

R5527K SERIES

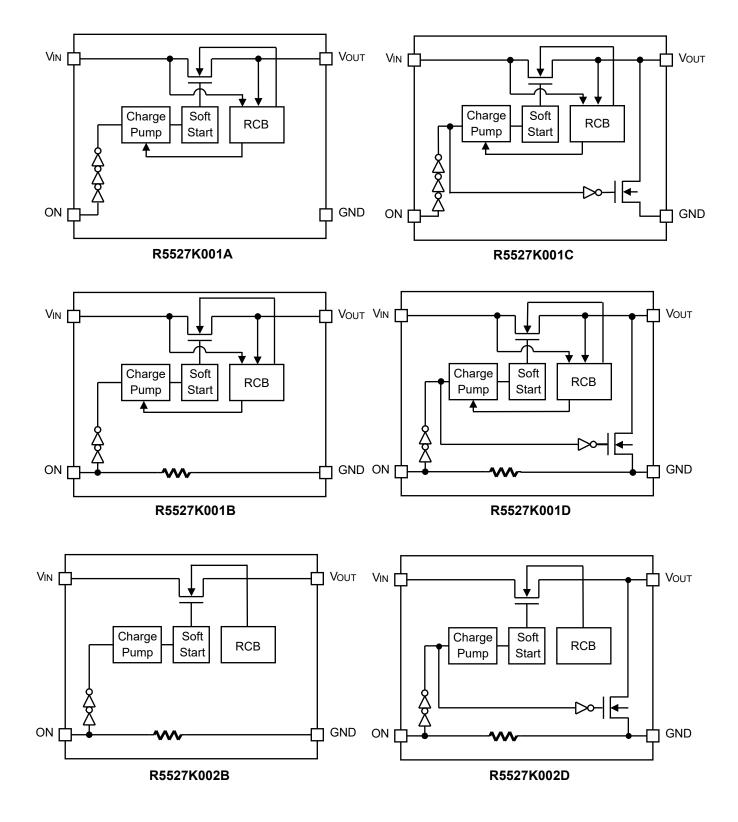
3A Load Switch IC

NO. EA-312-230201

OUTLINE

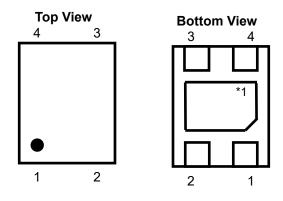
The R5527K is an N-channel load switch IC with low supply current, Typ. 40µA. R5527K realizes low onresistance by using Nch transistor for the driver. In addition, R5527K001x has a reverse current blocking function at on/off state, and R5527K002x has a reverse current blocking function at off state. The R5527K is an ideal load switch IC to supply power from the battery to the load circuit. The R5527K is available in an ultrasmall DFN (PL)1612-4D package which can achieve high-density mounting on boards.

FEATURES


Input Voltage Range ······	······ 1.8V to 5.5V
Typical On Resistance	······ 48mΩ (V _{IN} =5V)
	46mΩ (V _{IN} =4.5V)
	45mΩ (V _{IN} =3.8V)
	68mΩ (V _{IN} =1.8V)
- Slew Rate/Inrush Control with t_{R}	Min. 1.5ms
 3A Maximum Continuous Current Capability 	
Low Off Switch Current	Max.1µA (R5527K00xB/D)
	Max.2µA (R5527K001A/C)
Reverse Current Blocking (RCB) ······	······At Off/On-State (R5527K001x)
	At Off-State (R5527K002x)
Package	······DFN(PL)1612-4D

APPLICATION

- Smart Phones, Tablet PCs
- Storage, Portable Devices


R5527K

BLOCK DIAGRAMS

PIN DESCRIPTION

• DFN(PL)1612-4D

Pin No	Symbol	Pin Description
1	V _{IN}	Supply Input Pin
2	GND	Ground Pin
3	ON	ON/OFF Control Pin, Active High/Low
4	Vout	Switch Output Pin

^{*1} The tab on the bottom of the package enhances thermal performance and is electrically connected to GND (substrate level). It is recommended that the tab be connected to the ground plane on the board, or otherwise be left floating.

SELECTION GUIDE

The ON pin polarity, the auto-discharge function⁽¹⁾ and the reverse current blocking (RCB) at on state for the ICs are user-selectable options.

Product Name	Package	Quantity per Reel	Pb Free	Halogen Free
R5527K00**-TR	DFN(PL)1612-4D	5,000 pcs	Yes	Yes

** : Specify a combination of the ON pin polarity, the auto-discharge function and the RCB at on state .

**	ON pin Polarity	Auto-discharge	RCB at On-State
1A	"L" Active	No	Yes
1B	"H" Active	No	Yes
1C	"L" Active	Yes	Yes
1D	"H" Active	Yes	Yes
2B	"H" Active	No	No
2D	"H" Active	Yes	No

⁽¹⁾ Auto-Discharge function quickly lowers the output voltage to 0V by releasing the electrical charge in the external capacitor when the ON signal is switched from the active mode to the standby mode.

