	-250	_	-45	-100	
$T_A = T_{high}$ to T_{low} (Note 4)	'IB	_	-50	-300	_	-50	-500	_	-50	-200	
Average Temperature Coefficient of Input Offset Current $T_{A} = T_{high} \text{ to } T_{low} \text{ (Note 4)}$	$\Delta I_{IO}/\Delta T$	-	10	-	-	10	-	-	10	-	pA/°C
Input Common Mode Voltage Range (Note 5),	V _{ICR}	0	-	28.3	0	_	28.3	0	-	28.5	V
$V_{CC} = 30 \text{ V}$ $V_{CC} = 30 \text{ V}, T_A = T_{high} \text{ to } T_{low}$		0	_	28	0	_	28	0	_	28	
Differential Input Voltage Range	V _{IDR}	_	_	V_{CC}	_	_	V_{CC}	_	_	V_{CC}	V
Large Signal Open Loop Voltage Gain	A _{VOL}										V/mV
$R_L = 2.0 \text{ k}\Omega$, $V_{CC} = 15 \text{ V}$, For Large V_O Swing,	, VOL	50	100	_	25	100	_	25	100	_	.,
$T_A = T_{high}$ to T_{low} (Note 4)		25	_	_	15	-	_	15	_	_	
Channel Separation 1.0 kHz ≤ f ≤ 20 kHz, Input Referenced	CS	_	-120	_	-	-120	_	_	-120	-	dB
Common Mode Rejection $R_S \le 10 \text{ k}\Omega$	CMR	70	85	-	65	70	-	65	70	-	dB
Power Supply Rejection	PSR	65	100	_	65	100	-	65	100	_	dB
Output Voltage-High Limit TA = T _{high} to T _{low} (Note 4)	V _{OH}										V
$V_{CC} = 5.0 \text{ V}, R_L = 2.0 \text{ k}\Omega, T_A = 25^{\circ}\text{C}$		3.3	3.5	_	3.3	3.5	_	3.3	3.5	_	
V_{CC} = 30 V, R_{L} = 2.0 kΩ V_{CC} = 30 V, R_{L} = 10 kΩ		26 27	28	_	26 27	- 28	_	26 27	28	_	
Output Voltage–Low Limit $V_{CC} = 5.0 \text{ V}, R_L = 10 \text{ k}\Omega,$ $T_A = T_{high} \text{ to } T_{low} \text{ (Note 4)}$	V _{OL}	-	5.0	20	-	5.0	20	_	5.0	20	mV
Output Source Current $V_{ID} = +1.0 \text{ V}, V_{CC} = 15 \text{ V}$ $T_A = T_{high} \text{ to } T_{low} \text{ (LM358A Only)}$	I _{O +}	20	40	-	20	40	-	20 10	40 -	- -	mA
Output Sink Current $V_{ID} = -1.0 \text{ V, } V_{CC} = 15 \text{ V}$ $T_A = T_{high} \text{ to } T_{low} \text{ (LM358A Only)}$	I _O –	10	20	-	10	20	_	10 5.0	20	- -	mA mA
$V_{ID} = -1.0 \text{ V}, V_O = 200 \text{ mV}$	<u> </u>	12	50	-	12	50	-	12	50	-	μΑ
Output Short Circuit to Ground (Note 6)	I _{SC}	-	40	60	-	40	60	_	40	60	mA
Power Supply Current (Total Device) $T_A = T_{high}$ to T_{low} (Note 4)	I _{CC}										mA
$V_{CC} = 30 \text{ V}, V_{O} = 0 \text{ V}, R_{L} = \infty$ $V_{CC} = 5 \text{ V}, V_{O} = 0 \text{ V}, R_{L} = \infty$		- -	1.5 0.7	3.0 1.2	- -	1.5 0.7	3.0 1.2	_ _	1.5 0.7	2.0 1.2	

^{4.} LM258: T_{low} = -25°C, T_{high} = +85°C LM2904/A/E: T_{low} = -40°C, T_{high} = +105°C NCV2904 is qualified for automotive use.

LM358, LM358A, LM358E: T_{low} = 0°C, T_{high} = +70°C LM2904V & NCV2904: T_{low} = -40°C, T_{high} = +125°C

The input common mode voltage or either input signal voltage should not be allowed to go negative by more than 0.3 V. The upper end of the common mode voltage range is V_{CC} – 1.7 V.
 Short circuits from the output to V_{CC} can cause excessive heating and eventual destruction. Destructive dissipation can result from simultaneous shorts on all amplifiers.

