



#### **General Description**

The MAX1576 charge pump drives up to 8 white LEDs with regulated constant current for uniform intensity. The main group of LEDs (LED1-LED4) can be driven up to 30mA per LED for backlighting. The flash group of LEDs (LED5-LED8) are independently controlled and can be driven up to 100mA per LED (or 400mA total). By utilizing adaptive 1x/1.5x/2x charge-pump modes and very-low-dropout current regulators, the MAX1576 achieves high efficiency over the full 1-cell lithium-battery voltage range. The 1MHz fixed-frequency switching allows for tiny external components, and the regulation scheme is optimized to ensure low EMI and low input ripple.

The MAX1576 uses two external resistors to set the main and flash full-scale (100%) LED currents. Four control pins are used for LED dimming by either serial control or 2-bit logic per group. ENM1 and ENM2 set the main LEDs to 10%, 30%, or 100% of full scale. ENF1 and ENF2 set the flash LEDs to 20%, 40%, or 100% of full scale. In addition, connect either pair of control pins together for single-wire, serial pulse dimming control.

The MAX1576 is available in a 24-pin thin QFN, 4mm x 4mm package (0.8mm max height).

#### **Applications**

Camera Phones

LCD Backlights

LED Camera Flashes

Cell Phones and Smart Phones

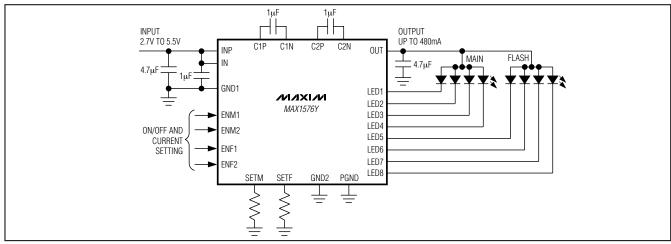
PDAs, Digital Cameras, and Camcorders

### **Features**

♦ Powers Up to 8 LEDs

Up to 30mA/LED Drive for Backlight Up to 400mA Total Drive for Flash

- ♦ 85% Average Efficiency (PLED / PBATT) Over Li+ **Battery Discharge**
- ♦ 0.7% Typical LED Current Matching
- ♦ Adaptive 1x/1.5x/2x Mode Switchover
- **♦ Flexible Brightness Control** Single-Wire, Serial Pulse Interface (5% to 100%) 2-Bit (3 Levels) Logarithmic Logic
- **♦ Low Input Ripple and EMI**
- ♦ Low 0.1µA Shutdown Current
- ♦ 2.7V to 5.5V Supply Voltage Range
- **♦ Soft-Start Limits Inrush Current**
- **♦ Output Overvoltage Protection**
- **♦ Thermal-Shutdown Protection**
- ♦ 24-Pin Thin QFN, 4mm x 4mm Package


#### **Ordering Information**

| PART        | TEMP RANGE     | PIN-PACKAGE                        |
|-------------|----------------|------------------------------------|
| MAX1576ETG  | -40°C to +85°C | 24 Thin QFN 4mm x<br>4mm (T2444-4) |
| MAX1576ETG+ | -40°C to +85°C | 24 Thin QFN 4mm x<br>4mm (T2444-4) |

<sup>+</sup> Denotes lead-free package.

Pin Configuration appears at end of data sheet.

### Typical Operating Circuit



NIXIN

#### **ABSOLUTE MAXIMUM RATINGS**

| INP, IN, OUT, ENM1, ENM2, ENF1,                          | OUT Short Circuit to GNDContinu                       | uous |
|----------------------------------------------------------|-------------------------------------------------------|------|
| ENF2 to GND10.3V to +6.0V                                | Continuous Power Dissipation ( $T_A = +70^{\circ}C$ ) |      |
| SETF, SETM, LED1, LED2, LED3, LED4, LED5,                | 24-Pin Thin QFN (derate 20.8mW/°C                     |      |
| LED6, LED7, LED8 to GND10.3V to (V <sub>IN</sub> + 0.3V) | above +70°C)1666                                      | ∂mW  |
| C1N, C2N to GND10.3V to (V <sub>IN</sub> + 1V)           | Operating Temperature Range40°C to +8                 | 35°C |
| C1P, C2P to                                              | Junction Temperature+15                               | 50°C |
| GND1                                                     | Storage Temperature Range65°C to +15                  | 50°C |
| GND2, PGND to GND10.3V to +0.3V                          | Lead Temperature (soldering, 10s)+30                  | )0°C |