NO. EA-312-230201

ABSOLUTE MAXIMUM RATINGS

Symbol	ltem		Rating	Unit
VIN	Input Voltage		-0.3 to 6.0	V
Von	Input Voltage (ON Pin)		-0.3 to 6.0	V
Vout	Output Voltage	output Voltage		V
Іоит	Output Current		3.0	Α
PD	Power Dissipation (DFN(PL)1612-4D) ^{*1}	Power Dissipation JEDEC STD. 51		
Та	Ambient Tmeprature		-40 to 85	°C
Tstg	Storage Temerature		-55 to 125	°C

^{*1} Refer to *PACKAGE INFORMATION* for detailed information.

ABSOLUTE MAXIMUM RATINGS

Electronic and mechanical stress momentarily exceeded absolute maximum ratings may cause the permanent damages and may degrade the life time and safety for both device and system using the device in the field. The functional operation at or over these absolute maximum ratings are not assured.

RECOMMENDED OPERATING CONDITIONS (ELECTRICAL CHARACTERISTICS)

All of electronic equipment should be designed that the mounted semiconductor devices operate within the recommended operating conditions. The semiconductor devices cannot operate normally over the recommended operating conditions, even if when they are used over such conditions by momentary electronic noise or surge. And the semiconductor devices may receive serious damage when they continue to operate over the recommended operating conditions.

ELECTRICAL CHARACTERISTICS

 V_{IN} = 1.8 to 5.5V, I_{OUT} = 1mA, C_{IN} = 1 $\mu\text{F},$ C_{OUT} = None, unless otherwise noted.

The specifications surrounded by \square are guaranteed by design engineering at -40°C \leq Ta \leq 85°C.

Symbol	Item	Condition	IS	Min.	Тур.	Max.	Unit
Vin	Input Voltage			1.8		5.5	V
I _{Q(OFF)}	Off Supply Current	V _{ON} =V _{IN} ,V _{OUT} =OPEN	١		1	2	μA
		V _{ON} =V _{IN} ,	Ta=25°C		1	2	μA
ISD	Shutdown Current	Vout=GND	Ta=85°C		1	10	μA
lq	Quiescent Current	Von=GND, lout=0m	Ą		40	70	μA
		VIN=5V, IOUT=1A			48	65	
		VIN=4.5V, IOUT=1A			46		
Б		V _{IN} =3.8V, I _{OUT} =1A			45	60	
Ron	On Resistance	V _{IN} =3.3V, I _{OUT} =500m	۱A		45		mΩ
		V _{IN} =2.5V, I _{OUT} =500mA			51		I
		V _{IN} =1.8V, I _{OUT} =250mA			68		
VIH	ON Input Logic High Voltage	V _{IN} =1.8V to 5.5V		1.7			V
VIL	ON Input Logic Low Voltage	V _{IN} =1.8V to 5.5V				1.2	V
Ion	ON Input Leakage	V _{ON} =V _{IN}				1	μA
V _{T_RCB}	RCB Protection Trip Point	V _{OUT} - V _{IN}			45		mV
V_{R_RCB}	RCB Protection Release Trip Point	V _{IN} - V _{OUT}			25		mV
	RCB Hysteresis				70		mV
Isd_out	Vou⊤ Shutdown Current	V _{ON} =GND, V _{OUT} =5.5 V _{IN} =Short to GND	V,			10	μA
t _{DON} *1	Turn-On Delay	V _{IN} =3.8V, R _L =150Ω, C _L =100µF Time from ON="H"→"L" to V _{OUT} =V _{IN} x 10%		0.5		2.5	ms
t_R^{*1}	Vout Rise Time	$\label{eq:VIN} \begin{array}{l} V_{\text{IN}} = 3.8 \text{V}, \ R_{\text{L}} = 150 \Omega, \ C_{\text{L}} = 100 \mu \text{F} \\ \text{Time from } V_{\text{OUT}} = V_{\text{IN}} \ x \ 10\% \ to \\ V_{\text{IN}} \ x \ 90\% \end{array}$		1.5		5.0	ms
ton ^{*1}	Turn-On Time	V _{IN} =3.8V, R _L =150Ω, Time from ON="H"- V _{OUT} =V _{IN} x 90%		2.0		7.5	ms

All test items listed under *ELECTRICAL CHARACTERISTICS* are done under the pulse load condition (Tj≈Ta=25°C) except RCB Protection Trip Point, RCB Protection Release Trip Point, and RCB Hysteresis.

^{*1} Rise time from V_{OUT} =0V is defined. Refer to the *TIMING CHART* for detailed information.

 V_{IN} = 1.8 to 5.5V, I_{OUT} = 1mA, C_{IN} = 1µF, C_{OUT} = None, unless otherwise noted. The specifications surrounded by ______ are guaranteed by design engineering at -40°C ≤ Ta ≤ 85°C.