ELECTRICAL CHARACTERISTICS (V_{CC} = 5.0 V, V_{EE} = Gnd, T_A = 25°C, unless otherwise noted.)

		LM29	904/LM2	2904E	L	M2904	Α	LM29	04V, NC	V2904	
Characteristic	Symbol	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
Input Offset Voltage V_{CC} = 5.0 V to 30 V, V_{IC} = 0 V to V_{CC} -1.7 V, V_{O} \simeq 1.4 V, R_{S} = 0 Ω	V _{IO}										mV
$T_A = 25^{\circ}C$ $T_A = T_{high}$ (Note 7)		-	2.0	7.0 10	_	2.0	7.0 10	_	_	7.0 13	
$T_A = T_{\text{low}} \text{ (Note 7)}$ $T_A = T_{\text{low}} \text{ (Note 7)}$		_	_	10	_	_	10	_	_	10	
Average Temperature Coefficient of Input Offset Voltage $T_A = T_{high}$ to T_{low} (Note 7)	$\Delta V_{IO}/\Delta T$	-	7.0	-	-	7.0	-	-	7.0	Г	μV/°C
Input Offset Current	I _{IO}		5.0	50	_	5.0	50	_	5.0	50	nA
$T_A = T_{high}$ to T_{low} (Note 7)	IO	_	45	200	_	45	200	_	45	200	шА
Input Bias Current	I _{IB}	_	-45	-250	_	-45	-100	_	-45	-250	
$T_A = T_{high}$ to T_{low} (Note 7)		-	-50	-500	-	-50	-250	-	-50	-500	
Average Temperature Coefficient of Input Offset Current	$\Delta I_{IO}/\Delta T$	-	10	_	_	10	-	-	10	-	pA/°C
$T_A = T_{high}$ to T_{low} (Note 7)											
Input Common Mode Voltage Range (Note 8), V _{CC} = 30 V	V _{ICR}	0	_	28.3	0	_	28.3	0	_	28.3	٧
$V_{CC} = 30 \text{ V}, T_A = T_{high} \text{ to } T_{low}$		0	-	28	0	-	28	0	-	28	
Differential Input Voltage Range	V_{IDR}	-	-	V_{CC}	_	-	V_{CC}	-	-	V _{CC}	V
Large Signal Open Loop Voltage Gain $R_L = 2.0 \text{ k}\Omega, V_{CC} = 15 \text{ V}, \text{ For Large V}_O \text{ Swing}, \\ T_A = T_{high} \text{ to } T_{low} \text{ (Note 7)}$	A _{VOL}	25 15	100	_ _	25 15	100	_ _	25 15	100		V/mV
Channel Separation	CS	_	-120	_	_	-120	_	_	-120	_	dB
1.0 kHz \leq f \leq 20 kHz, Input Referenced											,
Common Mode Rejection $R_S \leq 10 \; k\Omega$	CMR	50	70	-	50	70	-	50	70	1	dB
Power Supply Rejection	PSR	50	100	_	50	100	_	50	100	-	dB
Output Voltage-High Limit T _A = T _{high} to T _{low} (Note 7)	V _{OH}										V
$V_{CC} = 5.0 \text{ V}, R_L = 2.0 \text{ k}\Omega, T_A = 25^{\circ}\text{C}$		3.3	3.5	_	3.3	3.5	-	3.3	3.5	-	
V_{CC} = 30 V, R_L = 2.0 k Ω		26	-	-	26	-	_	26	_	-	
V_{CC} = 30 V, R_L = 10 k Ω		27	28	-	27	28	-	27	28	-	
Output Voltage–Low Limit V_{CC} = 5.0 V, R_L = 10 k Ω , T_A = T_{high} to T_{low} (Note 7)	V _{OL}	-	5.0	20	_	5.0	20	_	5.0	20	mV
Output Source Current V _{ID} = +1.0 V, V _{CC} = 15 V	I _{O+}	20	40	_	20	40	_	20	40	_	mA
Output Sink Current	I _{O -}										
$V_{ID} = -1.0 \text{ V}, V_{CC} = 15 \text{ V}$		10	20	-	10	20	-	10	20	-	mΑ
$V_{ID} = -1.0 \text{ V}, V_O = 200 \text{ mV}$		_		_	-	_	_			-	μΑ
Output Short Circuit to Ground (Note 9)	I _{SC}	-	40	60	-	40	60	-	40	60	mA
Power Supply Current (Total Device) T _A = T _{high} to T _{low} (Note 7)	I _{CC}										mA
$V_{CC} = 30 \text{ V}, V_{O} = 0 \text{ V}, R_{L} = \infty$		_	1.5	3.0	_	1.5	3.0	_	1.5	3.0	
$V_{CC} = 5 \text{ V}, V_{O} = 0 \text{ V}, R_{L} = \infty$		-	0.7	1.2	-	0.7	1.2	_	0.7	1.2	

