

Important notice

Dear Customer,

On 7 February 2017 the former NXP Standard Product business became a new company with the tradename **Nexperia**. Nexperia is an industry leading supplier of Discrete, Logic and PowerMOS semiconductors with its focus on the automotive, industrial, computing, consumer and wearable application markets

In data sheets and application notes which still contain NXP or Philips Semiconductors references, use the references to Nexperia, as shown below.

Instead of http://www.nxp.com, http://www.nxp.com, http://www.nexperia.com, http://www.nexperia.com)

Instead of sales.addresses@www.nxp.com or sales.addresses@www.semiconductors.philips.com, use salesaddresses@nexperia.com (email)

Replace the copyright notice at the bottom of each page or elsewhere in the document, depending on the version, as shown below:

- © NXP N.V. (year). All rights reserved or © Koninklijke Philips Electronics N.V. (year). All rights reserved

Should be replaced with:

- © Nexperia B.V. (year). All rights reserved.

If you have any questions related to the data sheet, please contact our nearest sales office via e-mail or telephone (details via **salesaddresses@nexperia.com**). Thank you for your cooperation and understanding,

Kind regards,

Team Nexperia

INTEGRATED CIRCUITS

DATA SHEET

74F367Hex buffer/driver

Product data 2004 Jan 30 Replaces Product specification 74F365/74F367 of 2000 Jun 30

Hex buffer/driver 74F367

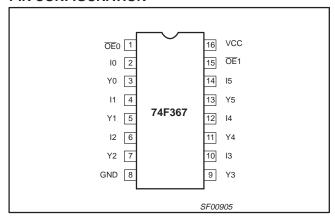
FEATURES

- High-impedance NPN base inputs for reduced loading (20 μA in HIGH and LOW states)
- High-speed
- Bus oriented
- 3-State buffer outputs sink 64 mA

TYPE	TYPICAL PROPAGATION DELAY	TYPICAL SUPPLY CURRENT (TOTAL)
74F367	5.0 ns	36 mA

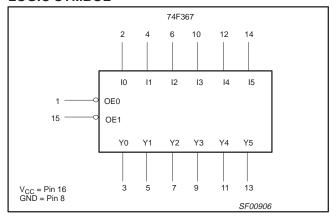
ORDERING INFORMATION

COMMERCIAL RANGE: V_{CC} = 5 V \pm 10%; T_{amb} = 0 °C to +70 °C

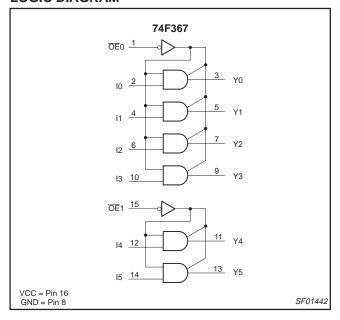

Type number	Package	Package								
	Name	ame Description V								
N74F367N	DIP16	DIP16 plastic dual in-line package; 16 leads (300 mil)								
N74F367D	SO16	plastic small outline package; 16 leads; body width 3.9 mm								

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

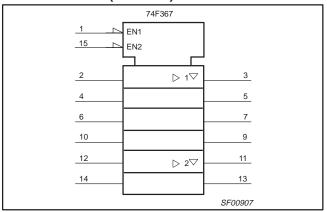
PINS	DESCRIPTION	74F(U.L.) HIGH / LOW	LOAD VALUE HIGH / LOW
10 - 15	Inputs	1.0 / 0.033	20 μΑ / 20 μΑ
OE0, OE1	Output enable inputs (active-LOW)	1.0 / 0.033	20 μΑ / 20 μΑ
Y0 - Y5	Data Outputs	750 / 106.7	15 mA / 64 mA


NOTE: One (1.0) FAST Unit Load (U.L.) is defined as: 20 μA in the HIGH state and 0.6 mA in the LOW state.

PIN CONFIGURATION



74F367 Hex buffer/driver


LOGIC SYMBOL

LOGIC DIAGRAM

LOGIC SYMBOL (IEEE/IEC)

FUNCTION TABLE

INP	INPUTS					
OE n	In	Yn				
L	L	L				
L	Н	Н				
Н	Х	Z				

H = HIGH voltage level L = LOW voltage level

X = Don't care Z = High impedance "off" state

3 2004 Jan 30

Hex buffer/driver 74F367

ABSOLUTE MAXIMUM RATINGS

Operation beyond the limits set forth in this table may impair the useful life of the device. Unless otherwise noted these limits are over the operating free-air temperature range.