Symbol	Item	Condition	S	Min.	Тур.	Max.	ā=25°C Unit
VIN	Input Voltage			1.8		5.5	V
IQ(OFF)	Off Supply Current	Von=GND,Vout=OPE	EN		0.5	1	μA
		V _{ON} =GND,	Ta=25°C		0.5	1	μA
Isd	Shutdown Current	Vout=GND	Ta=85°C		0.5	10	μA
lq	Quiescent Current	Von=Vin, Iout=0mA			40	70	μA
		Vin=5V, Iout=1A			48	65	
		VIN=4.5V, IOUT=1A			46		
-		VIN=3.8V, IOUT=1A			45	60	
Ron	On Resistance	VIN=3.3V, IOUT=500m	A		45		mΩ
		VIN=2.5V, IOUT=500m	A		51	51	
		V _{IN} =1.8V, I _{OUT} =250mA			68		
VIH	ON Input Logic High Voltage	V _{IN} =1.8V to 5.5V		1.7			V
VIL	ON Input Logic Low Voltage	V _{IN} =1.8V to 5.5V				1.2	V
Ion	ON Input Leakage	V _{ON} =GND				1	μA
RON_PD	Pull-Down Resistance at ON Pin	V _{IN} =V _{ON} =1.8V to 5.5V	V		3		MΩ
VT_RCB	RCB Protection Trip Point	Vout - Vin			45		mV
Vr_rcb	RCB Protection Release Trip Point	Vin - Vout			25		mV
	RCB Hysteresis				70		mV
Isd_out	Vout Shutdown Current	V _{ON} =GND, V _{OUT} =5.5 V _{IN} =Short to GND	V,			10	μA
t _{DON} *1	Turn-On Delay	$ \begin{array}{l} V_{\text{IN}} = 3.8 \text{V}, \ \text{R}_{\text{L}} = 150 \Omega, \ \text{C}_{\text{L}} = 100 \mu \text{F} \\ \text{Time from ON} = \text{"L"} \rightarrow \text{"H" to} \\ V_{\text{OUT}} = V_{\text{IN}} \ x \ 10\% \end{array} $		0.5		2.5	ms
t_R^{*1}	V _{OUT} Rise Time			1.5		5.0	ms
ton ^{*1}	Turn-On Time	V _{IN} =3.8V, R _L =150Ω, Time from ON="L"→ V _{OUT} =V _{IN} x 90%		2.0		7.5	ms

All test items listed under *ELECTRICAL CHARACTERISTICS* are done under the pulse load condition (Tj≈Ta=25°C) except RCB Protection Trip Point, RCB Protection Release Trip Point, and RCB Hysteresis.

^{*1} Rise time from V_{OUT} =0V is defined. Refer to the *TIMING CHART* for detailed information.

 V_{IN} = 1.8 to 5.5V, I_{OUT} = 1mA, C_{IN} = 1µF, C_{OUT} = None, unless otherwise noted. The specifications surrounded by \square are guaranteed by design engineering at -40°C \leq Ta \leq 85°C.

Symbol	Item	Condition	S	Min.	Тур.	Max.	Unit
VIN	Input Voltage			1.8		5.5	V
		Von=Vin,	Ta=25°C		1	2	μA
ISD	Shutdown Current	Vout=GND	Ta=85°C		1	10	μA
lq	Quiescent Current	Von=GND, Iout=0mA			40	70	μA
		Vin=5V, Iout=1A			48	65	
		V _{IN} =4.5V, I _{OUT} =1A			46		
Р	On Resistance	V _{IN} =3.8V, I _{OUT} =1A			45	60	
R _{ON}		V _{IN} =3.3V, I _{OUT} =500m	A		45		mΩ
		VIN=2.5V, IOUT=500m	A		51		
		VIN=1.8V, IOUT=250mA			68		
VIH	ON Input Logic High Voltage	V _{IN} =1.8V to 5.5V		1.7			V
VIL	ON Input Logic Low Voltage	V _{IN} =1.8V to 5.5V				1.2	V
I _{ON}	ON Input Leakage	V _{ON} =V _{IN}				1	μA
V_{T_RCB}	RCB Protection Trip Point	V _{OUT} - V _{IN}			45		mV
V_{R_RCB}	RCB Protection Release Trip Point	V _{IN} - V _{OUT}			25		mV
	RCB Hysteresis				70		mV
Isd_out	Vout Shutdown Current	V _{ON} =GND, V _{OUT} =5.5 ^V V _{IN} =Short to GND	V,			10	μA
t _{DON} *1	Turn-On Delay	V _{IN} =3.8V, R _L =150Ω, C _L =100µF Time from ON="H"→"L" to V _{OUT} =V _{IN} x 10%		0.5		2.5	ms
t _R *1	Vout Rise Time	$\label{eq:VIN} \begin{array}{l} V_{\text{IN}}{=}3.8V, \ R_{\text{L}}{=}150\Omega, \ C_{\text{L}}{=}100\mu\text{F} \\ \text{Time from } V_{\text{OUT}}{=}V_{\text{IN}} \ x \ 10\% \ to \\ V_{\text{IN}} \ x \ 90\% \end{array}$		1.5		5.0	ms
ton ^{*1}	Turn-On Time	V _{IN} =3.8V, R _L =150Ω, C _L =100μF Time from ON="H"→"L" to V _{OUT} =V _{IN} x 90%		2.0		7.5	ms
RLOW	Nch. On Resistance for Auto-Discharge	VIN=VON=5.0V, VOUT=	0.1V		20		Ω

