TMPIM 25 A CIB Module

NXH25C120L2C2SG

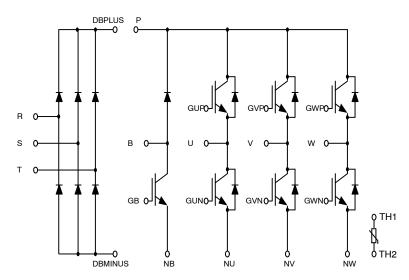
The NXH25C120L2C2SG is a transfer-molded power module containing a converter-inverter-brake circuit consisting of six 25 A, 1600 V rectifiers, six 25 A, 1200 V IGBTs with inverse diodes, one 25 A, 1200 V brake IGBT with brake diode and an NTC thermistor.

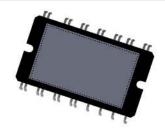
Features

- Low Thermal Resistance
- 6 mm Clearance Distance between Pin to Heatsink
- Compact 73 mm × 40 mm × 8 mm Package
- Solderable Pins
- Thermistor
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

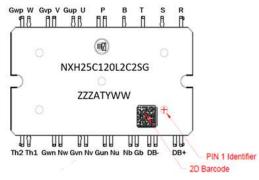
Typical Applications

- Industrial Motor Drives
- Servo Drives




Figure 1. NXH25C120L2C2SG Schematic Diagram

1


ON Semiconductor®

www.onsemi.com

DIP26 67.8x40 CASE 181AD

MARKING DIAGRAM

NXH25C120L2C2SG = Specific Device Code

ZZZ = Assembly Lot Code
AT = Assembly & Test Location

Y = Year WW = Work Week

ORDERING INFORMATION

Device	Package	Shipping [†]
NXH25C120L2C2SG	DIP26 (Pb-Free)	6 Units / Tube

MAXIMUM RATINGS

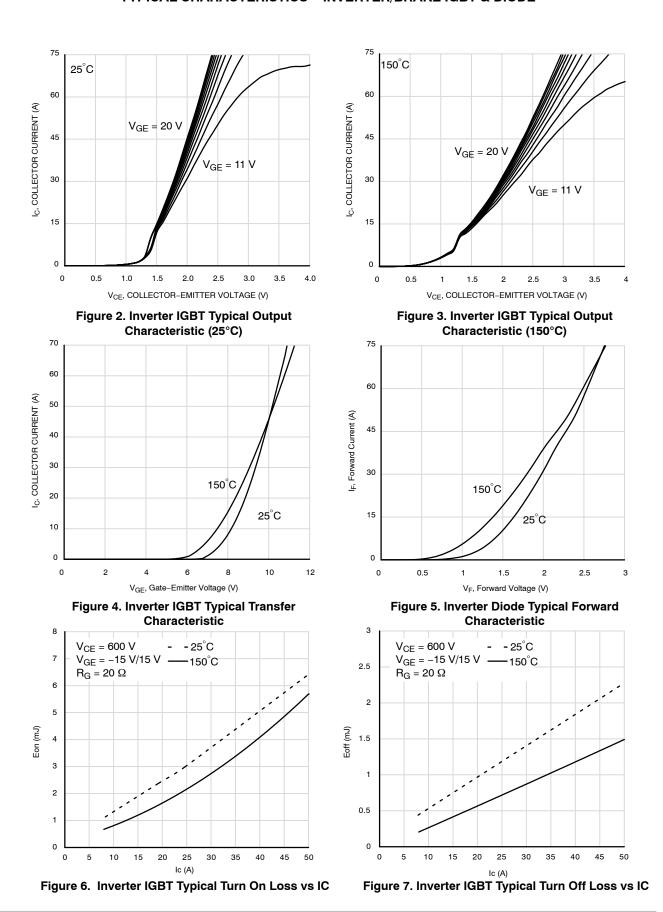
Rating	Symbol	Value	Unit
IGBT		•	
Collector–Emitter Voltage	V _{CES}	1200	V
Gate-Emitter Voltage	V_{GE}	±20	V
Continuous Collector Current @ T _C = 80°C (Tv _{Jmax} = 175°C)	Ι _C	25	Α
Pulsed Collector Current	I _{Cpulse}	75	Α
DIODE			
Peak Repetitive Reverse Voltage	V_{RRM}	1200	V
Continuous Forward Current @ T _C = 80°C (Tv _{Jmax} = 175°C)	I _F	25	Α
Repetitive Peak Forward Current	I _{FRM}	75	Α
RECTIFIER DIODE			
Peak Repetitive Reverse Voltage	V_{RRM}	1600	V
Continuous Forward Current @ T _C = 80°C (Tv _{Jmax} = 150°C)	I _F	25	Α
Repetitive Peak Forward Current	I _{FRM}	75	Α
l ² t value (10 ms single half-sine wave) @ 25°C (10 ms single half-sine wave) @ 150°C	l ² t	680 360	A ² t
Surge current (10 ms sin180°) @ 25°C	IFSM	370	Α
THERMAL PROPERTIES			
Storage Temperature range	T _{stg}	-40 to 125	°C
INSULATION PROPERTIES			
Isolation test voltage, t = 1 sec, 50 Hz	V _{is}	3000	V _{RMS}
Internal isolation		Al ₂ O ₃	
Creepage distance		6.0	mm
Clearance distance		6.0	mm
Comperative Tracking Index	CTI	> 400	