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

#### **ELECTRICAL CHARACTERISTICS**

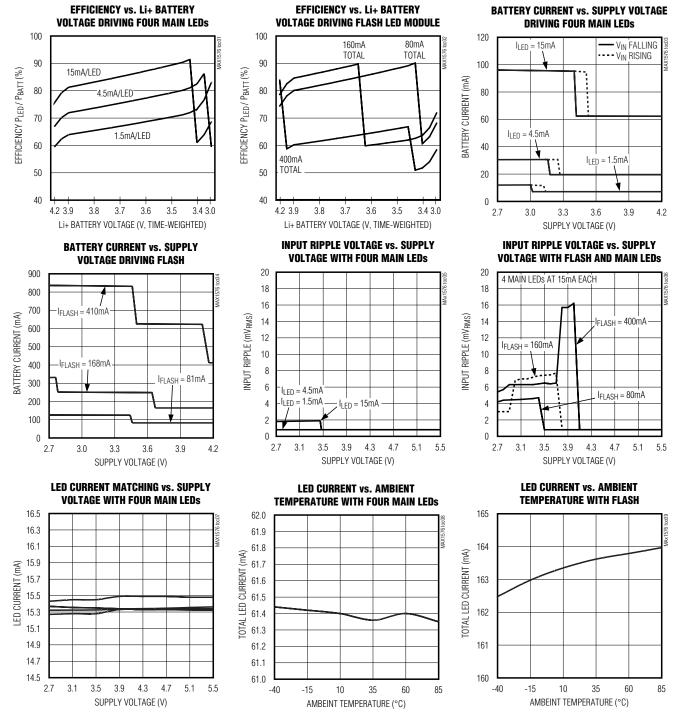
 $(V_{IN}=3.6V,\,V_{GND1}=V_{GND2}=V_{PGND}=0V,\,ENM1=ENM2=ENF1=ENF2=IN,\,R_{SETM}=R_{SETF}=6.8k\Omega,\,T_{A}=-40^{\circ}C$  to  $+85^{\circ}C,\,U_{IN}=3.6V,\,V_{GND1}=V_{IN}=1$  to  $+85^{\circ}C,\,U_{IN}=1$  to  $+85^{\circ}C,\,U_$ 

| PARAMETER                                                  | CONDITIONS                                                                | MIN  | TYP   | MAX  | UNITS |
|------------------------------------------------------------|---------------------------------------------------------------------------|------|-------|------|-------|
| IN Operating Voltage                                       |                                                                           | 2.7  |       | 5.5  | V     |
| Undervoltage-Lockout Threshold                             | V <sub>IN</sub> rising or falling                                         | 2.25 | 2.45  | 2.60 | V     |
| Undervoltage-Lockout Hysteresis                            |                                                                           |      | 50    |      | mV    |
| Overvoltage Protection Threshold                           | V <sub>OUT</sub> rising                                                   |      | 5     |      | V     |
| Supply Current                                             | 1MHz switching, no load, 1.5x or 2x mode                                  |      | 3.8   | 6.0  | m ^   |
| Supply Current                                             | 1x mode 10% setting, LED5-LED8 off                                        |      | 0.3   |      | mA    |
| Shutdown Supply Current                                    | ENM1 = ENM2 = ENF1 = ENF2 = GND                                           |      | 0.1   | 3    | μΑ    |
| Soft-Start Time                                            |                                                                           |      | 2     |      | ms    |
| SET_ Bias Voltage                                          |                                                                           |      | 0.604 |      | V     |
| SET_ Leakage in Shutdown                                   | ENM1 = ENM2 = ENF1 = ENF2 = GND, V <sub>SET</sub> = 0V or V <sub>IN</sub> |      | 0.01  | 1    | μΑ    |
| SETM Current Range                                         |                                                                           | 40   |       | 130  | μΑ    |
| SETF Current Range                                         |                                                                           | 40   |       | 145  | μΑ    |
| SETM to Main LED_ Current Ratio (ILED / ISETM)             | 100% setting, LED1-4                                                      |      | 233   |      | A/A   |
| SETF to Flash LED_ Current Ratio (ILED / ISETF)            | 100% setting, LED5-8                                                      |      | 708   |      | A/A   |
| 150 0 14                                                   | LED1-4                                                                    | -6   |       | +6   | 0/    |
| LED_ Current Accuracy                                      | LED5-8                                                                    | -8   |       | +8   | %     |
| LED_ to LED_ Current Matching                              | (Note 2)                                                                  | -3.5 | ±0.7  | +3.5 | %     |
| Maxima and LED Cink Course                                 | LED1-LED4, R <sub>SETM</sub> = $4.64k\Omega$                              | 27   | 30    |      | Λ     |
| Maximum LED_ Sink Current                                  | LED5-LED8, R <sub>SETF</sub> = $4.12$ k $\Omega$                          | 90   | 100   |      | mA    |
| LED_ Dropout Voltage                                       | (Note 3)                                                                  |      | 40    | 90   | mV    |
| LED_ 1.5x and 2x Regulation Voltage                        |                                                                           |      | 150   |      | mV    |
| LED_ 1x to 1.5x or 1.5x to 2x<br>Mode Transition Threshold |                                                                           | 90   | 100   | 110  | mV    |
| Input-Voltage-Mode Transition<br>Hysteresis                |                                                                           |      | 150   |      | mV    |

#### **ELECTRICAL CHARACTERISTICS (continued)**

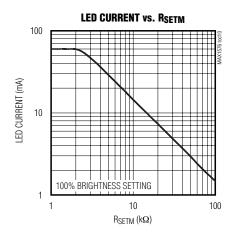
 $(V_{IN} = 3.6V, V_{GND1} = V_{GND2} = V_{PGND} = 0V, ENM1 = ENM2 = ENF1 = ENF2 = IN, R_{SETM} = R_{SETF} = 6.8k\Omega, T_A = -40^{\circ}C$  to  $+85^{\circ}C$ , unless otherwise noted. Typical values are at  $T_A = +25^{\circ}C$ .) (Note 1)