All test items listed under *ELECTRICAL CHARACTERISTICS* are done under the pulse load condition (Tj≈Ta=25°C) except RCB Protection Trip Point, RCB Protection Release Trip Point, and RCB Hysteresis. *¹ Refer to the *TIMING CHART* for detailed information.

I

 V_{IN} = 1.8 to 5.5V, I_{OUT} = 1mA, C_{IN} = 1µF, C_{OUT} = None, unless otherwise noted. The specifications surrounded by ______ are guaranteed by design engineering at -40°C ≤ Ta ≤ 85°C.

Symbol	ltem	Conditions		Min.	Тур.	Max.	Unit
V _{IN}	Input Voltage			1.8		5.5	V
		V _{ON} =GND,	Ta=25°C		0.5	1	μA
Isd	Shutdown Current	Vout=GND	Ta=85°C		0.5	10	μA
lq	Quiescent Current	Von=Vin, Iout=0mA			40	70	μA
		VIN=5V, IOUT=1A			48	65	
		VIN=4.5V, IOUT=1A			46		
D	On Resistance	V _{IN} =3.8V, I _{OUT} =1A			45	60	mΩ
Ron		V _{IN} =3.3V, I _{OUT} =500mA	4		45		11122
		VIN=2.5V, IOUT=500mA	4		51		
		VIN=1.8V, IOUT=250mA			68		
VIH	ON Input Logic High Voltage	V _{IN} =1.8V to 5.5V		1.7			V
VIL	ON Input Logic Low Voltage	V _{IN} =1.8V to 5.5V				1.2	V
I _{ON}	ON Input Leakage	V _{ON} =GND				1	μA
$R_{\text{ON}_{PD}}$	Pull-Down Resistance at ON Pin	V _{IN} =V _{ON} =1.8V to 5.5V			3		MΩ
V_{T_RCB}	RCB Protection Trip Point	V _{OUT} - V _{IN}			45		mV
V_{R_RCB}	RCB Protection Release Trip Point	Vin - Vout			25		mV
	RCB Hysteresis				70		mV
ISD_OUT	Vout Shutdown Current	VoN=GND, Vo∪⊤=5.5V ViN=Short to GND	Ι,			10	μA
t _{DON} *1	Turn-On Delay	V _{IN} =3.8V, R _L =150Ω, C _L =100µF Time from ON="L"→"H" to V _{OUT} =V _{IN} x 10%		0.5		2.5	ms
t _R *1	Vout Rise Time	$\label{eq:VIN} \begin{array}{l} V_{\text{IN}}{=}3.8V, \ R_{\text{L}}{=}150\Omega, \ C_{\text{L}}{=}100\mu\text{F} \\ \text{Time from } V_{\text{OUT}}{=}V_{\text{IN}} \ x \ 10\% \ to \\ V_{\text{IN}} \ x \ 90\% \end{array}$		1.5		5.0	ms
ton*1	Turn-On Time	V_{IN} =3.8V, RL=150 Ω , CL=100 μ F Time from ON="L" \rightarrow "H" to V_{OUT} =VIN x 90%		2.0		7.5	ms
RLOW	Nch. On Resistance for Auto-Discharge	V _{IN} =5.0V, V _{ON} =GND,	Vout=0.1V		20		Ω

All test items listed under *ELECTRICAL CHARACTERISTICS* are done under the pulse load condition (Tj≈Ta=25°C) except RCB Protection Trip Point, RCB Protection Release Trip Point, and RCB Hysteresis.

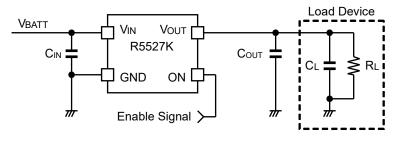
^{*1} Refer to the *TIMING CHART* for detailed information.

 V_{IN} = 1.8 to 5.5V, I_{OUT} = 1mA, C_{IN} = 1 μ F, C_{OUT} = None, unless otherwise noted. The specifications surrounded by ______ are guaranteed by design engineering at -40°C ≤ Ta ≤ 85°C.