^{7.} LM258: T_{low} = -25°C, T_{high} = +85°C LM2904/A/E: T_{low} = -40°C, T_{high} = +105°C NCV2904 is qualified for automotive use.

LM358, LM358A, LM358E: T_{low} = 0°C, T_{high} = +70°C LM2904V & NCV2904: T_{low} = -40°C, T_{high} = +125°C

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

^{8.} The input common mode voltage or either input signal voltage should not be allowed to go negative by more than 0.3 V. The upper end of

the common mode voltage range is V_{CC} – 1.7 V.

9. Short circuits from the output to V_{CC} can cause excessive heating and eventual destruction. Destructive dissipation can result from simultaneous shorts on all amplifiers.

CIRCUIT DESCRIPTION

The LM358 series is made using two internally compensated, two-stage operational amplifiers. The first stage of each consists of differential input devices Q20 and Q18 with input buffer transistors Q21 and Q17 and the differential to single ended converter Q3 and Q4. The first stage performs not only the first stage gain function but also performs the level shifting and transconductance reduction functions. By reducing the transconductance, a smaller compensation capacitor (only 5.0 pF) can be employed, thus saving chip area. The transconductance reduction is accomplished by splitting the collectors of Q20 and Q18. Another feature of this input stage is that the input common mode range can include the negative supply or ground, in single supply operation, without saturating either the input devices or the differential to single-ended converter. The second stage consists of a standard current source load amplifier stage.

Each amplifier is biased from an internal-voltage regulator which has a low temperature coefficient thus giving each amplifier good temperature characteristics as well as excellent power supply rejection.

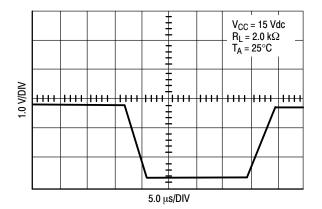


Figure 3. Large Signal Voltage Follower Response

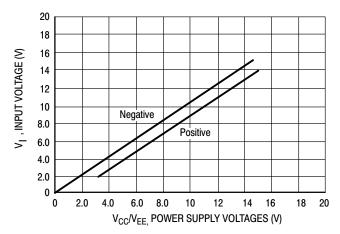


Figure 4. Input Voltage Range

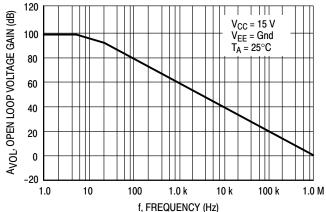


Figure 5. Large-Signal Open Loop Voltage Gain

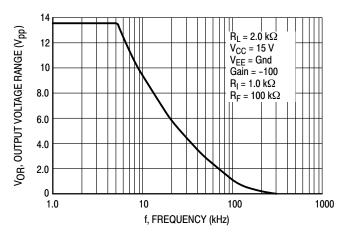


Figure 6. Large-Signal Frequency Response

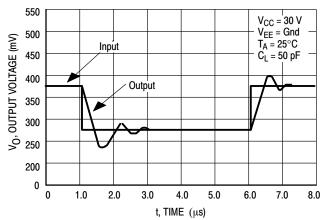


Figure 7. Small Signal Voltage Follower Pulse Response (Noninverting)