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. Refer to ELECTRICAL CHARACTERISTICS, RECOMMENDED OPERATING RANGES and/or APPLICATION INFORMATION for Safe

Operating parameters.

ELECTRICAL CHARACTERISTICS ($T_J = 25^{\circ}C$ unless otherwise specified)


Parameter	Test Conditions	Symbol	Min	Тур	Max	Unit
IGBT CHARACTERISTICS			•	-	•	•
Collector-Emitter Cutoff Current	V _{GE} = 0 V, V _{CE} = 1200 V	I _{CES}	_	_	250	μΑ
Collector-Emitter Saturation Voltage	V _{GE} = 15 V, I _C = 25 A, T _J = 25°C	C V _{CE(sat)} –		1.7	2.4	V
	V _{GE} = 15 V, I _C = 25 A, T _J = 150°C		-	1.9	-	1
Gate-Emitter Threshold Voltage	$V_{GE} = V_{CE}$, $I_C = 3.04$ mA	V _{GE(TH)}	4.8	5.9	6.8	V
Gate Leakage Current	V _{GE} = 20 V, V _{CE} = 0 V	I _{GES}	=	=	400	nA
Turn-on Delay Time	T _J = 25 °C	t _{d(on)}	=	68	=	ns
Rise Time	V _{CE} = 600 V, I _C = 25 A	t _r	=	63	=	
Turn-off Delay Time	$V_{GE} = \pm 15 \text{ V}, R_G = 20 \Omega$	t _{d(off)}	=	235	=	
Fall Time	7	t _f	=	48	-	1
Turn-on Switching Loss per Pulse	7	E _{on}	-	2200	_	μJ
Turn off Switching Loss per Pulse	7	E _{off}	_	720	_	1
Turn-on Delay Time	T _J = 125°C	t _{d(on)}	-	72	_	ns
Rise Time	V _{CE} = 600 V, I _C = 25 A	t _r	-	56	_	
Turn-off Delay Time	$V_{GE} = \pm 15 \text{ V}, R_{G} = 20 \Omega$	t _{d(off)}	_	266	_	
Fall Time	1	t _f	_	54	_	1
Turn-on Switching Loss per Pulse	1	E _{on}	_	3050	_	μJ
Turn off Switching Loss per Pulse	1	E _{off}	_	1200	_	1
Input Capacitance	V _{CE} = 20 V. V _{GE} = 0 V	C _{ies}	_	6200	_	pF
Output Capacitance	f = 100 kHz	C _{oes}	_	212	_	1
Reverse Transfer Capacitance	1	C _{res}	-	117	-	1
Total Gate Charge	$V_{CE} = 600 \text{ V}, I_{C} = 25 \text{ A}, V_{GE} = 0 \text{ V} \sim +15 \text{ V}$	Qg	-	269	-	nC
Temperature under switching conditions		Tvj op	-40		150	°C
Thermal Resistance - chip-to-case		RthJC	_	0.54	_	°C/W
DIODE CHARACTERISTICS				•		•
Brake Diode Reverse Leakage Current	V _R = 1200 V	I _R	=	=	200	μΑ
Diode Forward Voltage	I _F = 25 A, T _J = 25°C	V _F	=	1.9	2.6	V
-	I _F = 25 A, T _J = 150°C		_	1.7	-	
Reverse Recovery Charge	T _J = 25°C	Q _{rr}	=	1.35	-	μС
Peak Reverse Recovery Current	$V_{CE} = 600 \text{ V}, I_{C} = 25 \text{ A}$	I _{RRM}	_	16	-	Α
Reverse Recovery Energy	$V_{GE} = \pm 15 \text{ V}, R_G = 20 \Omega$	E _{rr}	=	350	-	μJ
Reverse Recovery Charge	T _J = 150 °C	Q _{rr}	_	3.6	_	μС
Peak Reverse Recovery Current	V _{CE} = 600 V, I _C = 25 A	I _{RRM}	_	26	_	Α
Reverse Recovery Energy	$V_{GE} = \pm 15 \text{ V}, R_G = 20 \Omega$	E _{rr}	_	1050	_	μJ
Temperature under switching conditions		Tvj op	-40		150	°C
Thermal Resistance - chip-to-case		RthJC	_	1.10	_	°C/W