Symbol	Item	Conditio	ns	Min.	Тур.	Max.	Unit
V _{IN}	Input Voltage			1.8		5.5	V
I _{Q(OFF)}	Off Supply Current	Von=GND,Vout=OP	EN		0.5	1	μA
		V _{ON} =GND,	Ta=25°C		0.5	1	μA
Isd	Shutdown Current	Vout=GND	Ta=85°C		0.5	10	μA
lq	Quiescent Current	Von=Vin, Iout=0mA			40	70	μA
		VIN=5V, IOUT=1A			48	65	
		V _{IN} =4.5V, I _{OUT} =1A			46		
-		V _{IN} =3.8V, I _{OUT} =1A			45	60	
Ron	On Resistance	VIN=3.3V, IOUT=500m	nA		45	mΩ	mΩ
		V _{IN} =2.5V, I _{OUT} =500mA	nA		51		
		VIN=1.8V, IOUT=250mA			68]
VIH	ON Input Logic High Voltage	V _{IN} =1.8V to 5.5V		1.7			V
VIL	ON Input Logic Low Voltage	V _{IN} =1.8V to 5.5V				1.2	V
I _{ON}	ON Input Leakage	V _{ON} =GND				1	μA
$R_{\text{ON}_{PD}}$	Pull-Down Resistance at ON Pin	V _{IN} =V _{ON} =1.8V to 5.5	δV		3		MΩ
IREV(OFF)	Reverse Current at Off-State	V _{ON} =GND, V _{OUT} =5.5 V _{IN} =1.8 V	5V,			10	μA
t _{DON} *1	Turn-On Delay	V _{IN} =3.8V, R _L =150Ω, Time from ON="L" V _{OUT} =V _{IN} x 10%		0.5		2.5	ms
t_R^{*1}	Vout Rise Time	$\begin{array}{l} V_{\text{IN}}{=}3.8V, \ R_{\text{L}}{=}150\Omega, \\ \text{Time from } V_{\text{OUT}}{=}V_{\text{IN}} \\ V_{\text{IN}} \ x \ 90\% \end{array}$		1.5		5.0	ms
ton ^{*1}	Turn-On Time	V _{IN} =3.8V, R _L =150Ω, Time from ON="L"- V _{OUT} =V _{IN} x 90%	•	2.0		7.5	ms

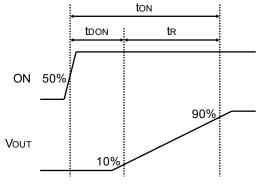
All test items listed under *ELECTRICAL CHARACTERISTICS* are done under the pulse load condition (Tj≈Ta=25°C) except RCB Protection Trip Point, RCB Protection Release Trip Point, and RCB Hysteresis.

^{*1} Rise time from V_{OUT} =0V is defined. Refer to the *TIMING CHART* for detailed information.

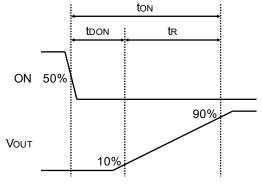

NO. EA-312-230201

 V_{IN} = 1.8 to 5.5V, I_{OUT} = 1mA, C_{IN} = 1 μ F, C_{OUT} = None, unless otherwise noted. The specifications surrounded by \square are guaranteed by design engineering at -40°C \leq Ta \leq 85°C.

R5527K00)2D					T)	a=25°C
Symbol	Item	Condition	S	Min.	Тур.	Max.	Unit
VIN	Input Voltage			1.8		5.5	V
	Shutdown Current	V _{ON} =GND,	Ta=25°C		0.5	1	μA
Isd	Shuldown Current	Vout=GND	Ta=85°C		0.5	10	μA
lq	Quiescent Current	Von=Vin, Iout=0mA			40	70	μA
		V _{IN} =5V, I _{OUT} =1A			48	65	
		VIN=4.5V, IOUT=1A			46		
Р	On Desistance	VIN=3.8V, IOUT=1A VIN=3.3V, IOUT=500mA VIN=2.5V, IOUT=500mA			45	60	
Ron	On Resistance				45		mΩ
					51		
		VIN=1.8V, IOUT=250m	A		68		
VIH	ON Input Logic High Voltage	V _{IN} =1.8V to 5.5V		1.7			V
VIL	ON Input Logic Low Voltage	V _{IN} =1.8V to 5.5V				1.2	V
Ion	ON Input Leakage	V _{ON} =GND				1	μA
Ron_pd	Pull-Down Resistance at ON Pin	V _{IN} =V _{ON} =1.8V to 5.5\	/		3		MΩ
t _{DON} *1	Turn-On Delay	V _{IN} =3.8V, R _L =150Ω, 0 Time from ON="L"→" V _{OUT} =V _{IN} x 10%		0.5		2.5	ms
t _R *1	Vout Rise Time	V _{IN} =3.8V, R _L =150Ω, 0 Time from V _{OUT} =V _{IN} x V _{IN} x 90%	•	1.5		5.0	ms
ton ^{*1}	Turn-On Time	V _{IN} =3.8V, R _L =150Ω, 0 Time from ON="L"→" V _{OUT} =V _{IN} x 90%		2.0		7.5	ms
RLOW	Nch. On Resistance for Auto-Discharge	V_{IN} =5.0V, V_{ON} =GND,	Vout=0.1V		20		Ω