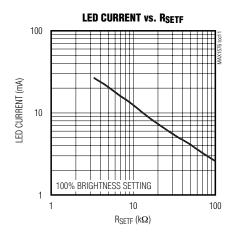
| PARAMETER                                               | CONDITIONS                                                             | MIN | TYP  | MAX   | UNITS |
|---------------------------------------------------------|------------------------------------------------------------------------|-----|------|-------|-------|
| LED_ Leakage in Shutdown                                | ENM1 = ENM2 = ENF1 = ENF2 = GND                                        |     | 0.1  | 2     | μΑ    |
| Charge-Pump Maximum OUT Current                         | V <sub>IN</sub> ≥ 3.15V, V <sub>OUT</sub> = 3.9V                       | 480 |      |       | mA    |
|                                                         | 1x mode, (V <sub>IN</sub> - V <sub>OUT</sub> ) / I <sub>OUT</sub>      |     |      | 2.5   |       |
| Open-Loop OUT Resistance                                | 1.5x mode, (1.5V <sub>IN</sub> - V <sub>OUT</sub> ) / I <sub>OUT</sub> |     |      | 5.0   | Ω     |
|                                                         | 2x mode, (2V <sub>IN</sub> - V <sub>OUT</sub> ) / I <sub>OUT</sub>     |     |      | 5.0   |       |
| Switching Frequency                                     |                                                                        |     | 1    |       | MHz   |
| EN_ High Voltage                                        | $V_{IN} = 2.7V \text{ to } 5.5V$                                       | 1.6 |      |       | V     |
| EN_ Low Voltage                                         | $V_{IN} = 2.7V \text{ to } 5.5V$                                       |     |      | 0.4   | V     |
| EN_ Input Current                                       | V <sub>EN</sub> _ = 0V or 5.5V                                         |     | 0.01 | 1     | μΑ    |
| EN_ Low Shutdown Delay t <sub>SHDN</sub> (See Figure 3) |                                                                        | 225 | 470  | 800   | μs    |
| EN_ tLO (See Figure 3)                                  |                                                                        | 0.5 |      | 250.0 | μs    |
| EN_ tHI (See Figure 3)                                  |                                                                        | 0.5 |      |       | μs    |
| Initial EN_ tHI (See Figure 3)                          | Only required for first EN_ pulse                                      | 50  |      |       | μs    |
| OUT Pulldown Resistance in Shutdown                     | ENM1 = ENM2 = ENF1 = ENF2 = GND                                        |     | 5    |       | kΩ    |
| Thermal-Shutdown Threshold                              |                                                                        |     | +160 |       | °C    |
| Thermal-Shutdown Hysteresis                             |                                                                        |     | 20   |       | °C    |

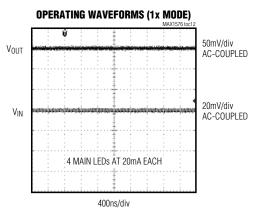

**Note 1:** Specifications to -40°C are guaranteed by design and not production tested.

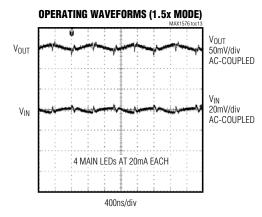
Note 2: LED current matching is defined as: (I<sub>LED</sub> - I<sub>AVG</sub>) / I<sub>AVG</sub>. Matching is for LEDs within the main group (LED1–LED4) or the flash group (LED5–LED8).

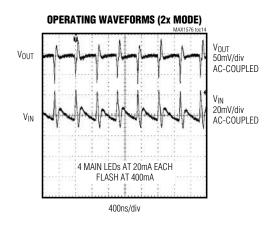
Note 3: Dropout voltage is defined as the LED\_ to GND\_ voltage at which current into LED\_ drops 10% from the value at V<sub>LED</sub> = 0.2V.

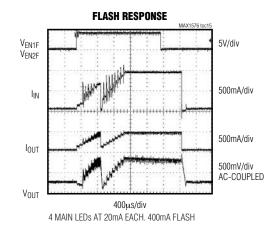

#### **Typical Operating Characteristics**


 $(V_{IN} = 3.6V, EN_{-} = IN, Circuit of Figure 1, R_{SETM} = 9.09k\Omega, R_{SETF} = 4.12k\Omega, T_{A} = +25^{\circ}C, unless otherwise noted.)$ 



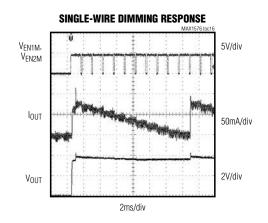


### Typical Operating Characteristics (continued)

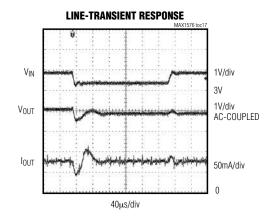

 $(V_{IN} = 3.6V, EN_{-} = IN, Circuit of Figure 1, R_{SETM} = 9.09k\Omega, R_{SETF} = 4.12k\Omega, T_{A} = +25^{\circ}C, unless otherwise noted.)$ 










#### Typical Operating Characteristics (continued)

 $(V_{IN} = 3.6V, EN_{-} = IN, Circuit of Figure 1, R_{SETM} = 9.09k\Omega, R_{SETF} = 4.12k\Omega, T_{A} = +25^{\circ}C, unless otherwise noted.)$ 