SYMBOL	PARAMETER	RATING	UNIT
V _{CC}	Supply voltage range	−0.5 to +7.0	V
V _{IN}	Input voltage range	−0.5 to +7.0	V
I _{IN}	Input current range	−30 to +5	mA
V _{OUT}	Voltage applied to output in HIGH output state range	-0.5 to 5.5	V
I _{OUT}	Current applied to output in LOW output state	128	mA
T _{amb}	Operating free-air temperature range	0 to +70	°C
T _{stg}	Storage temperature range	−65 to +150	°C

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER		UNIT		
STWIBUL	PARAMETER	MIN	TYP	MAX	
V _{CC}	Supply voltage	4.5	5.0	5.5	V
V _{IH}	HIGH-level input voltage	2.0	_	_	V
V _{IL}	LOW-level input voltage	_	_	0.8	V
I _{IK}	Input clamp current	_	_	-18	mA
I _{OH}	HIGH-level output current	_	_	-15	mA
I _{OL}	LOW-level output current	_	_	64	mA
T _{amb}	Operating free-air temperature range	0	_	70	°C

74F367 Hex buffer/driver

DC ELECTRICAL CHARACTERISTICS

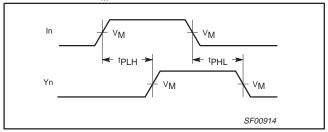
Over recommended operating free-air temperature range unless otherwise noted.

CVMDOL	DADAMETED	TEST COMPITION	vic1		LIMITS		UNIT
SYMBOL	PARAMETER	TEST CONDITION	TEST CONDITIONS			MAX	
		V _{CC} = MIN; V _{IL} = MAX;	± 10% Vcc	2.4	_	_	V
\/	HIGH-level output voltage	$V_{IH} = MIN; I_{OH} = -3 \text{ mA}$	± 5% Vcc	2.7	3.3	_	V
V _{OH}	nigh-level output voltage	V _{CC} = MIN; V _{IL} = MAX;	± 10% Vcc	2.0	_	_	V
		$V_{IH} = MIN; I_{OH} = -15 \text{ mA}$	± 5% Vcc	2.0	_	_	V
V	Low lovel output voltage	V _{CC} = MIN; V _{IL} = MAX;	± 10% Vcc	_	_	0.55	V
V _{OL}	Low-level output voltage	V _{IH} = MIN; I _{OL} = MAX	± 5% Vcc	_	0.42	0.55	V
V _{IK}	Input clamp voltage	$V_{CC} = MIN; I_I = I$	_	-0.73	-1.2	V	
l _l	Input current at maximum input voltage	$V_{CC} = 0 \text{ V}; V_{I} = 7.$	_	_	100	μΑ	
I _{IH}	HIGH-level input current	$V_{CC} = MAX; V_I = 2.7 V$		_	_	20	μΑ
I _{IL}	LOW-level input current	$V_{CC} = MAX; V_I = 0.5 V$		-	_	-20	μΑ
I _{OZH}	Off-state output current, HIGH-level voltage applied	$V_{CC} = MAX; V_O = 2.7 V$		_	-	50	μΑ
I _{OZL}	Off-state output current, LOW-level voltage applied	$V_{CC} = MAX; V_O = 0.5 V$		-	-	-50	μΑ
los	Short-circuit output current ³	$V_{CC} = MAX$		-100	_	-225	mA
	Іссн			_	25	35	mA
I _{CC}	Supply current (total) I _{CCL}	$V_{CC} = MAX$		_	47	62	mA
	I _{CCZ}	<u> </u>			35	48	mA

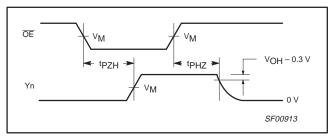
NOTES:

- 1. For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable type.
- For conditions shown as wink or what, use the appropriate value specified under recommended operating conditions for the applicable.
 All typical values are at V_{CC} = 5 V, T_{amb} = 25 °C.
 Not more than one output should be shorted at a time. For testing I_{OS}, the use of high-speed test apparatus and/or sample-and-hold techniques are preferable in order to minimize internal heating and more accurately reflect operational values. Otherwise, prolonged shorting of a HIGH output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, I_{OS} tests should be performed last.

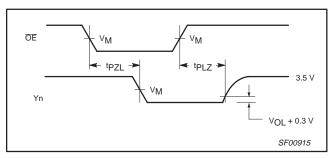
AC ELECTRICAL CHARACTERISTICS


SYMBOL	PARAMETER	TEST CONDITIONS	$T_{amb} = +25 ^{\circ}\text{C}$ $V_{CC} = +5.0 \text{V}$ $C_{L} = 50 \text{pF}; R_{L} = 500 \Omega$			$T_{amb} = -55$ ° $V_{CC} = +5$. $C_L = 50$ pF;	UNIT	
			MIN	TYP	MAX	MIN	MAX	
t _{PLH} t _{PHL}	Propagation delay I _n to Y _n	Waveform 1	2.5 2.5	4.5 5.5	6.5 7.0	2.0 2.0	7.0 7.5	ns ns
t _{PZH} t _{PZL}	Output Enable time to HIGH or LOW level	Waveform 2 Waveform 3	3.0 3.0	5.5 6.5	7.5 8.5	3.0 3.0	8.5 9.0	ns ns
t _{PHZ}	Output Disable time from HIGH to LOW level	Waveform 2 Waveform 3	2.0 2.0	4.5 4.0	6.5 6.5	2.0 2.0	7.0 7.0	ns ns