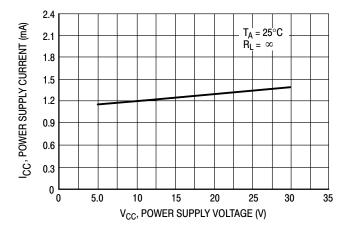


Figure 8. Power Supply Current versus Power Supply Voltage

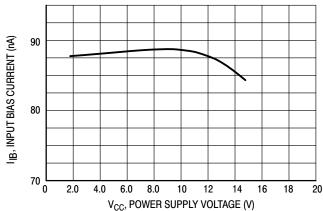


Figure 9. Input Bias Current versus Supply Voltage

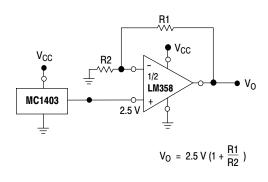


Figure 10. Voltage Reference

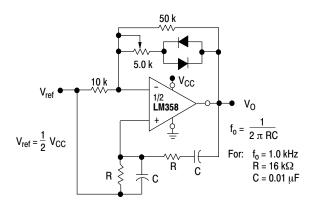


Figure 11. Wien Bridge Oscillator

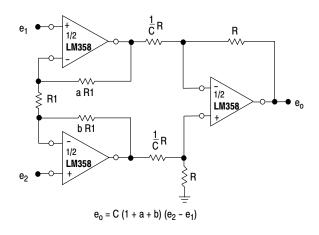


Figure 12. High Impedance Differential Amplifier

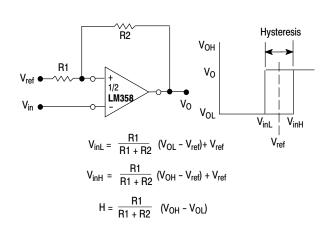


Figure 13. Comparator with Hysteresis

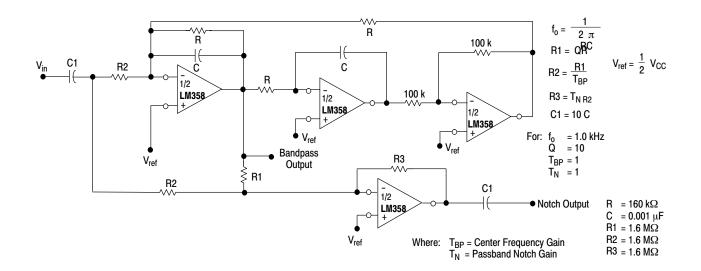
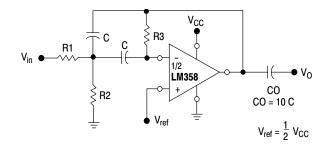



Figure 14. Bi-Quad Filter

Given: f_0 = center frequency $A(f_0)$ = gain at center frequency

Choose value fo, C

Then: R3 =
$$\frac{Q}{\pi f_0 C}$$

R1 = $\frac{R3}{2 A(f_0)}$
R2 = $\frac{R1 R3}{4Q^2 R1 - R3}$

For less than 10% error from operational amplifier. $\frac{Q_0 \, f_0}{BW} < 0.1$

Where fo and BW are expressed in Hz.

If source impedance varies, filter may be preceded with voltage follower buffer to stabilize filter parameters.

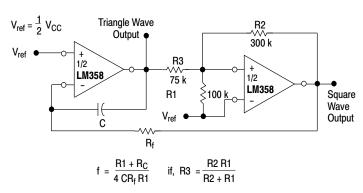
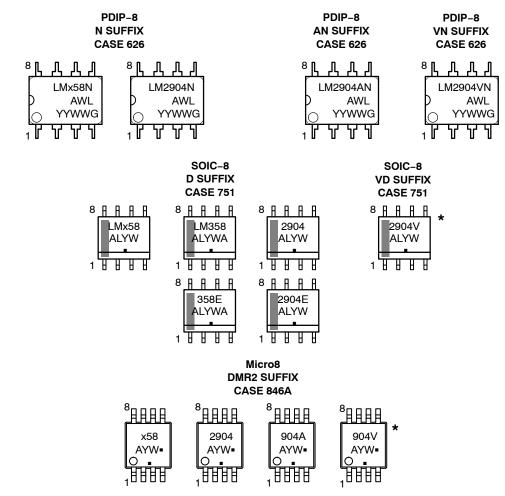