### **Pin Description**

| PIN | NAME | FUNCTION                                                                                                                                                                                                                                                                                                                                                     |
|-----|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1   | OUT  | Output. Bypass to ground with a $4.7\mu F$ ceramic capacitor. Connect to the anodes of all the LEDs. OUT is internally pulled to ground through a $5k\Omega$ resistor during shutdown.                                                                                                                                                                       |
| 2   | ENM1 | Enable and Brightness Control for LED1-LED4 (Backlight). See Table 1 and Figure 3.                                                                                                                                                                                                                                                                           |
| 3   | ENM2 | Enable and brightness control for EED1-EED4 (backlight). See Table 1 and 1 igure 3.                                                                                                                                                                                                                                                                          |
| 4   | ENF1 | Enable and Brightness Control for LED5-LED8 (Flash). See Table 2 and Figure 3.                                                                                                                                                                                                                                                                               |
| 5   | ENF2 | Enable and brightness control of EEDS-EEDO (Flash). See Table 2 and Figure 5.                                                                                                                                                                                                                                                                                |
| 6   | LED8 | Flash LED Cathada Cannastian and Observa Breeze Faadhaal Commant flashing into LED in based on the                                                                                                                                                                                                                                                           |
| 7   | LED7 | Flash LED_ Cathode Connection and Charge-Pump Feedback. Current flowing into LED_ is based on the ENF_ logic levels and R <sub>SETF</sub> . The charge pump regulates the lowest LED_ voltage to 0.15V. Grounding any                                                                                                                                        |
| 9   | LED6 | LED_ forces OUT to operate at approximately 5V. Connect LED_ to IN if this LED is not populated.                                                                                                                                                                                                                                                             |
| 10  | LED5 |                                                                                                                                                                                                                                                                                                                                                              |
| 8   | GND2 | Ground. Connect GND_ to system ground and the ground side of the input bypass capacitor as close to the                                                                                                                                                                                                                                                      |
| 14  | GND1 | IC as possible.                                                                                                                                                                                                                                                                                                                                              |
| 11  | LED4 | M: 15D 0 11 1 0 11 10 1 D 5 11 1 0 11 11 1 1 1 1                                                                                                                                                                                                                                                                                                             |
| 12  | LED3 | Main LED_ Cathode Connection and Charge-Pump Feedback. Current flowing into LED_ is based on the ENM_ logic levels and R <sub>SETM</sub> . The charge-pump regulates the lowest LED_ voltage to 0.15V. Grounding any                                                                                                                                         |
| 13  | LED2 | LED_ forces OUT to operate at approximately 5V. Connect LED_ to IN if this LED is not populated.                                                                                                                                                                                                                                                             |
| 15  | LED1 |                                                                                                                                                                                                                                                                                                                                                              |
| 16  | SETM | Bias Current Set Input for LED1–LED4. The current flowing out of SETM sets the maximum (100%) bias current into each LED. SETM is internally biased to 0.604V. Connect a resistor (R <sub>SETM</sub> ) from SETM to ground to set the main LED current, R <sub>SETM</sub> = (233 x 0.604) / I <sub>LED(MAX)</sub> . SETM is high impedance during shutdown.  |
| 17  | SETF | Bias Current Set Input for LED5–LED8. The current flowing out of SETF sets the maximum (100%) bias current into each LED. SETF is internally biased to 0.604V. Connect a resistor (R <sub>SETF</sub> ) from SETF to ground to set the flash LED current, R <sub>SETF</sub> = (708 x 0.604) / I <sub>LED(MAX)</sub> . SETF is high impedance during shutdown. |

#### Pin Description (continued)

| PIN | NAME | FUNCTION                                                                                                                                                                               |
|-----|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 18  | IN   | Supply Voltage Input. Bypass to ground with a 1µF ceramic capacitor. The input voltage range is 2.7V to 5.5V. IN is high impedance during shutdown.                                    |
| 19  | PGND | Power Ground. Connect PGND to system ground. PGND is used for charge-pump switching currents.                                                                                          |
| 20  | C1N  | Transfer Capacitor 1 Negative Connection. Connect to a 1µF ceramic capacitor between C1P and C1N. C1N is internally shorted to IN during shutdown.                                     |
| 21  | C2N  | Transfer Capacitor 2 Negative Connection. Connect to a 1µF ceramic capacitor between C2P and C2N. C2N is internally shorted to IN during shutdown.                                     |
| 22  | INP  | Supply Voltage Input. Bypass to PGND with a 4.7µF ceramic capacitor. The input voltage range is 2.7V to 5.5V. INP is high impedance during shutdown.                                   |
| 23  | C2P  | Transfer Capacitor 2 Positive Connection. Connect a 1µF ceramic capacitor from C2P to C2N. During shutdown, if OUT > IN, C2P is shorted to OUT, and if OUT < IN, C2P is shorted to IN. |
| 24  | C1P  | Transfer Capacitor 1 Positive Connection. Connect a 1µF ceramic capacitor from C1P to C1N. During shutdown, if OUT > IN, C1P is shorted to OUT, and if OUT < IN, C1P is shorted to IN. |
| _   | EP   | Exposed Paddle. Connect the exposed paddle to ground. Connect PGND, GND1, and GND2 to the exposed paddle directly under the IC.                                                        |

#### Detailed Description

The MAX1576 charge pump drives up to four white LEDs in the main display for backlighting and up to four white LEDs for flash with regulated constant current for uniform intensity. By utilizing adaptive 1x/1.5x/2x charge-pump modes and very-low-dropout current regulators, it achieves high efficiency over the 1-cell lithium-battery input voltage range. 1MHz fixed-frequency switching allows for tiny external components and low input ripple.

#### 1x to 1.5x Switchover

When  $V_{IN}$  is higher than  $V_{OUT}$ , the MAX1576 operates in 1x mode and  $V_{OUT}$  is pulled up to  $V_{IN}$ . The internal current regulators regulate the LED current. As  $V_{IN}$  drops,  $V_{LED}$  eventually falls below the switchover threshold of 100mV and the MAX1576 starts switching in 1.5x mode. When the input voltage rises above  $V_{OUT}$  by approximately 50mV, the MAX1576 switches back to 1x mode.

#### 1.5x to 2x Switchover

When  $V_{IN}$  is less than  $V_{OUT}$  but greater than two-thirds  $V_{OUT}$ , the MAX1576 operates in 1.5x mode. The internal current regulators regulate the LED current. As  $V_{IN}$  drops,  $V_{LED}$  eventually falls below the switchover threshold of 100mV, and the MAX1576 starts switching in 2x mode. When the input voltage rises above two-thirds  $V_{OUT}$  by approximately 50mV, the MAX1576 switches back to 1.5x mode.

