
FILTER - TUNABLE, BAND PASS SMT 9 - 19 GHz

Typical Applications

The HMC897LP4E is ideal for:

- Test & Measurement Equipment
- Military RADAR & EW/ECM
- SATCOM & Space
- Industrial & Medical Equipment

Functional Diagram

Features

Fast Tuning Response

Excellent Wideband Rejection

Single Chip Replacement
for Mechanically Tuned Designs

24 Lead 4x4 mm SMT Package

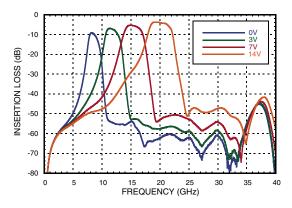
General Description

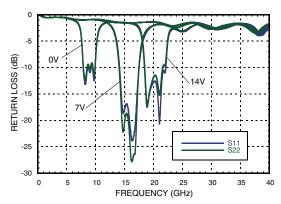
The HMC897LP4E is a MMIC band pass filter which features a user selectable passband frequency. The 3 dB filter bandwidth is approximately 18%. The 20 dB filter bandwidth is approximately 35%. The center frequency can be varied between 9 and 19 GHz by applying an analog tune voltage between 0 and 14V. This tunable filter can be used as a much smaller alternative to physically large switched filter banks and cavity tuned filters. The HMC897LP4E has excellent microphonics due to the monolithic design, and provides a dynamically adjustable solution in advanced communications applications.

Electrical Specifications, $T_A = +25^{\circ}C$

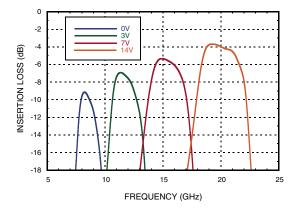
Parameter	Min.	Тур.	Max.	Units
F _{center} Tuning Range	9		19	GHz
3 dB Bandwidth		18		%
Low Side Rejection Frequency (Rejection >20 dB)		0.81 *F _{center}		GHz
High Side Rejection Frequency (Rejection >20 dB)		1.17 *F _{center}		GHz
Low Side Sub-Harmonic Rejection (Rejection >40 dB)		0.58 *F _{center}		GHz
High Side Sub-Harmonic Rejection (Rejection >40 dB)		1.23 *F _{center}		GHz
Re-entry Frequency (Rejection <30 dB)		>40		GHz
Insertion Loss		6.5		dB
Return Loss		9.5		dB
Input IP3 (Pin = 0 to +20 dBm)		30		dBm
Input Power @ 5° Shift In Insertion Phase (Vfctl = 0V)		10		dBm
Input Power @ 5° Shift In Insertion Phase (Vfctl > = 1V)		15		dBm
Frequency Control Voltage (V _{fctl})	0		14	V
Source/Sink Current (I _{fctl})			±1	mA
Residual Phase Noise [1] (100 kHz Offset)		-160		dBc/Hz
F _{center} Drift Rate		-1.65		MHz/°C
Tuning Characteristics [2] tFULLBAND (0% Vfctl to 90% RF)		200		ns

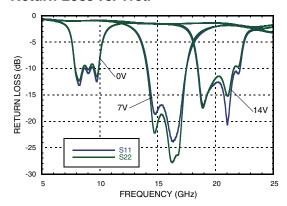
^[1] Optimum residual phase noise performance requires the use of a low noise driver circuit.

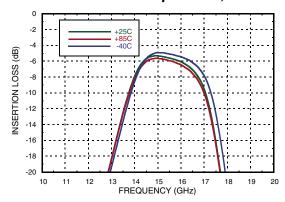

^[2] Tuning speed is dependent on driver circuit. Data measured with a high speed op-amp driver and includes driver slew rate delay.

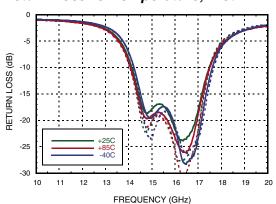


FILTER - TUNABLE, BAND PASS SMT 9 - 19 GHz


Broadband Insertion Loss vs. Vfctl

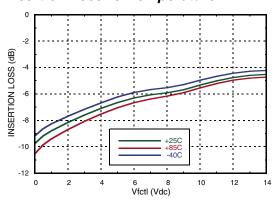

Broadband Return Loss vs. Vfctl


Insertion Loss vs. Vfctl

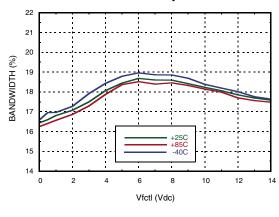

Return Loss vs. Vfctl

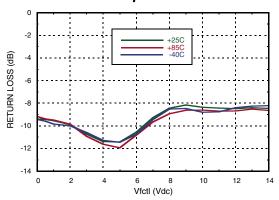
Insertion Loss vs. Temperature, Vfctl = 7V

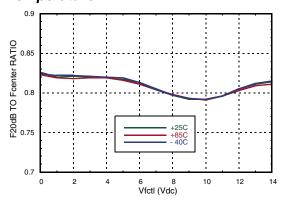
Return Loss vs. Temperature, Vfctl = 7V

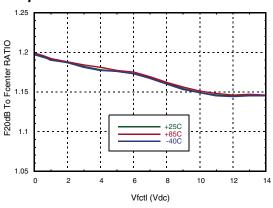


FILTER - TUNABLE, BAND PASS SMT 9 - 19 GHz


Center Frequency vs. Temperature


Insertion Loss vs. Temperature


3 dB Bandwidth vs. Temperature


Maximum Return Loss in a 2 dB Bandwidth vs. Temperature

Low Side Rejection Ratio vs. Temperature [1]

High Side Rejection Ratio vs. Temperature [1]

[1] Rejection ratio is defined as the ratio of the frequency at which the relative insertion loss is 20 dB to f center