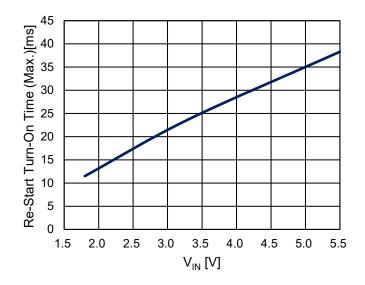

All test items listed under ELECTRICAL CHARACTERISTICS are done under the pulse load condition (Tj≈Ta=25°C) except RCB Protection Trip Point, RCB Protection Release Trip Point, and RCB Hysteresis. ^{*1} Refer to the *TIMING CHART* for detailed information

TYPICAL APPLICATION



R5527K Typical Application

TIMING CHART


VOUT Timing Chart (R5527K00xB/D)

Vout Timing Chart (R5527K001A/C)

TECHNICAL NOTES

- Basically, the R5527K does not require a bypass capacitor between V_{IN} pin and GND, however, considering the spike noise, use 0.1µF or more capacitor (1µF [Ceramic] recommended) as a bypass capacitor. If spikes may occur due to the inductance component of the VIN wiring on the board, connect a capacitor with a sufficient capacitance value between VIN pin and GND.
- There will be a delay time (Max. 1ms) before R5527K becomes disabled.
- When a voltage is remained in the output pin at the restart, the startup time (the time until R5527K is able to fully drive the output load from ON signal input) takes longer than the toN definition. Refer to the following graph for the maximum value of the startup time. When returning from the reverse current blocking (RCB) trip point, the following startup time is necessary based on the RCB protection release trip point.

PACKAGE INFORMATION

Power Dissipation (DFN(PL)1612-4D)

PD-DFN(PL)1612-4D-E-A

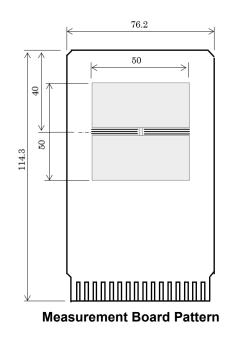
The power dissipation of the package is dependent on PCB material, layout, and environmental conditions. The following measurement conditions are based on JEDEC STD. 51.

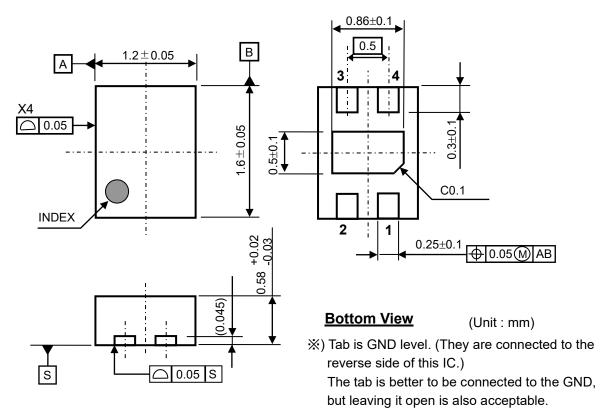
ltem	Measurement Conditions
Environment	Mounting on Board (Wind Velocity = 0 m/s)
Board Material Glass Cloth Epoxy Plastic (Four-Layer Board)	
Board Dimensions	76.2 mm × 114.3 mm × 1.6 mm
Copper Ratio	Outer Layer (First Layer): Less than 95% of 50 mm Square Inner Layers (Second and Third Layers): Approx. 100% of 50 mm Square Outer Layer (Fourth Layer): Approx. 100% of 50 mm Square
Through-holes	φ 0.25 mm × 25 pcs

Measurement Conditions

Measurement Result

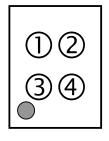
(Ta = 25°C, Tjmax = 125°C)


Item	Measurement Result
Power Dissipation	830 mW
Thermal Resistance (θja)	θja = 120°C/W
Thermal Characterization Parameter (ψjt)	ψjt = 71°C/W


θja: Junction-to-Ambient Thermal Resistance

ψjt: Junction-to-Top Thermal Characterization Parameter

Power Dissipation vs. Ambient Temperature

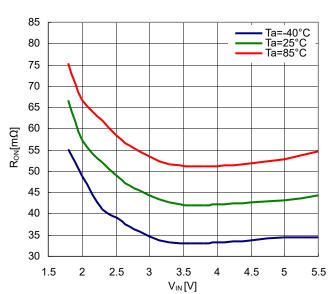


Package Dimensions (DFN(PL)1612-4D)

Mark Specification (DFN(PL)1612-4D)

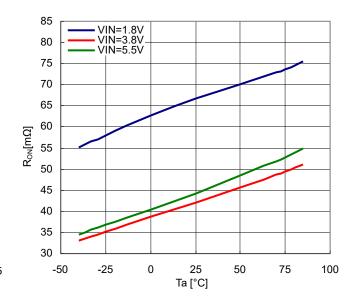
①②: Product Code ... Refer to "R5527K Mark Specification Table".