True Shutdown is a trademark of Maxim Integrated Products, Inc.

#### Soft-Start

The MAX1576 includes soft-start circuitry to limit inrush current at turn-on. Once the input voltage is applied, the output capacitor is charged directly from the input with a ramped current source (with no charge-pump action) until the output voltage approaches the input voltage. Once this occurs, the charge pump determines if 1x, 1.5x, or 2x mode is required. In the case of 1x mode, the soft-start is terminated and normal operation begins. In the case of 1.5x or 2x mode, soft-start operates until the lowest of LED1–LED4 reaches regulation. If the output is shorted to ground or is pulled less than 1.25V, the output current is limited by soft-start.

#### True Shutdown™ Mode

When ENM1, ENM2, ENF1, and ENF2 are simultaneously held low, the MAX1576 is shut down after a 0.5ms shutdown delay and the input is isolated from the output. OUT is internally pulled to GND with  $5k\Omega$  during shutdown.

#### **Thermal Shutdown**

The MAX1576 includes a thermal-limit circuit that shuts down the IC at approximately +160°C. Turn-on occurs after the IC cools by approximately 20°C.

### \_Applications Information

#### **Setting the Main Output Current**

SETM controls LED1-LED4 bias current. Current flowing into LED1, LED2, LED3, and LED4 is a multiple of the current flowing out of SETM.

 $I_{LED1} = I_{LED2} = I_{LED3} = I_{LED4} = K \times (0.604 V / R_{SETM})$ 

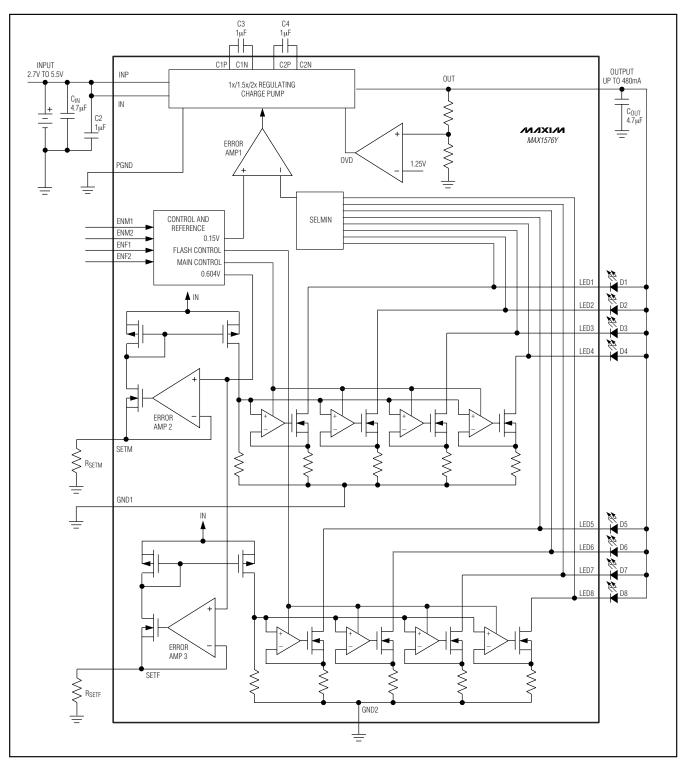



Figure 1. Block Diagram and Typical Application Circuit

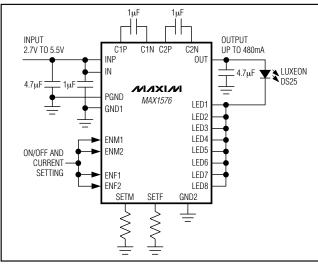



Figure 2. Typical Application Circuit for Driving a Single High-Brightness LED

#### Table 1. ENM1/ENM2 States

| ENM1/ENM2 STATES         | BRIGHTNESS      | LED1-LED4<br>CURRENT    |
|--------------------------|-----------------|-------------------------|
| ENM1 = low, ENM2 = low   | Shutdown        | 0                       |
| ENM1 = low, ENM2 = high  | 1/10 Brightness | 23 x I <sub>SETM</sub>  |
| ENM1 = high, ENM2 = low  | 3/10 Brightness | 70 x I <sub>SETM</sub>  |
| ENM1 = high, ENM2 = high | Full Brightness | 233 x I <sub>SETM</sub> |

#### Table 2. ENF1/ENF2 States

| ENF1/ENF2 STATES         | BRIGHTNESS      | LED5-LED8<br>CURRENT    |
|--------------------------|-----------------|-------------------------|
| ENF1 = low, ENF2 = low   | Shutdown        | 0                       |
| ENF1 = low, ENF2 = high  | 1/5 Brightness  | 142 x ISETM             |
| ENF1 = high, ENF2 = low  | 2/5 Brightness  | 283 x I <sub>SETM</sub> |
| ENF1 = high, ENF2 = high | Full Brightness | 708 x I <sub>SETM</sub> |

where K = 23, 70, or 233 (depending upon the state of ENM1 and ENM2, see Table 1), and R<sub>SETM</sub> is the resistor connected between SETM and ground (see the *Typical Operating Circuit*).

#### **Setting the Flash Output Current**

SETF controls the LED5-LED8 bias current. Current flowing into LED5, LED6, LED7, and LED8 is a multiple of the current flowing out of SETF.