Figure 15. Function Generator

Figure 16. Multiple Feedback Bandpass Filter


ORDERING INFORMATION

Device	Operating Temperature Range	Package	Shipping [†]
LM358ADR2G			2500 / Tape & Reel
LM358DG		SOIC-8 (Pb-Free)	98 Units / Rail
LM358DR2G		(. 2)	2500 / Tape & Reel
LM358EDR2G	0°C to +70°C	SOIC-8 (Pb-Free)	2500 / Tape & Reel
LM358DMR2G		Micro8 (Pb-Free)	4000 / Tape & Reel
LM358NG		PDIP-8 (Pb-Free)	50 Units / Rail
LM258DG		SOIC-8	98 Units / Rail
LM258DR2G		(Pb-Free)	2500 / Tape & Reel
LM258DMR2G	−25°C to +85°C	Micro8 (Pb-Free)	4000 / Tape & Reel
LM258NG		PDIP-8 (Pb-Free)	50 Units / Rail
LM2904DG		SOIC-8 (Pb-Free)	98 Units / Rail
LM2904DR2G			2500 / Tape & Reel
LM2904EDR2G		SOIC-8 (Pb-Free)	2500 / Tape & Reel
LM2904DMR2G		Micro8 (Pb-Free)	2500 / Tape & Reel
LM2904NG	-40°C to +105°C	PDIP-8 (Pb-Free)	50 Units / Rail
LM2904ADMG		Micro8	4000 / Tape & Reel
LM2904ADMR2G		(Pb-Free)	4000 / Tape & Reel
LM2904ANG		PDIP-8 (Pb-Free)	50 Units / Rail
LM2904VDG		SOIC-8	98 Units / Rail
LM2904VDR2G		(Pb-Free)	2500 / Tape & Reel
LM2904VDMR2G		Micro8 (Pb-Free)	4000 / Tape & Reel
LM2904VNG	-40°C to +125°C	PDIP-8 (Pb-Free)	50 Units / Rail
NCV2904DR2G*		SOIC-8 (Pb-Free)	2500 / Tape & Reel
NCV2904DMR2G*		Micro8 (Pb-Free)	4000 / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

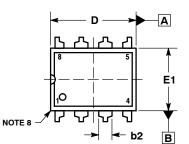
^{*}NCV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable.

MARKING DIAGRAMS

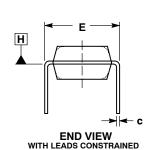
*This diagram also applies to NCV2904

x = 2 or 3

A = Assembly Location


WL, L = Wafer Lot YY, Y = Year WW, W = Work Week G = Pb-Free Package

■ = Pb-Free Package - (Note: Microdot may be in either location)



PDIP-8 CASE 626-05 ISSUE P

DATE 22 APR 2015

TOP VIEW

NOTE 5

e/2 NOTE 3 SEATING PLANE C D1 eВ 8X b **END VIEW** |⊕|0.010 M| C| A M| B M NOTE 6

STYLE 1: PIN 1. AC IN 2. DC + IN 3. DC - IN 4. AC IN

5. GROUND 6. OUTPUT

SIDE VIEW

7. AUXILIARY 8. V_{CC}

NOTES

- 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
- CONTROLLING DIMENSION: INCHES.
 DIMENSIONS A, A1 AND L ARE MEASURED WITH THE PACK-
- AGE SEATED IN JEDEC SEATING PLANE GAUGE GS-3.
 DIMENSIONS D, D1 AND E1 DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS. MOLD FLASH OR PROTRUSIONS ARE NOT TO EXCEED 0.10 INCH.
- DIMENSION E IS MEASURED AT A POINT 0.015 BELOW DATUM PLANE H WITH THE LEADS CONSTRAINED PERPENDICULAR
- 6. DIMENSION eB IS MEASURED AT THE LEAD TIPS WITH THE
- DATUM PLANE H IS COINCIDENT WITH THE BOTTOM OF THE LEADS, WHERE THE LEADS EXIT THE BODY.
- 8. PACKAGE CONTOUR IS OPTIONAL (ROUNDED OR SQUARE CORNERS).

