High Surge Current Three-pin SIDACtor® Device

Rohs Littelfuse

This *SIDACtor* device is a 1000 A solid state protection device offered in a TO-220 package. It protects equipment located in the severe surge environment of CATV (Community Antenna TV) systems and antenna locations.

Electrical Parameters

Part Number *	V _{DRM} Volts	V _S Volts	V _T Volts	I _{DRM} μAmps	I _S mAmps	l _T Amps	l _H mAmps	IDACtor
P6002ADL	550	700	5.5	5	800	2.2	50	s

* "L" in part number indicates RoHS compliance. For non-RoHS compliant device, delete "L" from part number. For surge ratings, see table below.

Electrical Parameters

Part	V _{DRM}	V _S	V _T	Ι _{DRM}	l _S	l _T	l _H
Number *	Volts	Volts	Volts	μAmps	mAmps	Amps	mAmps
P3100ADL	280	360	5.5	5	800	2.2	

* "L" in part number indicates RoHS compliance. For non-RoHS compliant device, delete "L" from part number. For surge ratings, see table below.

General Notes:

- All measurements are made at an ambient temperature of 25 °C. IPP applies to -40 °C through +85 °C temperature range.
- $I_{\mbox{\scriptsize PP}}$ is a repetitive surge rating and is guaranteed for the life of the product.
- Listed SIDACtor devices are bi-directional. All electrical parameters and surge ratings apply to forward and reverse polarities.

V_{DRM} is measured at I_{DRM.}

- V_S is measured at 100 V/µs.
- Special voltage (V_S and V_{DRM}) and holding current (I_H) requirements are available upon request.

Surge Ratings in Amps

	lp	P			
	8x20 * 1.2x50 **	10x1000 * 10x1000 **	І _{тѕм} 50 / 60 Hz	di/dt	
Series	Amps	Amps	Amps	Amps/µs	
D	1000	250	120	500	

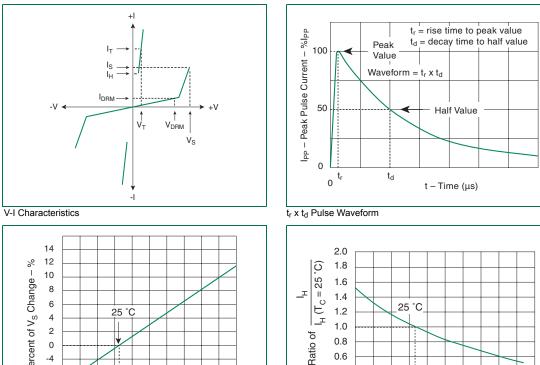
* Current waveform in µs

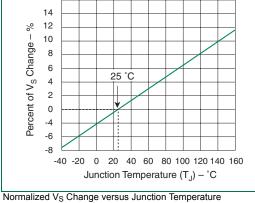
** Voltage waveform in µs

Note: P6002AD is shown. P3100AD has no center lead.

Littelfuse

High Surge Current Three-pin SIDACtor® Device


Thermal Considerations


Package Symbol		Parameter	Value	Unit
	TJ	Operating Junction Temperature Range	-40 to +150	°C
Modified TO-220	Τ _S	Storage Temperature Range	-65 to +150	°C
PIN 1 PIN 2	R₀ja	Thermal Resistance: Junction to Ambient	60	°C/W

Capacitance Values

	pF			
Part Number	MIN	MAX		
P6002ADL	60	200		
P3100ADL	100	150		

Note: Off-state capacitance (C_O) is measured at 1 MHz with a 2 V bias.

0.6

0.4

-40 -20

0 20 40 60 80 100 120 140 160

Case Temperature $(T_C) - C$