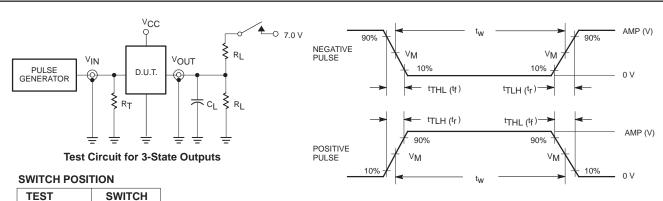
2004 Jan 30 5


Hex buffer/driver 74F367

AC WAVEFORMS


For all waveforms, $V_M = 1.5 \text{ V}$

Waveform 1. For non-inverting outputs



Waveform 2. 3-State Output Enable time to HIGH level and Output Disable time from HIGH level

Waveform 3. 3-State Output Enable time to LOW level and Output Disable time from LOW level

TEST CIRCUIT AND WAVEFORM

TEST	SWITCH
t _{PLZ}	closed
t _{PZL}	closed
All other	open

DEFINITIONS:

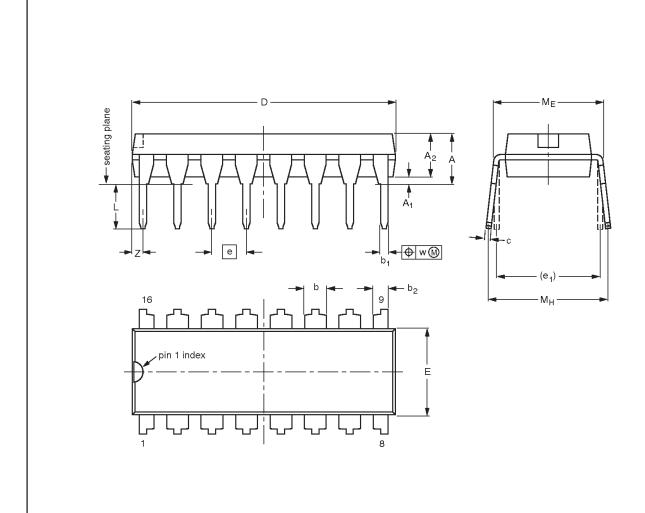
 R_L = Load resistor;

see AC electrical characteristics for value.

C_L = Load capacitance includes jig and probe capacitance; see AC electrical characteristics for value.

 R_T = Termination resistance should be equal to Z_{OUT} of pulse generators.

	INPUT PULSE REQUIREMENTS											
family		amplitude	V _M	rep. rate	t _w	t _{TLH}	t _{THL}					
	74F	74F 3.0 V 1.5 V		1 MHz	500 ns	2.5 ns	2.5 ns					


Input Pulse Definition

SF00777

Hex buffer/driver 74F367

DIP16: plastic dual in-line package; 16 leads (300 mil)

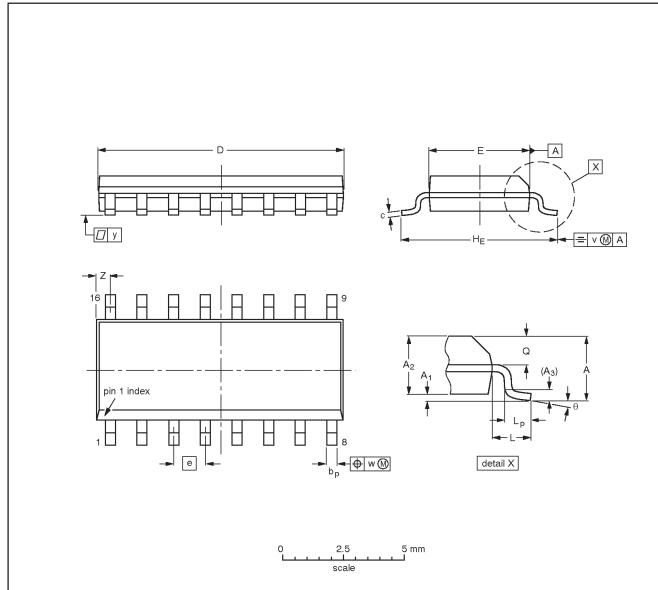
SOT38-4

DIMENSIONS (inch dimensions are derived from the original mm dimensions)