 $ILED5 = ILED6 = ILED7 = ILED8 = N \times (0.604V / RSETF)$  where N = 142, 283, or 708 (depending upon ENF1 and ENF2, see Table 2), and RSETF is the resistor connected between SETF and ground (see the *Typical Operating Circuit*).

#### Single-Wire Pulse Dimming

For more dimming flexibility or to reduce the number of control traces, the MAX1576 supports serial pulse dimming. Connect ENM1 and ENM2 (or ENF1 and ENF2) together to enable single-wire pulse dimming of the main (or flash) LEDs. When ENM1 and ENM2 (or ENF1 and ENF2) go high simultaneously, the main (or flash) LEDs are enabled at full brightness. Each subsequent low-going pulse (500ns to 250µs pulse width) reduces the LED current by 10%, so after one pulse the LED current is 0.9 x ILED. The 10th pulse reduces the current by 5% so the LED current reduces from 0.1 x I<sub>I</sub> FD to 0.05 x I<sub>LED</sub>. The 11th pulse sets the LED current back to ILED\_. Figure 3 shows a timing diagram for single-wire pulse dimming. Because soft-start is longer than the initial thi, apply dimming pulses quickly upon startup (after initial thi) to avoid LED current transitioning through full brightness.

#### Simple On/Off Control

If dimming control is not required, connect ENM1 to ENM2 (or ENF1 to ENF2) for simple on/off control. In this case, LED current is set by the values of RSETM (or RSETF).

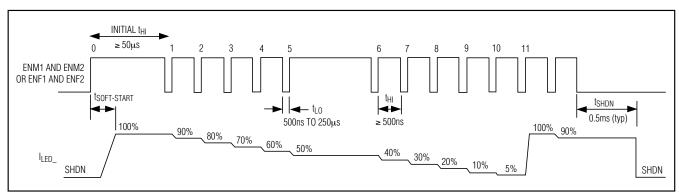



Figure 3. EN\_ Timing Diagram

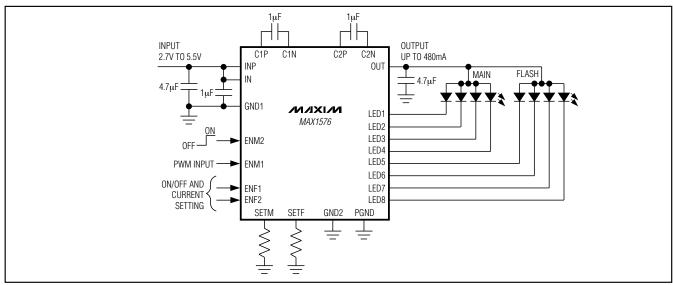



Figure 4. Dimming Using PWM Signal into ENM1

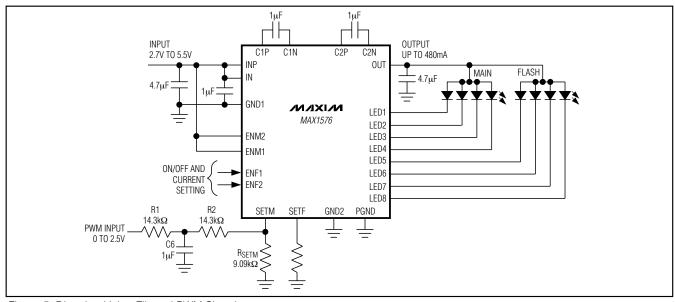



Figure 5. Dimming Using Filtered PWM Signal

#### **Dimming Using PWM into ENM1**

Use ENM2 for shutdown and drive ENM1 with a PWM signal. LED brightness can be varied from 1/10 to full brightness based on the duty cycle of the PWM signal. The waveforms in the *Typical Operating Characteristics* show the response time of dimming. Drive ENM2 high to keep the IC on, eliminating any soft-start delay that would impede PWM control and allowing a PWM frequency up to 5kHz (Figure 4).

#### Dimming Using a DAC or Filtered PWM

Both the main LEDs and flash LEDs allow dimming using a DAC or filtered PWM. Use a DAC output to sum a current into the SET\_ node, or use a high-frequency PWM signal to drive an RCR filter on SET\_ (Figure 5). With the component values shown in Figure 5, a 0% PWM duty cycle corresponds to 20mA/LED, while a 100% PWM duty cycle corresponds to 0mA/LED. At PWM frequencies above 5kHz, C6 may be reduced.

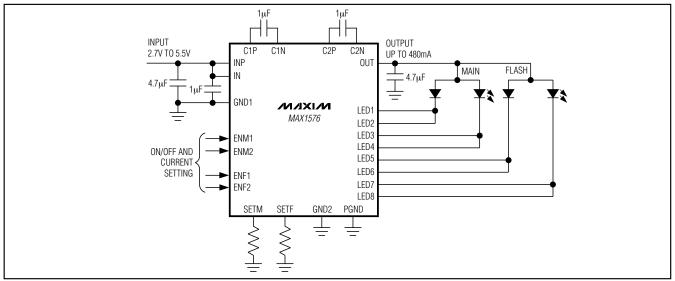



Figure 6. Providing Increased LED Current per LED

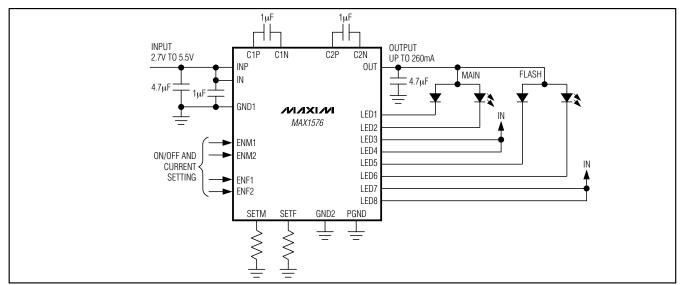



Figure 7. Schematic for when Fewer than 8 LEDs is Acceptable

#### **Driving Fewer than 8 LEDs**

When driving fewer than 8 LEDs, two different connection schemes can be used. The first scheme is shown in Figures 2 and 6, where LED\_ is connected to the adjacent LED\_. This method allows increased current through the LED and effectively allows total LED current to be I<sub>LED</sub> multiplied by the number of pins connected. The second method of connection is shown in Figure 7, where standard white LEDs are used and fewer than 8 are connected. This scheme does not alter current

through each LED but ensures that the unused LED\_ is properly terminated.

#### Input Ripple

For LED drivers, input ripple is more important than output ripple. Input ripple is highly dependent on the source supply's impedance. Adding a lowpass filter to the input further reduces input ripple. Alternately, increasing C<sub>IN</sub> to 10µF cuts input ripple in half with only a small increase in footprint. The 1x mode always has very low input ripple.

**Table 3. Recommended Components** 

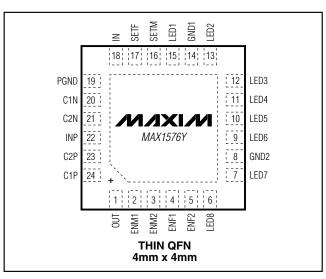
| DESIGNATION                        | VALUE       | MANUFACTURER | PART NUMBER    | DESCRIPTION                                    |
|------------------------------------|-------------|--------------|----------------|------------------------------------------------|
| C <sub>IN</sub> , C <sub>OUT</sub> | 4.7µF       | Murata       | GRM188R60J475K | 4.7µF ±10%, 6.3V X5R ceramic capacitors (0603) |
| C2, C3, C4                         | 1µF         | Murata       | GRM155R60J105K | 1μF ±10%, 6.3V X5R ceramic capacitors (0402)   |
| D1-D4                              | _           | Nichia       | NSCW215T       | White LEDs                                     |
| D5 (D5-D8)                         | _           | Nichia       | NBCW011T       | White LEDs, four LEDs in one package           |
| RSETM, RSETF                       | As required | Kamaya       | _              | 1% resistors                                   |

Typical operating waveforms shown in the *Typical Operating Characteristics* show input ripple in 1x, 1.5x, and 2x mode.

#### **Component Selection**

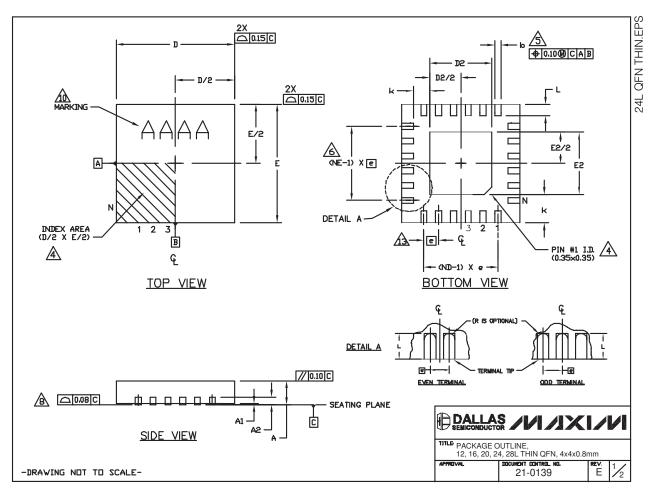
Use only ceramic capacitors with an X5R, X7R, or better dielectric. See Table 3 for a list of recommended parts.

#### **PC Board Layout and Routing**


The MAX1576 is a high-frequency switched-capacitor voltage regulator. For best circuit performance, use a solid ground plane and place CIN, COUT, C2, C3, and C4 as close to the MAX1576 as possible. There should be no vias on CIN. Connect GND1, GND2, and PGND to the exposed paddle directly under the IC. Refer to the MAX1576 evaluation kit for an example.

#### Chip Information

TRANSISTOR COUNT: 6679


PROCESS: BICMOS

#### **Pin Configuration**



#### **Package Information**

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to <a href="https://www.maxim-ic.com/packages">www.maxim-ic.com/packages</a>.)



#### Package Information (continued)

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)

|       | COMMON DIMENSIONS   |          |          |      |       |        |           |          |           |      |           |      |         |      |      |
|-------|---------------------|----------|----------|------|-------|--------|-----------|----------|-----------|------|-----------|------|---------|------|------|
| PKG   | PKG 12L 4x4         |          |          | 16   | L 4x  | 4      | 20        | )L 4×    | :4        | 2.   | 4L 4×     | :4   | 28L 4×4 |      |      |
| REF.  | MIN.                | NOM.     | MAX.     | MIN. | NDM.  | MAX.   | MIN.      | NDM.     | MAX.      | MIN. | NDM.      | MAX. | MIN.    | NDM. | MAX. |
| A     | 0.70                | 0.75     | 0.80     | 0.70 | 0.75  | 0.80   | 0.70      | 0.75     | 0.80      | 0.70 | 0.75      | 0.80 | 0.70    | 0.75 | 0.80 |
| A1    | 0.0                 | 0.02     | 0.05     | 0.0  | 20.0  | 0.05   | 0,0       | 0.02     | 0.05      | 0,0  | 0.02      | 0.05 | 0,0     | 0.02 | 0.05 |
| A2    | 2 0.20 REF 0.20 REF |          | 0.20 REF |      | 0     | .20 RE | F         | 0.20 REF |           |      |           |      |         |      |      |
| b     | 0.25                | 0.30     | 0.35     | 0.25 | 0.30  | 0.35   | 0.20      | 0.25     | 0.30      | 0.18 | 0.23      | 0.30 | 0.15    | 0.20 | 0.25 |
| D     | 3,90                | 4.00     | 4.10     | 3.90 | 4.00  | 4.10   | 3.90      | 4.00     | 4.10      | 3.90 | 4.00      | 4.10 | 3.90    | 4.00 | 4.10 |
| Ε     | 3.90                | 4.00     | 4.10     | 3.90 | 4.00  | 4.10   | 3.90      | 4.00     | 4.10      | 3.90 | 4.00      | 4.10 | 3.90    | 4.00 | 4.10 |
| 6     |                     | 0.80 BS  | C.       | 0    | 65 BS | C.     | 0.50 BSC. |          | 0.50 BSC. |      | 0.40 BSC. |      |         |      |      |
| k     | 0.25                | <u> </u> |          | 0.25 |       | _      | 0.25      |          |           | 0.25 |           |      | 0.25    |      |      |
| L     | 0.45                | 0.55     | 0.65     | 0.45 | 0.55  | 0.65   | 0.45      | 0.55     | 0.65      | 0.30 | 0.40      | 0.50 | 0.30    | 0.40 | 0.50 |
| N     |                     | 12       |          | 16   |       | 20     |           | 24       |           | 28   |           |      |         |      |      |
| NŒ    |                     | 3        |          | 4    |       |        | 5         | ,        | 6         |      | ,         | 7    |         |      |      |
| NE    |                     | 3        |          |      | 4     |        |           | 5        |           | 6    |           |      | 7       |      |      |
| Jedec |                     | WGGB     |          |      | WGGC  |        | 1         | WGGD-    | 1         |      | WGGD-     | 5    |         | WGGE |      |

| E       | XPOS | SED  | PAD  | VAR  | ITAI | DNS  |               |
|---------|------|------|------|------|------|------|---------------|
| PKG.    |      | D2   |      |      | E5   |      | DOWN<br>BONDS |
| CODES   | MIN. | NOM. | MAX. | MIN. | NOM. | MAX. | ALLOVED       |
| T1244-3 | 1.95 | 2.10 | 2.25 | 1.95 | 2.10 | 2.25 | YES           |
| T1244-4 | 1.95 | 2.10 | 2.25 | 1.95 | 2.10 | 2.25 | ND            |
| T1644-3 | 1.95 | 2.10 | 2.25 | 1.95 | 2.10 | 2.25 | YES           |
| T1644-4 | 1.95 | 2.10 | 2.25 | 1.95 | 2.10 | 2.25 | ND            |
| T2044-2 | 1.95 | 2.10 | 2.25 | 1.95 | 2.10 | 2.25 | YES           |
| T2044-3 | 1.95 | 2.10 | 2.25 | 1.95 | 2.10 | 2.25 | ND            |
| T2444-2 | 1.95 | 2.10 | 2.25 | 1.95 | 2.10 | 2.25 | YES           |
| T2444-3 | 2.45 | 2.60 | 2.63 | 2.45 | 2.60 | 2.63 | YES           |
| T2444-4 | 2.45 | 2.60 | 2.63 | 2.45 | 2.60 | 2.63 | ND            |
| T2844-1 | 2.50 | 2.60 | 2.70 | 2.50 | 2.60 | 2.70 | ND            |

- 1. DIMENSIONING & TOLERANCING CONFORM TO ASME Y14.5M-1994.
- 2. ALL DIMENSIONS ARE IN MILLIMETERS. ANGLES ARE IN DEGREES.
- 3. N IS THE TOTAL NUMBER OF TERMINALS.
- THE TERMINAL #1 IDENTIFIER AND TERMINAL NUMBERING CONVENTION SHALL CONFORM TO

  JESD 95-1 SPP-012. DETAILS OF TERMINAL #1 IDENTIFIER ARE OPTIONAL, BUT MUST BE LOCATED WITHIN

  THE ZONE INDICATED. THE TERMINAL #1 IDENTIFIER MAY BE EITHER A MOLD OR MARKED FEATURE.
- S DIMENSION 6 APPLIES TO METALLIZED TERMINAL AND IS MEASURED BETWEEN 0.25 mm AND 0.30 mm FRON TERMINAL TIP.
- riangle nd and ne refer to the number of terminals on each D and E side respectively.
- 7. DEPOPULATION IS POSSIBLE IN A SYMMETRICAL FASHION.
- (COPLANARITY APPLIES TO THE EXPOSED HEAT SINK SLUG AS WELL AS THE TERMINALS.
- 9. DRAWING CONFORMS TO JEDEC MO220, EXCEPT FOR T2444-3, T2444-4 AND T2844-1.
- MARKING IS FOR PACKAGE ORIENTATION REFERENCE ONLY.
- 11. COPLANARITY SHALL NOT EXCEED 0.08mm
- 12. WARPAGE SHALL NOT EXCEEND 0.10mm
- 13. LEAD CENTERLINES TO BE AT TRUE POSITION AS DEFINED BY BASIC DIMENSION "6". ±0.05.
- 14. NUMBER OF LEADS SHOWN ARE FOR REFERENCE ONLY

DALLAS /// PACKAGE OUTLINE, 12, 16, 20, 24, 28L THIN QFN, 4x4x0.8mm

DOCUMENT CONTROL NO.

21-0139

-DRAWING NOT TO SCALE-

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600