ELECTRICAL CHARACTERISTICS ($T_J = 25^{\circ}C$ unless otherwise specified) (continued)

Parameter	Test Conditions	Symbol	Min	Тур	Max	Unit
RECTIFIER DIODE CHARACTERISTIC	s	•	•		•	
Rectifier Reverse Leakage Current	V _R = 1600 V	I _R	_	_	200	μΑ
Rectifier Forward Voltage	I _F = 25 A, T _J = 25°C	V _F	=	1	1.5	V
	I _F = 35 A, T _J = 150°C		=	1.1	-	
Temperature under switching conditions		Tvj op	-40		150	°C
Thermal Resistance - chip-to-case		RthJC	_	0.86	-	°C/W
THERMISTOR CHARACTERISTICS			•	•	•	•
Nominal resistance	T = 25°C	R ₂₅	=	5	-	kΩ
Nominal resistance	T = 100°C	R ₁₀₀	=	493.3	-	Ω
Deviation of R25		∆R/R	-5	=	5	%
Power dissipation		P _D	-	20	-	mW
Power dissipation constant			_	1.4	_	mW/K
B-value	B(25/50), tolerance ±2%		_	3375	_	K
B-value	B(25/100), tolerance ±2%		_	3433	-	K

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

TYPICAL CHARACTERISTICS - INVERTER/BRAKE IGBT & DIODE

TYPICAL CHARACTERISTICS - INVERTER/BRAKE IGBT & DIODE

6

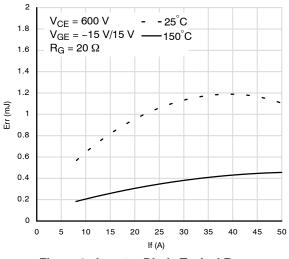


Figure 8. Inverter Diode Typical Reverse Recovery Energy vs IC

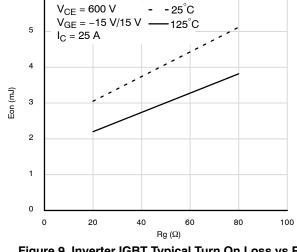


Figure 9. Inverter IGBT Typical Turn On Loss vs RG

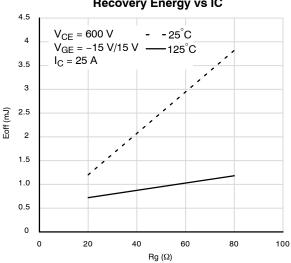


Figure 10. Inverter IGBT Typical Turn Off Loss vs RG

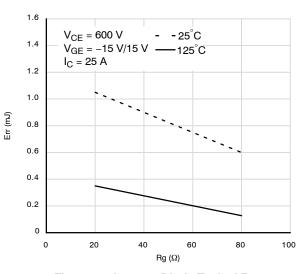


Figure 11. Inverter Diode Typical Reverse Recovery Energy vs RG

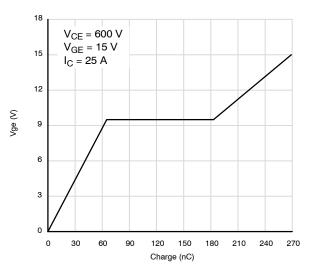


Figure 12. Inverter IGBT Gate Voltage vs Gate Charge

TYPICAL CHARACTERISTICS - INVERTER/BRAKE IGBT & DIODE

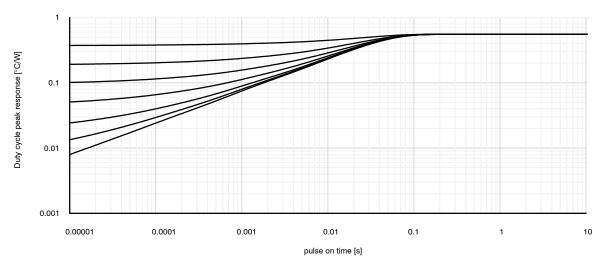


Figure 13. IGBT Junction-to-Case Transient Thermal Impedance

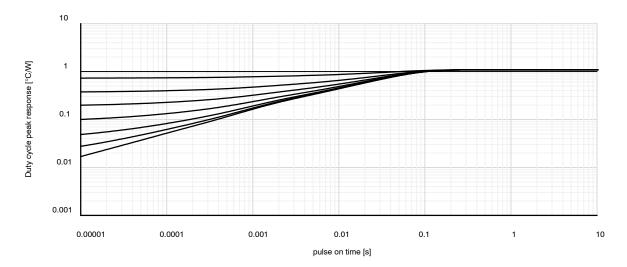


Figure 14. Diode Junction-to-Case Transient Thermal Impedance

TYPICAL CHARACTERISTICS - RECTIFIER