UNIT	A max.	A ₁ min.	A ₂ max.	b	b ₁	b ₂	С	D ⁽¹⁾	E ⁽¹⁾	е	e ₁	L	ME	Мн	w	Z ⁽¹⁾ max.
mm	4.2	0.51	3.2	1.73 1.30	0.53 0.38	1.25 0.85	0.36 0.23	19.50 18.55	6.48 6.20	2.54	7.62	3.60 3.05	8.25 7.80	10.0 8.3	0.254	0.76
inches	0.17	0.02	0.13	0.068 0.051	0.021 0.015	0.049 0.033	0.014 0.009	0.77 0.73	0.26 0.24	0.1	0.3	0.14 0.12	0.32 0.31	0.39 0.33	0.01	0.03

10 mm

Note


1. Plastic or metal protrusions of 0.25 mm (0.01 inch) maximum per side are not included.

OUTLINE		REFER	RENCES	EUROPEAN	ISSUE DATE
VERSION	IEC	JEDEC	JEITA	PROJECTION	ISSUE DATE
SOT38-4					95-01-14 03-02-13

Hex buffer/driver 74F367

SO16: plastic small outline package; 16 leads; body width 3.9 mm

SOT109-1

DIMENSIONS (inch dimensions are derived from the original mm dimensions)

UNIT	A max.	A ₁	A ₂	A ₃	bp	С	D ⁽¹⁾	E ⁽¹⁾	е	HE	L	Lp	Q	>	w	У	Z ⁽¹⁾	θ
mm	1.75	0.25 0.10	1.45 1.25	0.25	0.49 0.36	0.25 0.19	10.0 9.8	4.0 3.8	1.27	6.2 5.8	1.05	1.0 0.4	0.7 0.6	0.25	0.25	0.1	0.7 0.3	8°
inches	0.069	0.010 0.004	0.057 0.049	0.01		0.0100 0.0075		0.16 0.15	0.05	0.244 0.228	0.041	0.039 0.016		0.01	0.01	0.004	0.028 0.012	0°

Note

1. Plastic or metal protrusions of 0.15 mm (0.006 inch) maximum per side are not included.

OUTLINE		REFER	EUROPEAN	ISSUE DATE			
VERSION	IEC	JEDEC	JEITA		PROJECTION	ISSUE DATE	
SOT109-1	076E07	MS-012				99-12-27 03-02-19	

2004 Jan 30

Hex buffer/driver 74F367

REVISION HISTORY

Rev	Date	Description				
_4	20040130	Product data (9397 750 12742). 853-0042 ECN 01-A15335 of 21 January 2004. Replaces 74F365_74F367_3 dated 2000 Jun 30 (9397 750 07283).				
		Modifications:				
		● Delete all references to 74F365 (product discontinued).				
_3	20000630	Product specification (9397 750 07283). ECN 853-0042 24024 of 30 June 2000. Supersedes data of 1999 Jan 08.				

Data sheet status

Level	Data sheet status ^[1]	Product status ^{[2] [3]}	Definitions
I	Objective data	Development	This data sheet contains data from the objective specification for product development. Philips Semiconductors reserves the right to change the specification in any manner without notice.
II	Preliminary data	Qualification	This data sheet contains data from the preliminary specification. Supplementary data will be published at a later date. Philips Semiconductors reserves the right to change the specification without notice, in order to improve the design and supply the best possible product.
III	Product data	Production	This data sheet contains data from the product specification. Philips Semiconductors reserves the right to make changes at any time in order to improve the design, manufacturing and supply. Relevant changes will be communicated via a Customer Product/Process Change Notification (CPCN).

^[1] Please consult the most recently issued data sheet before initiating or completing a design.

Definitions

Short-form specification — The data in a short-form specification is extracted from a full data sheet with the same type number and title. For detailed information see the relevant data sheet or data handbook.

Limiting values definition — Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 60134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information — Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Disclaimers

Life support — These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips Semiconductors customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application.

Right to make changes — Philips Semiconductors reserves the right to make changes in the products—including circuits, standard cells, and/or software—described or contained herein in order to improve design and/or performance. When the product is in full production (status 'Production'), relevant changes will be communicated via a Customer Product/Process Change Notification (CPCN). Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified.

Contact information

For additional information please visit

http://www.semiconductors.philips.com. Fax: +31 40 27 24825

For sales offices addresses send e-mail to: sales.addresses@www.semiconductors.philips.com.

© Koninklijke Philips Electronics N.V. 2004 All rights reserved. Printed in U.S.A.

Date of release: 01-04

Document order number: 9397 750 12742

Let's make things better.

^[2] The product status of the device(s) described in this data sheet may have changed since this data sheet was published. The latest information is available on the Internet at URL http://www.semiconductors.philips.com.

^[3] For data sheets describing multiple type numbers, the highest-level product status determines the data sheet status.