	INC	HES	MILLIM	ETERS
DIM	MIN	MAX	MIN	MAX
Α		0.210		5.33
A1	0.015		0.38	
A2	0.115	0.195	2.92	4.95
b	0.014	0.022	0.35	0.56
b2	0.060 TYP		1.52	TYP
С	0.008	0.014	0.20	0.36
D	0.355	0.400	9.02	10.16
D1	0.005		0.13	
Е	0.300	0.325	7.62	8.26
E1	0.240	0.280	6.10	7.11
е	0.100 BSC		2.54	BSC
eВ		0.430		10.92
L	0.115	0.150	2.92	3.81
M		10°		10°

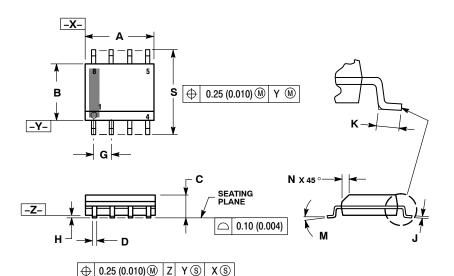
GENERIC MARKING DIAGRAM*

XXXX = Specific Device Code = Assembly Location

WL = Wafer Lot YY = Year WW = Work Week = Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " ■", may or may not be present.

DOCUMENT NUMBER:	98ASB42420B	Electronic versions are uncontrolled except when accessed directly from the Document R Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.	
DESCRIPTION:	PDIP-8		PAGE 1 OF 1


ON Semiconductor and unare trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

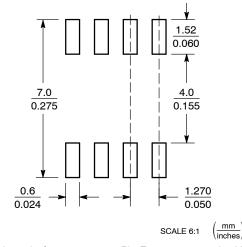
SOIC-8 NB CASE 751-07 **ISSUE AK**

DATE 16 FEB 2011

- NOTES:
 1. DIMENSIONING AND TOLERANCING PER
- ANSI Y14.5M, 1982.
 CONTROLLING DIMENSION: MILLIMETER.
- DIMENSION A AND B DO NOT INCLUDE MOLD PROTRUSION.
- MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE
- DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION.
- 751-01 THRU 751-06 ARE OBSOLETE. NEW STANDARD IS 751-07.

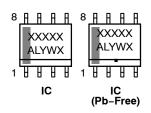
	MILLIMETERS		INCHES		
DIM	MIN	MAX	MIN	MAX	
Α	4.80	5.00	0.189	0.197	
В	3.80	4.00	0.150	0.157	
C	1.35	1.75	0.053	0.069	
D	0.33	0.51	0.013	0.020	
G	1.27	7 BSC	0.050 BSC		
Н	0.10	0.25	0.004	0.010	
J	0.19	0.25	0.007	0.010	
K	0.40	1.27	0.016	0.050	
M	0 °	8 °	0 °	8 °	
N	0.25	0.50	0.010	0.020	
S	5.80	6.20	0.228	0.244	

XXXXXX


AYWW

Discrete

Ŧ \mathbb{H} AYWW


Discrete (Pb-Free)

SOLDERING FOOTPRINT*

^{*}For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

GENERIC MARKING DIAGRAM*

XXXXX = Specific Device Code = Assembly Location = Wafer Lot = Year W

XXXXXX = Specific Device Code = Assembly Location Α = Year ww = Work Week = Work Week = Pb-Free Package = Pb-Free Package

> *This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking.

STYLES ON PAGE 2

DOCUMENT NUMBER:	98ASB42564B	Electronic versions are uncontrolled except when accessed directly from Printed versions are uncontrolled except when stamped "CONTROLLED	
DESCRIPTION:	SOIC-8 NB		PAGE 1 OF 2

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. **onsemi** does not convey any license under its patent rights nor the rights of others.