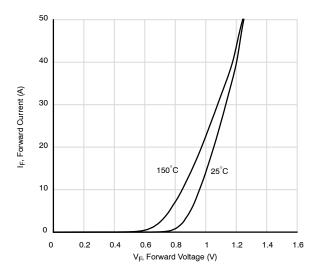


Figure 15. Rectifier Typical Forward Characteristic

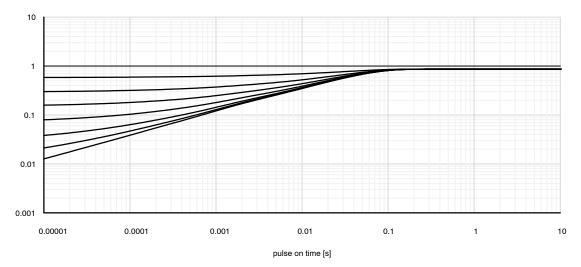
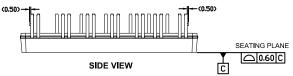
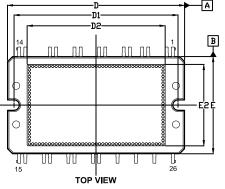
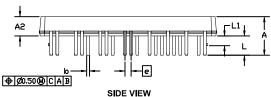
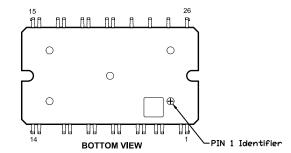



Figure 16. Rectifier Junction-to-Case Transient Thermal Impedance




DIP26 67.8x40 CASE 181AD **ISSUE B**


DATE 05 AUG 2021

NOTES:

END VIEW

- Dimensioning and tolerancing as per ASME Y14.5M, 2009 1.
- Controlling Dimension: Millimeters 2.
- 3. Dimensions are exclusive of Burrs, Mold Flash, and Tiebar extrusions
- 4. Dimensions "b" and "c" apply to plated leads
- 5. Position of the leads is determine at the root of the lead where it exits the package body

DIM	MILLIMETERS			
DIN	MIN	NOM	MAX	
Α	15.50	16.00	16.50	
A2	7.80	8.00	8.20	
A3		6.00 REF		
b	1.10	1.20	1.30	
С	0.70	0.80	0.90	
D	72.70	73.20	73.70	
D1	67.30	67.80	68.30	
D2	57.30 REF			
E	39.70	40.20	40.70	
E1	46.70	47.20	47.70	
E2	33.87 REF			
е	2.54 BSC			
F	4.00	4.20	4.40	
L	8.00 REF			
L1	3.50	4.00	4.50	
М	4°	5°	6°	

GENERIC MARKING DIAGRAM*

XXX = Specific Device Code

ZZZ = Assembly Lot Code

= Assembly & Test Location

= Year

WW = Work Week

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "=", may or may not be present. Some products may not follow the Generic Marking.

DOCUMENT NUMBER:	98AON09519H	Electronic versions are uncontrolled except when accessed directly from the Document Repositor Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.			
DESCRIPTION:	DIP26 67.8x40		PAGE 1 OF 1		

ON Semiconductor and unare trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

onsemi, Onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at www.onsemi.com/support/sales