3 4: Lot Number ... Alphanumeric Serial Number


Mark Specification

R5527K Mark Specification Table (DFN(PL)1612-4D)

Product Name	00
R5527K001B	7A
R5527K001C	7B
R5527K001D	7C
R5527K001A	7D
R5527K002B	7E
R5527K002D	7F


TYPICAL CHARACTERISTICS

Note: Typical Characteristics are intended to be used as reference data; they are not guaranteed.

1) On Resistance vs. Input Voltage

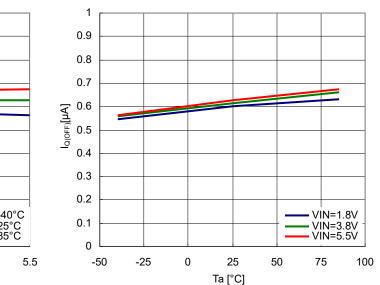
2) On Resistance vs. Temperature

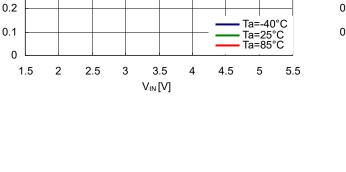
1

0.9

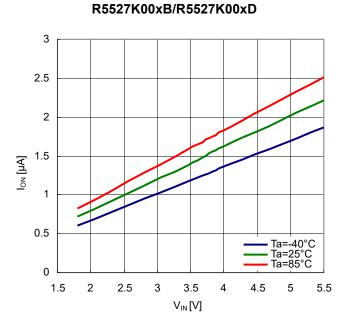
0.8

0.7

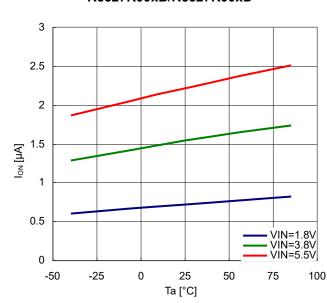

0.6


0.4

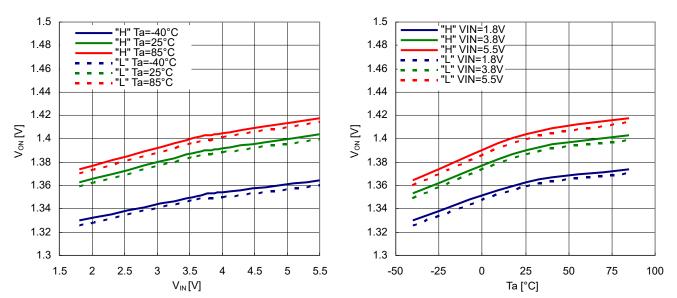
0.3


la(off)[µA] 0.5

4) Off Supply Current vs. Temperature R5527K00xB/R5527K00xD

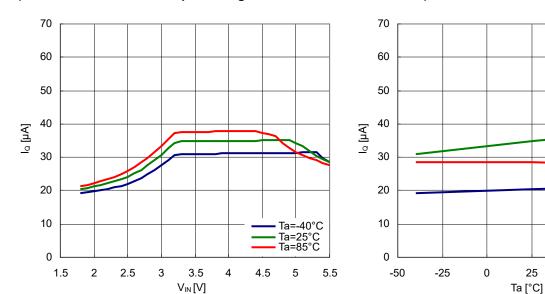


NO. EA-312-230201


5) ON pin Pull-Down Current vs. Input Voltage

7) ON pin Logic Threshold vs. Input Voltage

6) ON pin Pull-Down Current vs. Temperature R5527K00xB/R5527K00xD

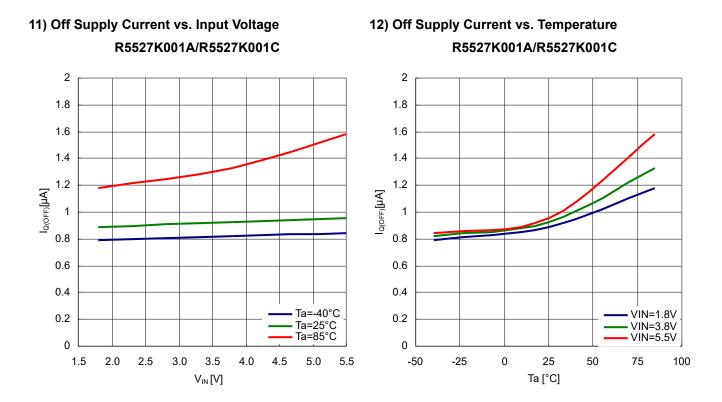


VIN=1.8V VIN=3.8V VIN=5.5V

100

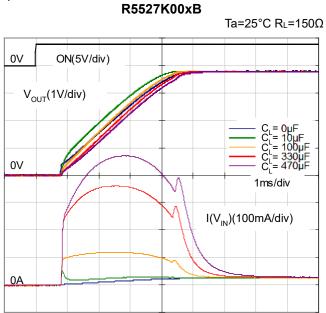
75

NO. EA-312-230201



9) Quiescent Current vs. Input Voltage

10) Quiescent Current vs. Temperature


25

50

NO. EA-312-230201

13) Inrush Current

- 1. The products and the product specifications described in this document are subject to change or discontinuation of production without notice for reasons such as improvement. Therefore, before deciding to use the products, please refer to our sales representatives for the latest information thereon.
- 2. The materials in this document may not be copied or otherwise reproduced in whole or in part without the prior written consent of us.
- 3. This product and any technical information relating thereto are subject to complementary export controls (so-called KNOW controls) under the Foreign Exchange and Foreign Trade Law, and related politics ministerial ordinance of the law. (Note that the complementary export controls are inapplicable to any application-specific products, except rockets and pilotless aircraft, that are insusceptible to design or program changes.) Accordingly, when exporting or carrying abroad this product, follow the Foreign Exchange and Foreign Trade Control Law and its related regulations with respect to the complementary export controls.
- 4. The technical information described in this document shows typical characteristics and example application circuits for the products. The release of such information is not to be construed as a warranty of or a grant of license under our or any third party's intellectual property rights or any other rights.
- 5. The products listed in this document are intended and designed for use as general electronic components in standard applications (office equipment, telecommunication equipment, measuring instruments, consumer electronic products, amusement equipment etc.). Those customers intending to use a product in an application requiring extreme quality and reliability, for example, in a highly specific application where the failure or misoperation of the product could result in human injury or death should first contact us.
 - Aerospace Equipment
 - Equipment Used in the Deep Sea
 - Power Generator Control Equipment (nuclear, steam, hydraulic, etc.)
 - Life Maintenance Medical Equipment
 - Fire Alarms / Intruder Detectors
 - Vehicle Control Equipment (automotive, airplane, railroad, ship, etc.)
 - Various Safety Devices
 - Traffic control system
 - Combustion equipment

In case your company desires to use this product for any applications other than general electronic equipment mentioned above, make sure to contact our company in advance. Note that the important requirements mentioned in this section are not applicable to cases where operation requirements such as application conditions are confirmed by our company in writing after consultation with your company.

- 6. We are making our continuous effort to improve the quality and reliability of our products, but semiconductor products are likely to fail with certain probability. In order to prevent any injury to persons or damages to property resulting from such failure, customers should be careful enough to incorporate safety measures in their design, such as redundancy feature, fire containment feature and fail-safe feature. We do not assume any liability or responsibility for any loss or damage arising from misuse or inappropriate use of the products.
- 7. The products have been designed and tested to function within controlled environmental conditions. Do not use products under conditions that deviate from methods or applications specified in this datasheet. Failure to employ the products in the proper applications can lead to deterioration, destruction or failure of the products. We shall not be responsible for any bodily injury, fires or accident, property damage or any consequential damages resulting from misuse or misapplication of the products.
- 8. Quality Warranty
 - 8-1. Quality Warranty Period

In the case of a product purchased through an authorized distributor or directly from us, the warranty period for this product shall be one (1) year after delivery to your company. For defective products that occurred during this period, we will take the quality warranty measures described in section 8-2. However, if there is an agreement on the warranty period in the basic transaction agreement, quality assurance agreement, delivery specifications, etc., it shall be followed.

8-2. Quality Warranty Remedies

When it has been proved defective due to manufacturing factors as a result of defect analysis by us, we will either deliver a substitute for the defective product or refund the purchase price of the defective product.

- Note that such delivery or refund is sole and exclusive remedies to your company for the defective product.
- 8-3. Remedies after Quality Warranty Period

With respect to any defect of this product found after the quality warranty period, the defect will be analyzed by us. On the basis of the defect analysis results, the scope and amounts of damage shall be determined by mutual agreement of both parties. Then we will deal with upper limit in Section 8-2. This provision is not intended to limit any legal rights of your company.

- 9. Anti-radiation design is not implemented in the products described in this document.
- 10. The X-ray exposure can influence functions and characteristics of the products. Confirm the product functions and characteristics in the evaluation stage.
- 11. WLCSP products should be used in light shielded environments. The light exposure can influence functions and characteristics of the products under operation or storage.
- 12. Warning for handling Gallium and Arsenic (GaAs) products (Applying to GaAs MMIC, Photo Reflector). These products use Gallium (Ga) and Arsenic (As) which are specified as poisonous chemicals by law. For the prevention of a hazard, do not burn, destroy, or process chemically to make them as gas or power. When the product is disposed of, please follow the related regulation and do not mix this with general industrial waste or household waste.
- 13. Please contact our sales representatives should you have any questions or comments concerning the products or the technical information.

Nisshinbo Micro Devices Inc.

Official website https://www.nisshinbo-microdevices.co.jp/en/ Purchase information https://www.nisshinbo-microdevices.co.jp/en/buy/