SOIC-8 NB CASE 751-07 ISSUE AK

DATE 16 FEB 2011

			D/ (I E TO I ED E
STYLE 1: PIN 1. EMITTER 2. COLLECTOR 3. COLLECTOR 4. EMITTER 5. EMITTER 6. BASE 7. BASE 8. EMITTER	STYLE 2: PIN 1. COLLECTOR, DIE, #1 2. COLLECTOR, #1 3. COLLECTOR, #2 4. COLLECTOR, #2 5. BASE, #2 6. EMITTER, #2 7. BASE, #1 8. EMITTER, #1 STYLE 6:	STYLE 3: PIN 1. DRAIN, DIE #1 2. DRAIN, #1 3. DRAIN, #2 4. DRAIN, #2 5. GATE, #2 6. SOURCE, #2 7. GATE, #1 8. SOURCE, #1 STYLE 7:	
PIN 1. DRAIN 2. DRAIN 3. DRAIN 4. DRAIN 5. GATE 6. GATE 7. SOURCE 8. SOURCE	PIN 1. SOURCE 2. DRAIN 3. DRAIN 4. SOURCE 5. SOURCE 6. GATE 7. GATE 8. SOURCE	STYLE 7: PIN 1. INPUT 2. EXTERNAL BYPASS 3. THIRD STAGE SOURCE 4. GROUND 5. DRAIN 6. GATE 3 7. SECOND STAGE Vd 8. FIRST STAGE Vd	PIN 1. COLLECTOR, DIE #1 2. BASE, #1 3. BASE, #2 4. COLLECTOR, #2 5. COLLECTOR, #2 6. EMITTER, #2 7. EMITTER, #1 8. COLLECTOR, #1
STYLE 9: PIN 1. EMITTER, COMMON 2. COLLECTOR, DIE #1 3. COLLECTOR, DIE #2 4. EMITTER, COMMON 5. EMITTER, COMMON 6. BASE, DIE #2 7. BASE, DIE #1 8. EMITTER, COMMON	STYLE 10: PIN 1. GROUND 2. BIAS 1 3. OUTPUT 4. GROUND 5. GROUND 6. BIAS 2 7. INPUT 8. GROUND	STYLE 11: PIN 1. SOURCE 1 2. GATE 1 3. SOURCE 2 4. GATE 2 5. DRAIN 2 6. DRAIN 2 7. DRAIN 1 8. DRAIN 1	STYLE 12: PIN 1. SOURCE 2. SOURCE 3. SOURCE 4. GATE 5. DRAIN 6. DRAIN 7. DRAIN 8. DRAIN
STYLE 13: PIN 1. N.C. 2. SOURCE 3. SOURCE 4. GATE 5. DRAIN 6. DRAIN 7. DRAIN 8. DRAIN	STYLE 14: PIN 1. N-SOURCE 2. N-GATE 3. P-SOURCE 4. P-GATE 5. P-DRAIN 6. P-DRAIN 7. N-DRAIN 8. N-DRAIN	7. DHAIN 1 8. DRAIN 1 STYLE 15: PIN 1. ANODE 1 2. ANODE 1 3. ANODE 1 4. ANODE 1 5. CATHODE, COMMON 6. CATHODE, COMMON 7. CATHODE, COMMON 8. CATHODE, COMMON	STYLE 16: PIN 1. EMITTER, DIE #1 2. BASE, DIE #1 3. EMITTER, DIE #2 4. BASE, DIE #2 5. COLLECTOR, DIE #2 6. COLLECTOR, DIE #2 7. COLLECTOR, DIE #1 8. COLLECTOR, DIE #1
STYLE 17: PIN 1. VCC 2. V2OUT 3. V1OUT 4. TXE 5. RXE 6. VEE 7. GND 8. ACC	STYLE 18: PIN 1. ANODE 2. ANODE 3. SOURCE 4. GATE 5. DRAIN 6. DRAIN 7. CATHODE 8. CATHODE	STYLE 19: PIN 1. SOURCE 1 2. GATE 1 3. SOURCE 2 4. GATE 2 5. DRAIN 2 6. MIRROR 2 7. DRAIN 1 8. MIRROR 1	STYLE 20: PIN 1. SOURCE (N) 2. GATE (N) 3. SOURCE (P) 4. GATE (P) 5. DRAIN 6. DRAIN 7. DRAIN 8. DRAIN
STYLE 21: PIN 1. CATHODE 1 2. CATHODE 2 3. CATHODE 3 4. CATHODE 4 5. CATHODE 5 6. COMMON ANODE 7. COMMON ANODE 8. CATHODE 6	STYLE 22: PIN 1. I/O LINE 1 2. COMMON CATHODE/VCC 3. COMMON CATHODE/VCC 4. I/O LINE 3 5. COMMON ANODE/GND 6. I/O LINE 4 7. I/O LINE 5 8. COMMON ANODE/GND	STYLE 23: PIN 1. LINE 1 IN 2. COMMON ANODE/GND 3. COMMON ANODE/GND 4. LINE 2 IN 5. LINE 2 OUT 6. COMMON ANODE/GND 7. COMMON ANODE/GND 8. LINE 1 OUT	STYLE 24: PIN 1. BASE 2. EMITTER 3. COLLECTOR/ANODE 4. COLLECTOR/ANODE 5. CATHODE 6. CATHODE 7. COLLECTOR/ANODE 8. COLLECTOR/ANODE
STYLE 25: PIN 1. VIN 2. N/C 3. REXT 4. GND 5. IOUT 6. IOUT 7. IOUT 8. IOUT	STYLE 26: PIN 1. GND 2. dv/dt 3. ENABLE 4. ILIMIT 5. SOURCE 6. SOURCE 7. SOURCE 8. VCC	STYLE 27: PIN 1. ILIMIT 2. OVLO 3. UVLO 4. INPUT+ 5. SOURCE 6. SOURCE 7. SOURCE 8. DRAIN	STYLE 28: PIN 1. SW_TO_GND 2. DASIC_OFF 3. DASIC_SW_DET 4. GND 5. V_MON 6. VBULK 7. VBULK 8. VIN
STYLE 29: PIN 1. BASE, DIE #1 2. EMITTER, #1 3. BASE, #2 4. EMITTER, #2 5. COLLECTOR, #2 6. COLLECTOR, #2 7. COLLECTOR, #1 8. COLLECTOR, #1	STYLE 30: PIN 1. DRAIN 1 2. DRAIN 1 3. GATE 2 4. SOURCE 2 5. SOURCE 1/DRAIN 2 6. SOURCE 1/DRAIN 2 7. SOURCE 1/DRAIN 2 8. GATE 1		

DOCUMENT NUMBER:	98ASB42564B	Printed versions are uncontrolled except when accessed directly from the Document Report Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.	
DESCRIPTION:	SOIC-8 NB		PAGE 2 OF 2

onsemi and ONSEMi are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

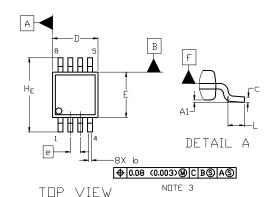
Micro8 CASE 846A-02 ISSUE K

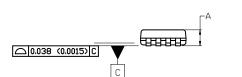
DATE 16 JUL 2020

MAX. 1.10

0.15

0.40


0.23


3.10

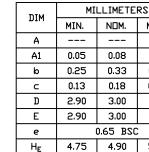
3.10

5.05

0.70

DETAIL A

RECOMMENDED MOUNTING FOOTPRINT


NOTES:

- DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 2009.
- CONTROLLING DIMENSION: MILLIMETERS

-8X 0.80

5.25

- DIMENSION 6 DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE PROTRUSION SHALL BE 0.10 mm IN EXCESS OF MAXIMUM MATERIAL CONDITION.
- DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH, PROTRUSION OR GATE BURRS. MOLD FLASH, PROTRUSIONS, OR GATE BURRS SHALL NOT EXCEED 0.15 mm PER SIDE. DIMENSION E DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 mm PER SIDE. DIMENSIONS D AND E ARE DETERMINED AT DATUM F.
- DATUMS A AND B ARE TO BE DETERMINED AT DATUM F.
- A1 IS DEFINED AS THE VERTICAL DISTANCE FROM THE SEATING PLANE TO THE LOWEST POINT ON THE PACKAGE BODY.

0.40

0.55

GENERIC MARKING DIAGRAM*

SIDE VIEW

XXXX = Specific Device Code Α = Assembly Location

Υ = Year W = Work Week = Pb-Free Package

(Note: Microdot may be in either location)

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "■", may or may not be present. Some products may not follow the Generic Marking.

STYLE 1:	STYLE 2:	STYLE 3:
PIN 1. SOURCE	PIN 1. SOURCE 1	PIN 1. N-SOURCE
2. SOURCE	2. GATE 1	2. N-GATE
SOURCE	SOURCE 2	P-SOURCE
4. GATE	4. GATE 2	4. P-GATE
5. DRAIN	5. DRAIN 2	5. P-DRAIN
6. DRAIN	6. DRAIN 2	6. P-DRAIN
7. DRAIN	7. DRAIN 1	7. N-DRAIN
8. DRAIN	8. DRAIN 1	8. N-DRAIN

DOCUMENT NUMBER:	98ASB14087C	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.	
DESCRIPTION:	MICRO8		PAGE 1 OF 1

ON Semiconductor and unare trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems. or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales