Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over all the business of both companies. Therefore, although the old company name remains in this document, it is a valid Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010 Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice

- 1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
 of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
 No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
 of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; safety equipment; and medical equipment not specifically designed for life support.
 - "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

MOS INTEGRATED CIRCUIT $\mu PD78P078Y$

8-BIT SINGLE-CHIP MICROCONTROLLER

DESCRIPTION

The μ PD78P078Y is a member of the μ PD78078Y Subseries of the 78K/0 Series, in which the on-chip mask ROM of the μ PD78078Y is replaced with a one-time PROM or EPROM.

Because this device can be programmed by users, it is ideally suited for system evaluation, small-lot and multipledevice production, and early development and time-to-market.

The μ PD78P078Y can be also used for system evaluation of a μ PD78075BY Subseries device.

Caution The specifications of the μ PD78075BY Subseries are not the same as those of the μ PD78078Y Subseries. Therefore, if a μ PD78P078Y is used to evaluate a μ PD78075BY Subseries product, refer to the μ PD78075B, 78075BY Subseries User's Manual (U12560E).

The details of functions are described in the user's manuals. Be sure to read the following manuals before designing.

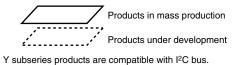
 μ PD78078, 78078Y Subseries User's Manual : U10641E 78K/0 Series User's Manual: Instructions : U12326E

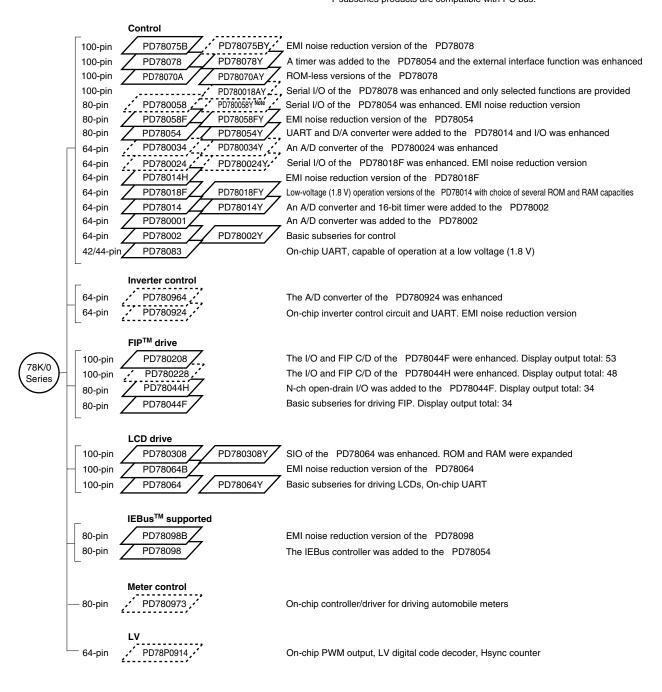
FEATURES

- Pin-compatible with mask ROM version (except VPP pin)
- Internal PROM: 60 Kbytes^{Note 1}
- Internal high-speed RAM: 1024 bytes
- Internal expansion RAM: 1024 bytes^{Note 2}
- Internal buffer RAM: 32 bytes
- Operable in the same supply voltage as the mask ROM version (VDD = 1.8 to 5.5 V)
- Corresponding to QTOP[™] Microcontrollers
- Notes 1. The internal PROM capacity can be changed by setting the memory size switching register (IMS).
 - 2. The internal expansion RAM capacity can be changed by the internal expansion RAM size switching register (IXS).
- Remarks 1. Refer to 1. DIFFERENCES BETWEEN THE μ PD78P078Y AND MASK ROM VERSIONS for the differences between the PROM version and the mask ROM version.
 - QTOP microcontroller is a general term for microcontrollers which incorporate one-time PROM and are totally supported by NEC's programming service (from programming to marking, screening and verification).

The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version. Not all products and/or types are available in every country. Please check with an NEC Electronics sales representative for availability and additional information.

★ ORDERING INFORMATION


Part Number	Package	Internal ROM
PD78P078YGF-3BA	100-pin plastic QFP	One-Time PROM
	(14 20 mm, resin thickness: 2.7 mm)	
PD78P078YGF-3BA-A	100-pin plastic QFP	One-Time PROM
	(14 20 mm, resin thickness: 2.7 mm)	
PD78P078YGC-8EU	100-pin plastic LQFP (fine pitch)	One-Time PROM
	(14 14 mm, resin thickness: 1.40 mm)	


Remark Products that have the part numbers suffixed by "-A" are lead-free products.

★ 78K/0 Series Development

The following shows the 78K/0 Series products development. Subseries names are shown inside frames.

Note Under planning

The following table shows the differences among subseries functions.

	Function	ROM		Tin	ner		8-Bit	10-Bit	8-Bit	Serial Interface	I/O	VDD MIN.	External
Part Numl	per	Capacity	8-Bit	16-Bit	Watch	WDT	A/D	A/D	D/A			Value	Expansion
Control	μPD78075B	32 K to 40 K	4 ch	1 ch	1 ch	1 ch	8 ch	-	2 ch	3 ch (UART: 1 ch)	88	1.8 V	Available
	μPD78078	48 K to 60 K											
	μPD78070A	_									61	2.7 V	
	μPD780058	24 K to 60 K	2 ch						2 ch	3 ch (time division UART: 1 ch)	68	1.8 V	
	μPD78058F	48 K to 60 K								3 ch (UART: 1 ch)	69	2.7 V	
	μPD78054	16 K to 60 K										2.0 V	
	μPD780034	8 K to 32 K					-	8 ch	_	3 ch (UART: 1 ch,	51	1.8 V	
	μPD780024						8 ch	-		time division 3-wire: 1 ch)			
	μPD78014H									2 ch	53	1	
	μPD78018H	8 K to 60 K											
	μPD78014	8 K to 32 K										2.7 V	
	μPD780001	8 K		_	-					1 ch	39	1	_
	μPD78002	8 K to 16 K			1 ch		-				53		Available
	μPD78083				_		8 ch			1 ch (UART: 1 ch)	33	1.8 V	-
Inverter	μPD780964	8 K to 32 K	3 ch	Note	-	1 ch	-	8 ch	-	2 ch (UART: 2 ch)	47	2.7 V	Available
control	μPD780924						8 ch	-					
FIP drive	μPD780208	32 K to 60 K	2 ch	1 ch	1 ch	1 ch	8 ch	-	_	2 ch	74	2.7 V	-
	μPD780228	48 K to 60 K	3 ch	_	_					1 ch	72	4.5 V	
	μPD78044H	32 K to 48 K	2 ch	1 ch	1 ch						68	2.7 V	
	μ PD78044F	16 K to 40 K								2 ch			
LCD drive	μ PD780308	48 K to 60 K	2 ch	1 ch	1 ch	1 ch	8 ch			3 ch (time division UART: 1 ch)	57	2.0 V	_
	μPD78064B	32 K								2 ch (UART: 1 ch)			
	μPD78064	16 K to 32 K											
IEBus	μPD78098B	40 K to 60 K	2 ch	1 ch	1 ch	1 ch	8 ch	_	2 ch	3 ch (UART: 1 ch)	69	2.7 V	Available
supported	μPD78098	32 K to 60 K											
Meter control	μPD780973	24 K to 32 K	2 ch	1 ch	1 ch	1 ch	5 ch	-	ı	2 ch (UART: 1 ch)	56	4.5 V	_
LV	μPD78P0914	32 K	6 ch	_	-	1 ch	8 ch	-	_	2 ch	54	4.5 V	Available

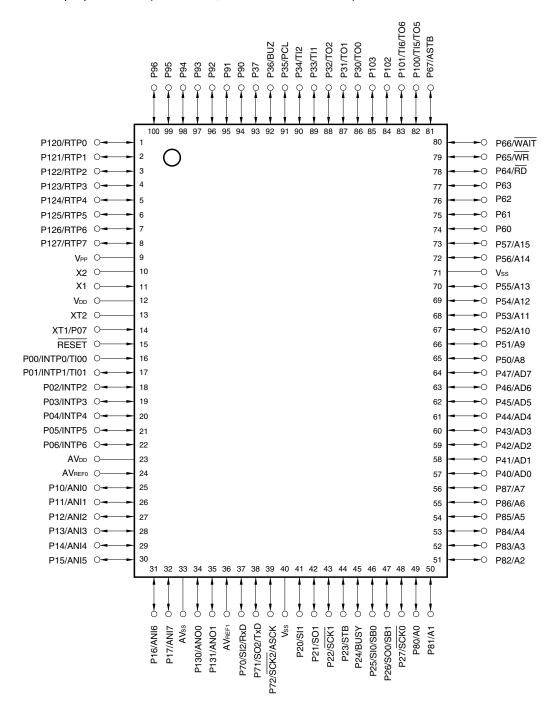
Note 10-bit timer: 1 channel

FUNCTION DESCRIPTION

	Item	Function
Internal memory		PROM: 60 Kbytes ^{Note 1} RAM High-speed RAM: 1024 bytes Expansion RAM: 1024 bytes ^{Note 2} Buffer RAM: 32 bytes
Memory space		64 Kbytes
General register		8 bits \times 32 registers (8 bits \times 8 registers \times 4 banks)
Minimum instruct	ion execution time	Minimum instruction execution time variable function is integrated.
	When main system clock is selected	0.4 μs/0.8 μs/1.6 μs/3.2 μs/6.4 μs/12.8 μs (@ 5.0 MHz)
	When subsystem clock is selected	122 μs (@ 32.768 kHz)
Instruction set		 16-bit operation Multiply/divide (8 bits × 8 bits, 16 bits ÷ 8 bits) Bit manipulation (set, reset, test, Boolean operation) BCD adjust, etc.
I/O ports		Total : 88 ● CMOS input : 2 ● CMOS input/output : 78 ● N-ch open-drain input/output : 8
A/D converter		8-bit resolution × 8 channels
D/A converter		8-bit resolution × 2 channels
Serial interface		3-wire serial I/O/2-wire serial I/O/I ² C bus mode selectable: 1 channel 3-wire serial I/O mode (with max. 32-byte on-chip automatic transmitting/ receiving function): 1 channel 3-wire serial I/O/UART mode selectable: 1 channel
Timer		16-bit timer/event counter: 1 channel 8-bit timer/event counter: 4 channels Watch timer: 1 channel Watchdog timer: 1 channel
Timer output		5 pins (14-bit PWM output enable: 1 pin, 8-bit PWM output enable: 2 pins)
Clock output		19.5 kHz, 39.1 kHz, 78.1 kHz, 156 kHz, 313 kHz, 625 kHz, 1.25 MHz, 2.5 MHz, and 5.0 MHz (@ 5.0 MHz with main system clock) 32.768 kHz (@ 32.768 kHz with subsystem clock)
Buzzer output		1.2 kHz, 2.4 kHz, 4.9 kHz and 9.8 kHz (@ 5.0 MHz with main system clock)

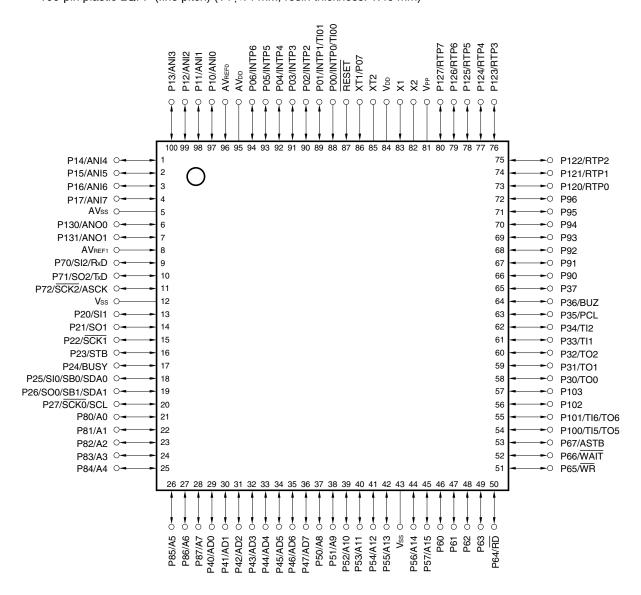
- Notes 1. The internal PROM capacity can be changed by using the memory size switching register (IMS).
 - 2. The internal expansion RAM capacity can be changed by using the internal expansion RAM size switching register (IXS).

Data Sheet U10606EJ3V1DS


Item		Function	
Vectored interrupt Maskable		Internal: 15, External: 7	
sources	Non-maskable	Internal: 1	
	Software	1	
Test input		Internal: 1, External: 1	
Supply voltage		V _{DD} = 1.8 to 5.5 V	
Package		100-pin plastic QFP (14 × 20 mm, resin thickness: 2.7 mm)	
		• 100-pin plastic LQFP (fine pitch) (14 × 14 mm, resin thickness: 1.40 mm)	

PIN CONFIGURATION (TOP VIEW)

(1) Normal operating mode


• 100-pin plastic QFP (14 × 20 mm, resin thickness: 2.7 mm)

Cautions 1. Connect VPP pin directly to Vss.

- 2. Connect AVDD pin to VDD.
- 3. Connect AVss pin to Vss.

• 100-pin plastic LQFP (fine pitch) (14 ×14 mm, resin thickness: 1.40 mm)

Cautions 1. Connect VPP pin directly to Vss.

- 2. Connect AVDD pin to VDD.
- 3. Connect AVss pin to Vss.

A0 to A15 : Address Bus P130, P131 : Port 13

AD0 to AD7 : Address/Data Bus PCL : Programmable Clock

ASCK : Asynchronous Serial Clock RTP0 to RTP7 : Real-Time Output Port

ASTB : Address Strobe RxD : Receive Data

AVDD : Receive Data

TxD : Transmit Data

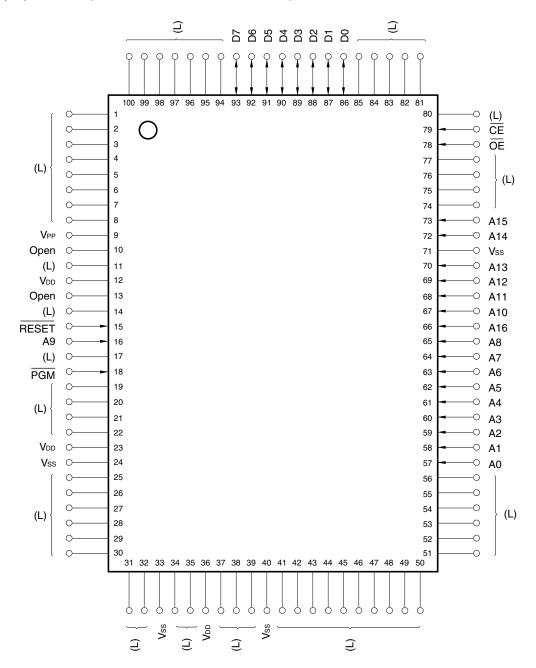
AVREF0, AVREF1 : Analog Reference Voltage SB0, SB1 : Serial Bus

AVss : Analog Ground SCK0 to SCK2 : Serial Clock

BUSY : Busy SCL : Serial Clock

BUZ : Buzzer Clock SDA0, SDA1 : Serial Data
INTP0 to INTP6 : Interrupt from Peripherals SI0 to SI2 : Serial Input
P00 to P07 : Port 0 SO0 to SO2 : Serial Output

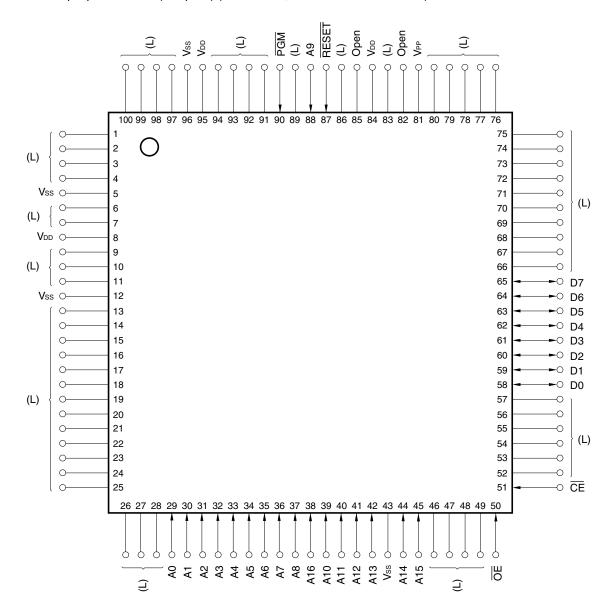
P10 to P17 : Port 1 STB : Strobe P20 to P27 : Port 2 TI00, TI01 : Timer Input P30 to P37 : Port 3 TI1, TI2, TI5, TI6 : Timer Input P40 to P47 TO0 to TO2, TO5, TO6 : Timer Output : Port 4 P50 to P57 : Port 5 V_{DD} : Power Supply


P60 to P67 : Port 6 VPP : Programming Power Supply

P90 to P96 : Port 9 $\overline{\text{WR}}$: Write Strobe

P100 to P103 : Port 10 X1, X2 : Crystal (Main System Clock)
P120 to P127 : Port 12 XT1, XT2 : Crystal (Subsystem Clock)

(2) PROM programming mode


• 100-pin plastic QFP (14 × 20 mm, resin thickness: 2.7 mm)

Cautions 1. (L): Individually connect to Vss via a pull-down resistor.

Vss: Connect to GND.
 RESET: Set to low level.
 Open: No connection.

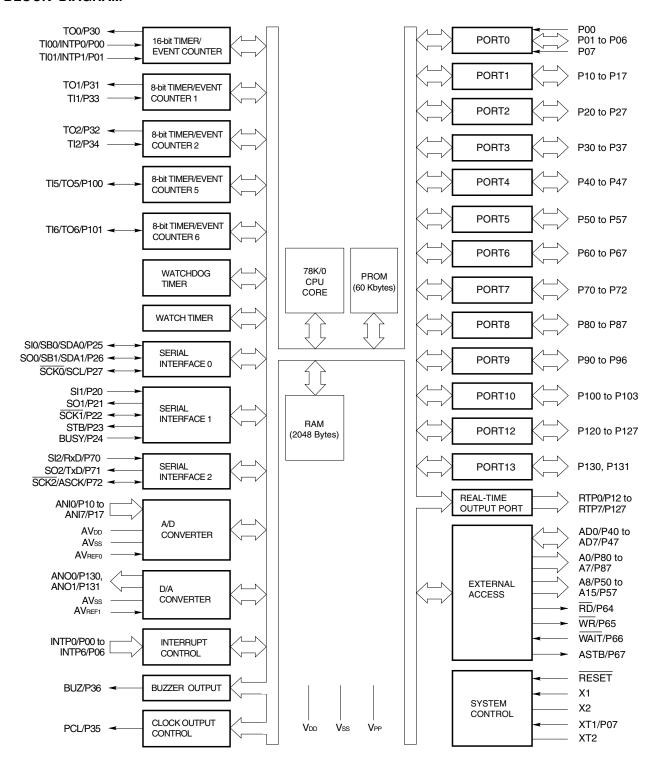
• 100-pin plastic LQFP (fine pitch) (14 × 14 mm, resin thickness: 1.40 mm)

Cautions 1. (L): Individually connect to Vss via a pull-down resistor.

Vss: Connect to GND.
 RESET: Set to low level.
 Open: No connection.

A0 to A16 : Address Bus RESET : Reset

CE : Chip Enable V_{DD} : Power Supply


D0 to D7 : Data Bus VPP : Programming Power Supply

Data Sheet U10606EJ3V1DS

OE : Output Enable Vss : Ground

PGM : Program

BLOCK DIAGRAM

CONTENTS

1.	DIFFERENCES BETWEEN THE μ PD78P078Y AND MASK ROM VERSIONS	14
2.	PIN FUNCTIONS	15
	2.1 Pins in Normal Operating Mode	
	2.2 Pins in PROM Programming Mode	19
	2.3 Pin Input/Output Circuits and Recommended Connection of Unused Pins	20
3.	MEMORY SIZE SWITCHING REGISTER (IMS)	24
4.	INTERNAL EXPANSION RAM SIZE SWITCHING REGISTER (IXS)	25
5.	PROM PROGRAMMING	26
	5.1 Operating Modes	26
	5.2 PROM Write Procedure	28
	5.3 PROM Read Procedure	32
6.	ONE-TIME PROM VERSION SCREENING	33
7.	ELECTRICAL SPECIFICATIONS	34
8.	CHARACTERISTIC CURVES (REFERENCE VALUES)	68
9.	PACKAGE DRAWINGS	70
10). RECOMMENDED SOLDERING CONDITIONS	72
ΑI	PPENDIX A. DEVELOPMENT TOOLS	74
ΑF	PPENDIX B. RELATED DOCUMENTS	79

1. DIFFERENCES BETWEEN THE μ PD78P078Y AND MASK ROM VERSIONS

The μ PD78P078Y is a single-chip microcontroller with an on-chip one-time PROM or with an on-chip EPROM which has program write, erasure and rewrite capability.

It is possible to make all the functions, except for PROM specification and mask option of the P60 to P63 and P90 to P93 pins, the same as those of the mask ROM versions by setting the memory size switching register (IMS) and internal expanded RAM size switching register (IXS).

Differences between the PROM version (μ PD78P078Y) and mask ROM versions (μ PD78074BY, 78075BY, 78076Y, 78078Y) are shown in Table 1-1.

Table 1-1. Differences between the μ PD78P078 and Mask ROM Versions

Parameter	μPD78P078	Mask ROM Versions
Internal ROM type	One-time PROM/EPROM	Mask ROM
Internal ROM capacity	60 Kbytes	μPD78074BY : 32 Kbytes μPD78075BY : 40 Kbytes μPD78076Y : 48 Kbytes μPD78078Y : 60 Kbytes
Internal expanded RAM capacity	1024 bytes	μPD78074BY : none μPD78075BY : none μPD78076Y : 1024 bytes μPD78078Y : 1024 bytes
Internal ROM capacity selection with memory size switching register (IMS)	Possible ^{Note 1}	Not possible
Internal expanded RAM capacity selection with internal expanded RAM size switching register (IXS)	Possible ^{Note 2}	Not possible
IC pin	No	Yes
V _{PP} pin	Yes	No
On-chip pull-up resistor mask option of P60 to P63 and P90 to P93 pins	No	Yes
Electrical specifications	Refer to the Data Sheet for each version.	

- **Notes 1.** The internal PROM becomes 60 Kbytes and the internal high-speed RAM becomes 1024 bytes by RESET input.
 - 2. The internal expansion RAM becomes 1024 bytes by RESET input.
- *Caution There are differences in noise immunity and noise radiation between the PROM and mask ROM versions. When pre-producing an application set with the PROM version and then mass-producing it with the mask ROM version, be sure to conduct sufficient evaluations for the set using consumer samples (not engineering samples) of the mask ROM version.

2. PIN FUNCTIONS

2.1 Pins in Normal Operating Mode

(1) Port pins (1/3)

Pin Name	Input/Output	F	unction	After Reset	Alternate Function
P00	Input	Port 0	Input only	Input	INTP0/TI00
P01	Input/output	8-it input/output port	Input/output is specifiable		INTP1/TI01
P02			bit-wise. When used as the		INTP2
P03			input port, it is possible to connect an on-chip pull-up		INTP3
P04			resistor by software.		INTP4
P05					INTP5
P06					INTP6
P07 ^{Note 1}	Input		Input only	Input	XT1
P10 to P17	Input/output	Port 1 8-bit input/output port Input/output is specifiab When used as the inpu an on-chip pull-up resist	t port, it is possible to connect	Input	ANI0 to ANI7
P20	Input/output	Port 2		Input	SI1
P21		8-bit input/output port			SO1
P22		Input/output is specifiab			SCK1
P23		an on-chip pull-up resist	t port, it is possible to connect		STB
P24					BUSY
P25					SI0/SB0
P26					SO0/SB1
P27					SCK0
P30	Input/output	Port 3		Input	TO0
P31		8-bit input/output port			TO1
P32		Input/output is specifiab			TO2
P33		an on-chip pull-up resist	t port, it is possible to connect or by software.		TI1
P34			•		TI2
P35					PCL
P36					BUZ
P37					-

- **Notes 1.** When the P07/XT1 pin is used as an input port, set the processor clock control register (PCC) bit 6 (FRC) to 1 (Be sure not to use the feedback resistor of the subsystem clock oscillator).
 - 2. When the P10/ANI0 to P17/ANI7 pins are used as the analog inputs for the A/D converter, the pull-up resistor is automatically disabled.

Data Sheet U10606EJ3V1DS

(1) Port pins (2/3)

Pin Name	Input/Output		Function	After Reset	Alternate Function
P40 to P47	Input/output	on-chip pull-up resistor	t port, it is possible to connect an	Input	ANI0 to ANI7
P50 to P57	Input/output	Port 5 8-bit input/output port It is possible to directly Input/output is specifiab When used as the input on-chip pull-up resistor	ole bit-wise. t port, it is possible to connect an	Input	A8 to A15
P60 P61 P62 P63	Input/output	Port 6 8-bit input/output port Input/output is specifiable bit-wise.	N-ch open-drain input/output port It is possible to directly drive LEDs.	Input	-
P64 P65 P66 P67			When used as the input port, it is possible to connect an on-chip pull-up resistor by software.	Input	RD WR WAIT ASTB
P70 P71 P72	Input/output	Port 7 3-bit input/output port Input/output is specifiab When used as the input on-chip pull-up resistor	t port, it is possible to connect an	Input	SI2/RxD SO2/TxD SCK2/ASCK2
P80 to P87	Input/output	Port 8 8-bit input/output port Input/output is specifiab	ole bit-wise. t port, it is possible to connect an	Input	A0 to A7
P90 P91 P92 P93 P94 P95 P96	Input/output	Port 9 7-bit input/output port Input/output is specifiable bit-wise.	N-ch open-drain input/output port It is possible to directly drive LEDs. When used as the input port, it is possible to connect an onchip pull-up resistor by software	Input	_

(1) Port pins (3/3)

Pin Name	Input/Output	Function	After Reset	Alternate Function
P100	Input/output	Port 10	Input	TI5/TO5
P101	-	4-bit input/output port Input/output is specifiable bit-wise.		TI6/TO6
P102, P103		When used as the input port, it is possible to connect an on-chip pull-up resistor by software.		_
P120 to P127	Input/output	Port 12 8-bit input/output port Input/output is specifiable bit-wise. When used as the input port, it is possible to connect an on-chip pull-up resistor by software.	Input	RTP0 to RTP7
P130 to P131	Input/output	Port 13 2-bit input/output port Input/output is specifiable bit-wise. When used as the input port, it is possible to connect an on-chip pull-up resistor by software.	Input	ANO0, ANO1

(2) Non-port pins (1/2)

Pin Name	Input/Output	Function	After Reset	Alternate Function
INTP0	Input	External interrupt request input by which the active edge	Input	P00/TI00
INTP1		(rising edge, falling edge, or both rising and falling edges) can		P01/TI01
INTP2		be specified.		P02
INTP3				P03
INTP4				P04
INTP5				P05
INTP6				P06
SI0	Input	Serial interface serial data input.	Input	P25/SB0/SDA0
SI1				P20
SI2				P70/RxD
SO0	Output	Serial interface serial data output.	Input	P26/SB1/SDA1
SO1	1	·		P21
SO2	1			P71/TxD
SB0	Input/Output	Serial interface serial data input/output.	Input	P25/SI0/SDA0
SB1	1	' '	'	P26/SO0/SDA1
SDA0	-			P25/SI0/SB0
SDA1				P26/SO0/SB1
SCK0	Input/Output	Serial interface serial data input/output.	Input	P27/SCL
SCK1	<u> </u>	' '	'	P22
SCK2	-			P72/ASCK
SCL				P27/SCK0
STB	Output	Serial interface automatic transmit/receive strobe output.	Input	P23
BUSY	Input	Serial interface automatic transmit/receive busy input.	Input	P24
RxD	Input	Asynchronous serial interface serial data input.	Input	P70/SI2
TxD	Output	Asynchronous serial interface serial data output.	Input	P71/SO2
ASCK	Input	Asynchronous serial interface serial data input.	Input	P72/SCK2
TI00	Input	External count clock input to 16-bit timer (TM0).	Input	P00/INTP0
TI01	¹	Capture trigger signal input to capture register (CR00).	1	P01/INTP1
TI1		External count clock input to 8-bit timer (TM1).	1	P33
TI2	1	External count clock input to 8-bit timer (TM2).	1	P34
TI5		External count clock input to 8-bit timer (TM5).		P100/TO5
TI6	1	External count clock input to 8-bit timer (TM6).	1	P101/TO6
TO0	Output	16-bit timer (TM0) output (also used for 14-bit PWM output).	Input	P30
TO1	1 '	8-bit timer (TM1) output.] '	P31
TO2		8-bit timer (TM2) output.		P32
TO5		8-bit timer (TM5) output (also used for 8-bit PWM output).		P100/TI5
TO6	1	8-bit timer (TM6) output (also used for 8-bit PWM output).	1	P101/TI6
PCL	Output	Clock output (for main system clock, subsystem clock trimming)	Input	P35
BUZ	Output	Buzzer output	Input	P36
RTP0 to RTP7	Output	Real-time output port by which data is output in synchronization with a trigger.	Input	P120 to P127
AD0 to AD7	Input/Output	Low-order address/data bus at external memory expansion.	Input	P40 to P47

(2) Non-port pins (2/2)

Pin Name	Input/Output	Function	After Reset	Alternate Function
A0 to A7	Output	Low-order address bus at external memory expansion.	Input	P80 to P87
A8 to A15	Output	High-order address bus at external memory expansion.	Input	P50 to P57
RD	Output	External memory read operation strobe signal output.	Input	P64
WR		External memory write operation strobe signal output.	Input	P65
WAIT	Input	Wait insertion at external memory access.	Input	P66
ASTB	Output	Strobe output which latches the address data output for ports 4, 5 and 8 to access external memory	Input	P67
ANI0 to ANI7	Input	A/D converter analog input.	Input	P10 to P17
ANO0, ANO1	Output	D/A converter analog output.	Input	P130, P131
AV _{REF0}	Input	A/D converter reference voltage input.	-	_
AV _{REF1}	Input	D/A converter reference voltage input.	_	_
AV _{DD}	_	A/D converter analog power supply. Connected to VDD.	-	_
AVss	_	A/D and D/A converters ground potential. Connected to Vss.	_	_
RESET	Input	System reset input.	_	_
X1	Input	Main system clock oscillation crystal connection.	_	_
X2	_		_	_
XT1	Input	Subsystem clock oscillation crystal connection.	Input	P07
XT2	_		_	_
V _{DD}	_	Positive power supply		_
V _{PP}	-	High-voltage applied during program write/verification. Connected directly to Vss in normal operating mode.	_	_
Vss	_	Ground potential.	_	_

2.2 Pins in PROM Programming Mode

Pin Name	Input/Output	Function
RESET	Input	PROM programming mode setting When +5 V or +12.5 V is applied to the VPP pin and a low level signal is applied to the RESET
		pin, this chip is set in the PROM programming mode.
VPP	Input	PROM programming mode setting and high-voltage applied during program write/verification.
A0 to A16	Input	Address bus
D0 to D7	Input/output	Data bus
CE	Input	PROM enable input/program pulse input
ŌE	Input	Read strobe input to PROM
PGM	Input	Program/program inhibit input in PROM programming mode.
V _{DD}	_	Positive power supply
Vss	_	Ground potential

2.3 Pin Input/Output Circuits and Recommended Connection of Unused Pins

Types of input/output circuits of the pins and recommended connection of unused pins are shown in Table 2-1. For the configuration of each type of input/output circuit, see Figure 2-1.

Table 2-1. Type of Input/Output Circuit of Each Pin (1/2)

Pin Name	Input/Output Circuit Type	Input/Output	Recommended Connection for Unused Pins
P00/INTP0/TI00	2	Input	Connect to Vss.
P01/INTP1/TI01	8-A	Input/Output	Independently connect to Vss via a resistor.
P02/INTP2			
P03/INTP3			
P04/INTP4			
P05/INTP5			
P06/INTP6			
P07/XT1	16	Input	Connect to VDD.
P10/ANI0 to P17/ANI7	11	Input/Output	Independently connect to VDD or VSS via a resistor
P20/SI1	8-A		
P21/SO1	5-A		
P22/SCK1	8-A		
P23/STB	5-A		
P24/BUSY	8-A		
P25/SI0/SB0/SDA0	10-A		
P26/SO0/SB1/SDA1			
P27/SCK0/SCL			
P30/TO0	5-A		
P31/TO1			
P32/TO2			
P33/TI1	8-A		
P34/TI2			
P35/PCL	5-A		
P36/BUZ			
P37			
P40/AD0 to P47/AD7	5-E	Input/Output	Independently connect to VDD via a resistor.
P50/A8 to P57/A15	5-A	Input/Output	Independently connect to VDD or Vss via a resistor.
P60 to P63	13-D	Input/Output	Independently connect to VDD via a resistor.
P64/RD	5-A	Input/Output	Independently connect to VDD or Vss via a resistor
P65/WR	J		
P66/WAIT]		
P67/ASTB			

Table 2-1. Type of Input/Output Circuit of Each Pin (2/2)

Pin Name	Input/Output Circuit Type	Input/Output	Recommended Connection for Unused Pins
P70/SI2/RxD	8-A	Input/Output	Independently connect to VDD or Vss via a resistor.
P71/SO2/TxD	5-A		
P72/SCK2/ASCK	8-A		
P80/A0 to P87/A7	5-A		
P90 to P93	13-D	Input/Output	Independently connect to VDD via a resistor.
P94 to P96	5-A	Input/Output	Independently connect to VDD or VSS via a resistor.
P100/TI5/TO5	8-A		
P101/TI6/TO6			
P102, P103	5-A		
P120/RTP0 to P127/RTP7	5-A		
P130/ANO0, P131/ANO1	12-A	Input/Output	Independently connect to Vss via a resistor.
RESET	2	Input	-
XT2	16	_	Leave open.
AV _{REF0}			Connect to Vss.
AV _{REF1}			Connect to V _{DD} .
AV _{DD}			
AVss			Connect to Vss.
VPP			Connect directly to Vss.

Type 2 Type 8-A pullup enable IN O $V_{\text{DD}} \\$ data -○ IN/OUT output Schmitt-triggered input with hysteresis characteristics disable Type 5-A Type 10-A pullup pullup enable enable V_{DD} V_{DD} datadata -○ IN/OUT -○ IN/OUT open drain output disable output disable input enable Type 5-E Type 11 pullup enable pullup enable V_{DD} data P-ch data ⊸IN/OUT output disable O IN/OUT output Comparato disable V_{REF} (threshold voltage) input enable

Figure 2-1. List of Pin Input/Output Circuits (1/2)

Type 12-A Type 16 pullup feedback cut-off enable V_{DD} P-ch data--○ IN/OUT output disable XT1 XT2 input enable Analog Output Voltage Type 13-D ⊸IN/OUT data output disable N-ch V_{DD} ► P-ch RD Medium Voltage Input Buffer

Figure 2-1. List of Pin Input/Output Circuits (2/2)

3. MEMORY SIZE SWITCHING REGISTER (IMS)

This is a register to disable use of part of internal memories by software. By setting this memory size switching register (IMS), it is possible to get the same memory mapping as that of the mask ROM versions with a different internal memory (ROM).

IMS is set with an 8-bit memory manipulation instruction.

RESET input sets IMS to CFH.

Symbol 7 6 5 3 2 1 0 Address After Reset R/W IMS RAM2 RAM1 RAM0 0 ROM3 ROM2 ROM1 ROM0 FFF0H CFH R/W ROM3 ROM2 ROM1 ROM0 Selection of internal **ROM Capacity** 1 0 0 0 32 Kbytes 1 0 1 0 40 Kbytes 1 1 0 0 48 Kbytes 56 Kbytes^{Note} 1 1 1 0 1 1 1 60 Kbytes 1 Other than above Setting prohibited RAM2 RAM1 RAM0 Selection of Internal High-Speed RAM Capacity 1 1 0 1024 bytes Other than above Setting prohibited

Figure 3-1. Memory Size Switching Register Format

Note When the external device expansion function is used, the internal ROM capacity should be set to 56 Kbytes or less.

Table 3-1 shows the setting values of IMS which make the memory mapping the same as that of the mask ROM version.

Target Mask ROM Versions	IMS Setting Value
μPD78074BY	C8H
μPD78075BY	CAH
μPD78076Y	ССН
μPD78078Y	CFH

Table 3-1. Memory Size Switching Register Setting Values

4. INTERNAL EXPANSION RAM SIZE SWITCHING REGISTER (IXS)

This register is used to set the internal expansion RAM capacity by software. By setting this internal expansion RAM size switching register (IXS), it is possible to get the same memory mapping as that of the mask ROM versions with a different internal expansion RAM.

 $\ensuremath{\mathsf{IXS}}$ is set with an 8-bit memory manipulation instruction.

RESET input sets 0AH.

Figure 4-1. Internal Expansion RAM Size Switching Register Format

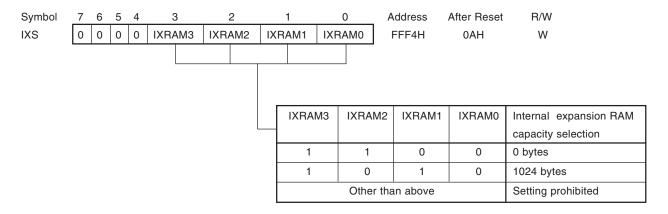


Table 4-1 shows the setting values of IXS which make the memory mapping the same as that of the mask ROM versions.

Table 4-1. Internal Expansion RAM Size Switching Register Setting Values

Target Mask ROM Versions	IXS Setting Value
μPD78074BY	0CH ^{Note}
μPD78075BY	
μPD78076Y	0AH
μPD78078Y	

Note If a program for the μ PD78P078 in which "MOV IXS, #0CH" is written is executed in the μ PD78074BY and μ PD78075BY, the operations are not affected.

Data Sheet U10606EJ3V1DS 25

5. PROM PROGRAMMING

The μ PD78P078Y has an on-chip 60-Kbyte PROM as a program memory. For programming, set the PROM programming mode with the VPP and $\overline{\text{RESET}}$ pins. For the connection of unused pins, refer to "PIN CONFIGURATIONS (2) PROM programming mode."

Caution Programs must be written in addresses 0000H to EFFFH (The last address EFFFH must be specified). They cannot be written by a PROM programmer which cannot specify the write address.

5.1 Operating Modes

When +5 V or +12.5 V is applied to the VPP pin and a low-level signal is applied to the $\overline{\text{RESET}}$ pin, the PROM programming mode is set. This mode will become the operating mode as shown in Table 5-1 when the $\overline{\text{CE}}$, $\overline{\text{OE}}$ and $\overline{\text{PGM}}$ pins are set as shown.

Further, when the read mode is set, it is possible to read the contents of the PROM.

Table 5-1. Operating Modes of PROM Programming

Pin Operating Mode	RESET	VPP	V _{DD}	CE	ŌĒ	PGM	D0 to D7
Operating Mode							
Page data latch	L	+12.5 V	+6.5 V	Н	L	Н	Data input
Page write				Н	Н	L	High-impedance
Byte write				L	Н	L	Data input
Program verify				L	L	Н	Data output
Program inhibit				×	Н	Н	High-impedance
				×	L	L	
Read		+5 V	+5 V	L	L	Н	Data output
Output disable				L	Н	×	High-impedance
Standby				Н	×	×	High-impedance

 $[\]times$: L or H

(1) Read mode

Read mode is set by setting $\overline{CE} = L$, $\overline{OE} = L$.

(2) Output disable mode

Data output becomes high-impedance and is placed in the output disable mode by setting $\overline{OE} = H$.

Therefore, if multiple μ PD78P078Ys are connected to the data bus, data can be read from any device by controlling the $\overline{\text{OE}}$ pin.

(3) Standby mode

Standby mode is set by setting $\overline{CE} = H$.

In this mode, data outputs become high-impedance irrespective of the \overline{OE} status.

(4) Page data latch mode

Page data latch mode is set by setting $\overline{CE} = H$, $\overline{PGM} = H$, $\overline{OE} = L$ at the beginning of page write mode.

In this mode, 1 page 4-byte data is latched in an internal address/data latch circuit.

(5) Page write mode

After 1 page 4 bytes of addresses and data are latched in the page data latch mode, a page write is executed by applying a 0.1-ms program pulse (active low) to the \overline{PGM} pin with $\overline{CE} = H$, $\overline{OE} = H$. Then, program verification can be performed by setting $\overline{CE} = L$.

If programming is not performed by a one-time program pulse, X times ($X \le 10$) write and verification operations should be executed repeatedly.

(6) Byte write mode

Byte write is executed when a 0.1-ms program pulse (active low) is applied to the \overline{PGM} pin with $\overline{CE} = L$, $\overline{OE} = H$. Then, program verification can be performed by setting $\overline{OE} = L$.

If programming is not performed by a one-time program pulse, X times ($X \le 10$) write and verification operations should be executed repeatedly.

(7) Program verify mode

Program verify mode is set by setting $\overline{CE} = L$, $\overline{PGM} = H$, $\overline{OE} = L$.

In this mode, check if a write operation is performed correctly after the write.

(8) Program inhibit mode

Program inhibit mode is used when the $\overline{\text{OE}}$ pin, V_{PP} pin and D0 to D7 pins of multiple μ PD78P078Ys are connected in parallel and a write is performed to one of those devices.

When a write operation is performed, the page write mode or byte write mode described above is used. At this time, a write is not performed to a device which has the \overline{PGM} pin driven high.

5.2 PROM Write Procedure

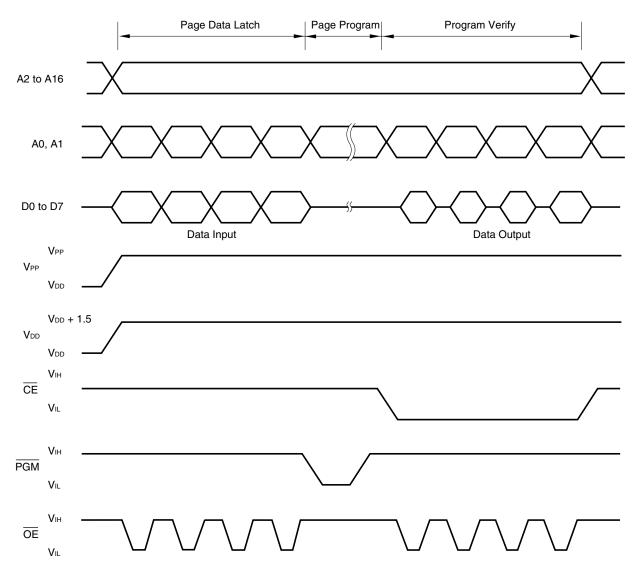

Start Address = G $V_{DD} = 6.5 \text{ V}, V_{PP} = 12.5 \text{ V}$ X = 0Latch Address = Address + 1 Latch Address = Address + 1 Latch Address = Address + 1 Address = Address + 1 Latch No X = X + 1Yes X = 10 ? 0.1-ms program pulse Fail Verify 4 bytes Pass Address = N? Yes $V_{\text{DD}} = 4.5 \ to \ 5.5 \ V, \ V_{\text{PP}} = V_{\text{DD}}$ Pass Fail Verify all bytes All Pass Defective product Write end

Figure 5-1. Page Program Mode Flow Chart

G = Start address

N = Program last address

Figure 5-2. Page Program Mode Timing

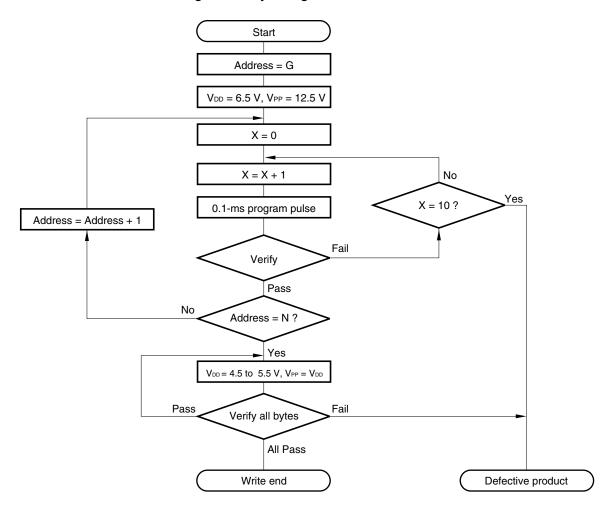


Figure 5-3. Byte Program Mode Flow Chart

G = Start address

N = Program last address

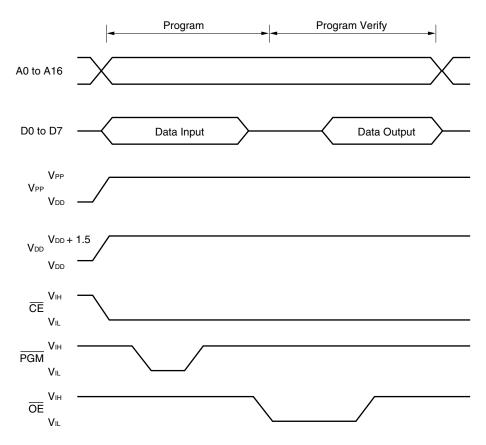
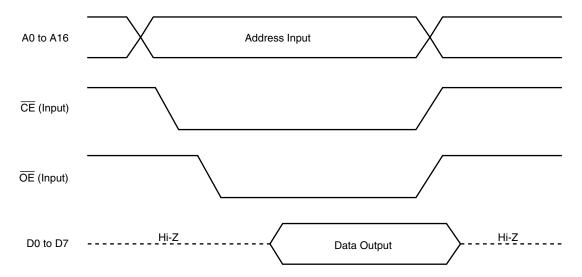


Figure 5-4. Byte Program Mode Timing

- Cautions 1. VDD should be applied before VPP and removed after VPP.
 - 2. VPP must not exceed +13.5 V including overshoot.
 - 3. Reliability may be adversely affected if removal/reinsertion is performed while +12.5 V is being applied to V_{PP} .


5.3 PROM Read Procedure

The contents of PROM are readable to the external data bus (D0 to D7) according to the read procedure shown below.

- (1) Fix the RESET pin at low level, supply +5 V to the VPP pin, and connect all other unused pins as shown in "PIN CONFIGURATIONS (2) PROM programming mode".
- (2) Supply +5 V to the VDD and VPP pins.
- (3) Input address of read data into the A0 to A16 pins.
- (4) Read mode
- (5) Output data to D0 to D7 pins.

The timings of the above steps (2) to (5) are shown in Figure 5-5.

Figure 5-5. PROM Read Timings

6. ONE-TIME PROM VERSION SCREENING

The one-time PROM version cannot be tested completely by NEC Electronics before it is shipped, because of its structure. It is recommended to perform screening to verify PROM after writing necessary data and performing high-temperature storage under the condition below.

Storage Temperature	Storage Time
125°C	24 hours

NEC Electronics offers for an additional fee services from one-time PROM writing to marking, screening, and verify for products designated as "QTOP Microcontroller". For details, contact an NEC Electronics sales representative.

7. ELECTRICAL SPECIFICATIONS

Absolute Maximum Ratings $(T_A = 25^{\circ}C)$

Parameter	Symbol	Test Conditions			Ratings	Unit
Supply voltage	V _{DD}				-0.3 to +7.0	٧
	V _{PP}				-0.3 to +13.5	٧
	AV _{DD}				-0.3 to V _{DD} + 0.3	٧
	AV _{REF0}				-0.3 to V _{DD} + 0.3	V
	AV _{REF1}				-0.3 to V _{DD} + 0.3	V
	AVss				-0.3 to +0.3	V
Input voltage	Vıı	P00 to P07, P10 to P17, P20 to P27, P30 to P37, P40 to P47, P50 to P57, P64 to P67, P70 to P72, P80 to P87, P94 to P96, P100 to P103, P120 to P127, P130, P131, X1, X2, XT2, RESET		-0.3 to V _{DD} + 0.3	V	
	Vı2	P60 to P63, P90 to 93 N-ch open-drain		-0.3 to +16	V	
	Vıз	A9	PROM programming mode		-0.3 to +13.5	V
Output voltage	Vo				-0.3 to V _{DD} + 0.3	V
Analog input voltage	Van	P10 to P17	Analog input pins		AVss - 0.3 to AVREF0 + 0.3	V
Output current, high	Іон	Per pin		-10	mA	
		Total for P30 to P37, P56, P57, P60 to P67, P90 to P96, P100 to P103, P120 to P127			-15	mA
		Total for P01 to P06, P10 to P17, P20 to P27, P40 to P47, P50 to P55, P70 to P72, P80 to P87, P130, P131			-15	mA
Output current, low	IOL ^{Note}	Per pin		Peak value	30	mA
				r.m.s. value	15	mA
		Total for P50 to P55		Peak value	100	mA
				r.m.s. value	70	mA
		Total for P56, P57, P60 to P63		Peak value	100	mA
				r.m.s. value	70	mA
		Total for P30 to P37, P64 to P67, P90 to P96, P100 to P103, P120 to P127		Peak value	100	mA
				r.m.s. value	70	mA
		Total for P20 to P27, P40 to P47, P80 to P87		Peak value	50	mA
				r.m.s. value	20	mA
		Total for P01 to P06, P10 to P17,		Peak value	50	mA
		P70 to P72, P130, P13	770 to P72, P130, P131		20	mA
Operating ambient temperature	TA				-40 to +85	°C
Storage temperature	T _{stg}				-65 to +150	°C

Note The r.m.s. (root mean square) value should be calculated as follows: [r.m.s. value] = [Peak value] $\times \sqrt{\text{Duty}}$

Caution Exposure to Absolute Maximum Ratings for extended periods may affect device reliability; exceeding the ratings could cause permanent damage. The parameters apply independently. The device should be operated within the limits specified under DC and AC Characteristics.

Remark Unless otherwise specified, alternate-function pin characteristics are the same as port pin characteristics.

Capacitance (T_A = 25° C, V_{DD} = V_{SS} = 0 V)

Parameter	Symbol	To	est Conditions	MIN.	TYP.	MAX.	Unit
Input capacitance	Cin	f = 1 MHz, Unmeas	ured pins returned to 0 V.			15	pF
I/O capacitance	Cio	f = 1 MHz, Unmeasured pins returned to 0 V.	P01 to P07, P10 to P17, P20 to P27, P30 to P37, P40 to P47, P50 to P57, P64 to P67, P70 to P72, P80 to P87, P94 to P96, P100 to P103, P120 to P127, P130, P131			15	pF
			P60 to P63, P90 to P93			20	pF

Remark Unless otherwise specified, dual-function pin characteristics are the same as port pin characteristics.

Main System Clock Oscillator Characteristics (T_A = -40 to +85°C, V_{DD} = 1.8 to 5.5 V)

Resonator	Recommended Circuit	Parameter	Test Conditions	MIN.	TYP.	MAX.	Unit
Ceramic resonator	V _{PP} X2 X1	Oscillation frequency $(fx)^{Note 1}$	V _{DD} = Oscillation voltage range	1.0		5.0	MHz
	C2+ C1+	Oscillation stabilization time ^{Note 2}	After V _{DD} came to MIN. of oscillation voltage range			4	ms
Crystal resonator	V _{PP} X2 X1	Oscillation frequency $(fx)^{\text{Note 1}}$		1.0		5.0	MHz
	C2 + C1 +	Oscillation stabilization	V _{DD} = 4.5 to 5.5 V			10	ms
	7//	time ^{Note 2}				30	
External clock	X2 X1	X1 input frequency (fx) ^{Note 1}		1.0		5.0	MHz
	μPD74HCU04 Δ	X1 input high- and low- level widths (txH, txL)		85		500	ns

- **Notes 1.** Only the oscillator characteristics are shown. For the instruction execution time, refer to **AC**Characteristics.
 - 2. Time required for oscillation to stabilize after a reset or the STOP mode has been released.
- Cautions 1. When using the oscillation circuit of the main system clock, wire the portion enclosed in broken lines in the figures as follows to avoid adverse influences on the wiring capacitance:
 - Keep the wiring length as short as possible.
 - Do not cross the wiring over other signal lines.
 - . Do not route the wiring in the vicinity of lines through which a high fluctuating current flows.
 - Always keep the ground point of the capacitor of the oscillation circuit at the same potential as Vss.
 - Do not connect the power source pattern through which a high current flows.
 - . Do not extract signals from the oscillation circuit.
 - When the main system clock is stopped and the device is operating on the subsystem clock, wait until the oscillation stabilization time has been secured by the program before switching back to the main system clock.

Subsystem Clock Oscillator Characteristics ($T_A = -40 \text{ to } +85^{\circ}\text{C}$, $V_{DD} = 1.8 \text{ to } 5.5 \text{ V}$)

Resonator	Recommended Circuit	Parameter	Test Conditions	MIN.	TYP.	MAX.	Unit
Crystal resonator	VPP XT2 XT1	Oscillation frequency (fxr) ^{Note 1}		32	32.768	35	kHz
	C4= C3+	Oscillation stabilization	V _{DD} = 4.5 to 5.5 V		1.2	2	S
	///	time ^{Note 2}				10	
External clock	XT2 XT1	XT1 input frequency (fxr) ^{Note 1}		32		100	kHz
	μPD74HCU04	XT1 input high-, low-level widths (txth, txtl)		5		15	μs

- **Notes 1.** Only the oscillator characteristics are shown. For the instruction execution time, refer to **AC**Characteristics.
 - 2. Time required for oscillation to stabilize after VDD reaches the minimum value of the oscillation voltage range.
- Cautions 1. When using the oscillation circuit of the subsystem clock, wire the portion enclosed in broken lines in the figures as follows to avoid adverse influences on the wiring capacitance:
 - Keep the wiring length as short as possible.
 - Do not cross the wiring over other signal lines.
 - . Do not route the wiring in the vicinity of lines through which a high fluctuating current flows.
 - Always keep the ground point of the capacitor of the oscillation circuit at the same potential as Vss.
 - Do not connect the power source pattern through which a high current flows.
 - Do not extract signals from the oscillation circuit.
 - The amplification factor of the subsystem clock oscillator is designed to be low to reduce the current consumption and therefore, the subsystem clock oscillator is influenced by noise more easily than the main system clock oscillator. When using the subsystem clock, therefore, exercise utmost care in wiring the circuit.

Recommended Oscillator Constant

Main System Clock: Ceramic Resonator ($T_A = -40 \text{ to } +85^{\circ}\text{C}$)

Manufacturer	Part number	Frequency	Recomm	ended circuit	constant	Oscillation v	oltage range	Remarks
			C1 (pF)	C2 (pF)	R1 (kΩ)	MIN. (V)	MAX. (V)	
TDK	CCR1000K2	1.00 MHz	150	150	0	2.0	5.5	On-chip capacitor
	CCR2.0MC3	2.00 MHz	On-chip	On-chip	0	2.0	5.5	On-chip capacitor surface mount type
	CCR4.0MC3	4.00 MHz	On-chip	On-chip	0	2.0	5.5	On-chip capacitor surface mount type
	FCR4.0MC5	4.00 MHz	On-chip	On-chip	0	2.0	5.5	On-chip capacitor insertion type
Murata Mfg.	CSB1000J	1.00 MHz	100	100	5.6	1.8	5.5	Insertion type
Corporation	CSA2.00MG040	2.00 MHz	100	100	0	1.8	5.5	Insertion type
	CST2.00MG040	2.00 MHz	On-chip	On-chip	0	1.8	5.5	On-chip capacitor insertion type
	CSA4.00MG	4.00 MHz	30	30	0	1.8	5.5	Insertion type
	CST4.00MGW	4.00 MHz	On-chip	On-chip	0	1.8	5.5	On-chip capacitor insertion type
	CSA4.00MGU	4.00 MHz	30	30	0	1.8	5.5	Insertion type
	CST4.00MGWU	4.00 MHz	On-chip	On-chip	0	1.8	5.5	On-chip capacitor insertion type

Main System Clock : Ceramic Resonator ($T_A = -20 \text{ to } +80^{\circ}\text{C}$)

Manufacturer	Part number	Frequency	Recomm	ended circuit	constant	Oscillation v	oltage range	Remarks
			C1 (pF)	C2 (pF)	R1 (kΩ)	MIN. (V)	MAX. (V)	
Kyocera	KFR-1000F	1.00 MHz	220	220	0	1.8	5.5	Insertion type
Corporation	PBR-1000Y	1.00 MHz	220	220	0	1.8	5.5	Surface mount type
	KBR-2.0MS	2.00 MHz	82	82	0	1.8	5.5	Insertion type
	KBR-4.0MKC	4.00 MHz	On-chip	On-chip	0	1.8	5.5	On-chip capacitor insertion type
	KBR-4.0MSB	4.00 MHz	33	33	0	1.8	5.5	Insertion type
	PBRC4.00B	4.00 MHz	On-chip	On-chip	0	1.8	5.5	On-chip capacitor surface mount type
	PBRC4.00A	4.00 MHz	33	33	0	1.8	5.5	Surface mount type

Caution The oscillator constant and oscillation voltage range indicate conditions for stable oscillation.

The oscillation frequency precision is not guaranteed. For applications requiring oscillation frequency precision, the oscillation frequency must be adjusted on the implementation circuit. For details, please contact directly the manufacturer of the resonator you will use.

DC Characteristics (TA = -40 to +85°C, VDD = 1.8 to 5.5 V)

Parameter	Symbol	Test Cor	nditions	MIN.	TYP.	MAX.	Unit
Input voltage, high	V _{IH1}	P10 to P17, P21, P23, P30 to P32, P35 to P37, P40 to P47, P50 to P57, P64 to P67, P71, P80 to P87, P94 to P96,	V _{DD} = 2.7 to 5.5 V	0.7V _{DD}		V _{DD}	V
		P102, P103, P120 to P127, P130, P131					
	V _{IH2}	P00 to P06, P20, P22, P24 to P27, P33, P34,	V _{DD} = 2.7 to 5.5 V	0.8V _{DD}		V _{DD}	V
		P70, P72, P100, P101, RESET		0.85V _{DD}		V _{DD}	V
	VIH3	P60 to P63, P90 to P93	$V_{DD} = 2.7 \text{ to } 5.5 \text{ V}$	0.7V _{DD}		15	V
		(N-ch open-drain)		0.8V _{DD}		15	V
	V _{IH4}	X1, X2	$V_{DD} = 2.7 \text{ to } 5.5 \text{ V}$	V _{DD} -0.5		V _{DD}	V
				V _{DD} -0.2		V _{DD}	V
	V _{IH5}	XT1/P07, XT2	$4.5~V \leq V_{DD} \leq 5.5~V$	0.8V _{DD}		V _{DD}	V
			$2.7~V \leq V_{\text{DD}} < 4.5~V$	0.9V _{DD}		V _{DD}	V
			Note	0.9V _{DD}		V _{DD}	V
Input voltage, low	V _{IL1}	P10 to P17, P21, P23, P30 to P32, P35 to P37, P40 to P47, P50 to P57, P64 to P67, P71,	V _{DD} = 2.7 to 5.5 V	0		0.3V _{DD}	V
		P80 to P87, P94 to P96, P102, P103, P120 to P127, P130, P131		0		0.2V _{DD}	V
	V _{IL2}	P00 to P06, P20, P22, P24 to P27, P33, P34,	$V_{DD} = 2.7 \text{ to } 5.5 \text{ V}$	0		0.2V _{DD}	V
		P70, P72, P100, P101, RESET		0		0.15V _{DD}	V
	V _{IL3}	P60 to P63, P90 to P93	$4.5~V \leq V_{DD} \leq 5.5~V$	0		0.3V _{DD}	V
		(N-ch open-drain)	$2.7~\textrm{V} \leq \textrm{V}_\textrm{DD} < 4.5~\textrm{V}$	0		0.2V _{DD}	V
				0		0.1V _{DD}	V
	V _{IL4}	X1, X2	$V_{DD} = 2.7 \text{ to } 5.5 \text{ V}$	0		0.4	V
				0		0.2	V
	V _{IL5}	XT1/P07, XT2	$4.5~V \leq V_{DD} \leq 5.5~V$	0		0.2V _{DD}	V
			$2.7~\textrm{V} \leq \textrm{V}_\textrm{DD} < 4.5~\textrm{V}$	0		0.1V _{DD}	V
			Note	0		0.1V _{DD}	V
Output voltage, high	Vон	$V_{DD} = 4.5 \text{ to } 5.5 \text{ V}, \text{ IoH} = -1$	mA	V _{DD} -1.0			V
		I он = $-100 \mu A$		V _{DD} -0.5			٧

Note When used as P07, the reverse phase of P07 should be input to XT2 pin using an inverter.

Remark Unless otherwise specified, alternate-function pin characteristics are the same as port pin characteristics.

DC Characteristics (T_A = -40 to +85°C, V_{DD} = 1.8 to 5.5 V)

Parameter	Symbol	Test C	Conditions	MIN.	TYP.	MAX.	Unit
Output voltage, low	V _{OL1}	P50 to P57, P60 to P63, P90 to P93	$V_{DD} = 4.5 \text{ to } 5.5 \text{ V},$ $I_{OL} = 15 \text{ mA}$		0.4	2.0	V
		P01 to P06, P10 to P17, P20 to P27, P30 to P37, P40 to P47, P64 to P67, P70 to P72, P80 to P87, P94 to P96, P100 to P103, P120 to P127, P130, P131	V _{DD} = 4.5 to 5.5 V, I _{OL} = 1.6 mA			0.4	V
	V _{OL2}	SB0, SB1, <u>SCK0</u>	V_{DD} = 4.5 to 5.5 V, open-drain, pulled up (R = 1 k Ω)			0.2V _{DD}	V
	Vol3	IoL = 400 μA				0.5	٧
Input leakage current, high	Ішн	Vin = Vdd	P00 to P06, P10 to P17, P20 to P27, P30 to P37, P40 to P47, P50 to P57, P64 to P67, P70 to P72, P80 to P87, P94 to P96, P100 to P103, P120 to P127, P130, P131, RESET			3	μΑ
	ILIH2		X1, X2, XT1/P07, XT2			20	μΑ
	Інз	V _{IN} = 15 V	P60 to P63, P90 to P93			80	μ A
Input leakage current, low	Iul1	Vin = 0 V	P00 to P06, P10 to P17, P20 to P27, P30 to P37, P40 to P47, P50 to P57, P64 to P67, P70 to P72, P80 to P87, P94 to P96, P100 to P103, P120 to P127, P130, P131, RESET			-3	μΑ
	ILIL2		X1, X2, XT1/P07, XT2			-20	μΑ
	Ішз		P60 to P63, P90 to P93			-3 ^{Note}	μΑ
Output leakage current, high	Ісон	Vout = Vdd				3	μΑ
Output leakage current, low	ILOL	Vout = 0 V				-3	μΑ

Note The value is $-200 \,\mu\text{A}$ (MAX.) only for 1.5 clock cycles (no wait) when read-out instruction is executed to port 6 (P6), port mode register 6 (PM6), port 9 (P9) and port mode register 9 (PM9). For cases other than the 1.5 clock cycles of read-out instruction execution, the value is $-3 \,\mu\text{A}$ (MAX.).

Remark Unless otherwise specified, alternate-function pin characteristics are the same as port pin characteristics.

DC Characteristics (TA = -40 to +85°C, V_{DD} = 1.8 to 5.5 V)

Parameter	Symbol	Test Cond	litions	MIN.	TYP.	MAX.	Unit
Software pull-up resistor ^{Note 1}	R	V _{IN} = 0 V, P10 to P17, P20 to P27, P30 to P37, P40 to P47, P50 to P57,	$4.5~\textrm{V} \leq \textrm{V}_\textrm{DD} \leq 5.5~\textrm{V}$	15	40	90	kΩ
		P64 to P67, P70 to P72, P80 to P87, P94 to P96, P100 to P103, P120 to P127, P130, P131	2.7 V ≤ V _{DD} < 4.5 V	20		500	kΩ
Supply currentNote 2	I _{DD1}	5.0-MHz crystal oscillation	$V_{DD} = 5.0 \text{ V} \pm 10\%^{\text{Note 6}}$		5.4	16.2	mA
		operating mode	$V_{\text{DD}} = 3.0~V \pm 10\%^{\text{Note 7}}$		0.8	2.4	mA
		$(fxx = 2.5 \text{ MHz})^{\text{Note 3}}$	$V_{\text{DD}} = 2.2~V \pm 10\%^{\text{Note 7}}$		0.45	1.35	mA
Іорд		5.0-MHz crystal oscillation operating mode (fxx = 5.0 MHz) ^{Note 4}	$V_{\text{DD}} = 5.0 \text{ V} \pm 10\%^{\text{Note 6}}$		9.5	28.5	mA
			$V_{\text{DD}} = 3.0~\text{V} \pm 10\%^{\text{Note 7}}$		1.0	3.0	mA
	I _{DD2}	5.0 MHz crystal oscillation	$V_{DD} = 5.0 \text{ V} \pm 10\%$		1.4	4.2	mA
		HALT mode	$V_{\text{DD}} = 3.0 \text{ V} \pm 10\%$		0.5	1.5	mA
		$(fxx = 2.5 \text{ MHz})^{\text{Note 3}}$	$V_{\text{DD}} = 2.0 \text{ V} \pm 10\%$		280	840	μΑ
		5.0 MHz crystal oscillation HALT mode $(f_{XX} = 5.0 \text{ MHz})^{Note 4}$	$V_{DD} = 5.0 \text{ V} \pm 10\%$		1.6	4.8	mA
			$V_{DD} = 3.0 \text{ V} \pm 10\%$		0.65	1.95	mA
	IDD3	32.768-kHz crystal	$V_{DD} = 5.0 \text{ V} \pm 10\%$		135	270	μΑ
		oscillation operating	$V_{\text{DD}} = 3.0 \text{ V} \pm 10\%$		95	190	μΑ
		mode ^{Note 5}	$V_{DD} = 2.0 \text{ V} \pm 10\%$		70	140	μΑ
	I _{DD4}	32.768-kHz crystal	$V_{DD} = 5.0 \text{ V} \pm 10\%$		25	55	μΑ
		oscillation HALT	$V_{DD} = 3.0 \text{ V} \pm 10\%$		5	15	μΑ
		mode ^{Note 5}	$V_{DD} = 2.0 \text{ V} \pm 10\%$		2.5	12.5	μΑ
	I _{DD5}	XT1 = VDD	$V_{DD} = 5.0 \text{ V} \pm 10\%$		1	30	μΑ
	IDD6	STOP mode Feedback	$V_{\text{DD}} = 3.0 \text{ V} \pm 10\%$		0.5	10	μΑ
		resistor used	$V_{DD}=2.0~V\pm10\%$		0.3	10	μΑ
		XT1 = V _{DD}	$V_{DD} = 5.0 \text{ V} \pm 10\%$		0.1	30	μΑ
		STOP mode	V _{DD} = 3.0 V ± 10%		0.05	10	μΑ
		Feedback resistor not used	$V_{\text{DD}} = 2.0 \text{ V} \pm 10\%$		0.05	10	μΑ

- **Notes 1.** Software pull-up resistor can be used only within a range of $V_{DD} = 2.7$ to 5.5 V.
 - 2. Supply current flowing to the V_{DD} pin. It excludes the current flowing to the A/D, D/A converters and on-chip pull-up resistors.
 - **3.** fxx = fx/2 operation (when oscillation mode selection register (OSMS) is set to 00H).
 - **4.** fxx = fx operation (when OSMS is set to 01H).
 - 5. When the main system clock is stopped.
 - 6. High-speed mode operation (when processor clock control register (PCC) is set to 00H).
 - 7. Low-speed mode operation (when PCC is set to 04H).
- **Remarks 1.** Unless otherwise specified, alternate-function pin characteristics are the same as port pin characteristics.
 - 2. fxx: Main system clock frequency (fx or fx/2)
 - 3. fx: Main system clock oscillation frequency

AC Characteristics

(1) **Basic Operation** (TA = -40 to $+85^{\circ}$ C, VDD = 1.8 to 5.5 V)

Parameter	Symbol		Test Condi	tions	MIN.	TYP.	MAX.	Unit
Cycle time	Тсч	Operating to	$fxx = fx/2^{Note 1}$	$V_{DD} = 2.7 \text{ to } 5.5 \text{ V}$	0.8		64	μs
(minimum instruction		main system			2.0		64	μs
execution time)		clock	$fxx = fx^{\text{Note 2}}$	$3.5~V \leq V_{DD} \leq 5.5~V$	0.4		32	μs
				0.8		32	μs	
		Operating on	subsystem cloc	40	122	125	μs	
T100 input high-/ low-	t тіноо,	3.5 V ≤ V _{DD} ≤	5.5 V		2/fsam+0.1 ^{Note 3}			μs
level widths	t TILOO	$2.7 \text{ V} \leq \text{V}_{DD} \leq$	7 V ≤ V _{DD} ≤ 3.5 V		2/fsam+0.2 ^{Note 3}			μs
					2/fsam+0.5 ^{Note 3}			μs
T101 input high-/ low-	t тіно1,	V _{DD} = 2.7 to 5.5 V			10			μs
level widths	t TIL01		20			μs		
TI1, TI2, TI5, T16 input	t _{Tl1}	$V_{DD} = 4.5 \text{ to } 5.0$.5 V		0		4	MHz
frequency					0		275	kHz
TI1, TI2, TI5, TI6 input	t тін1,	$V_{DD} = 4.5 \text{ to } 5.0$.5 V		100			ns
high-/ low-level widths	t⊤ı∟ı				1.8			0
Interrupt request input	tinth,	INTP0		$3.5~V \leq V_{DD} \leq 5.5~V$	2/fsam+0.1 ^{Note 3}			μs
high-/low-level widths	tintl			$2.7~V \leq V_{DD} \leq 3.5~V$	2/fsam+0.2 ^{Note 3}			μs
					2/fsam+0.5 ^{Note 3}			μs
		INTP1 to INTF	P6,	$V_{DD} = 2.7 \text{ to } 5.5 \text{ V}$	10			μs
		P40 to P47			20			μs
RESET low-level width	trsL	$V_{DD} = 2.7 \text{ to } 5$.5 V		10			μs
					20			μs

Notes 1. When oscillation mode selection register (OSMS) is set to 00H.

- 2. When OSMS is set to 01H.
- 3. fsam can be selected as $fxx/2^N$, fxx/32, fxx/64 or fxx/128 (N = 0 to 4) by bits 0 and 1 (SCS0, SCS1) of the sampling clock selection register (SCS).

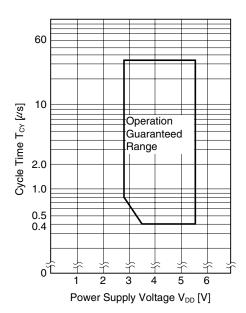
Remark fxx: Main system clock frequency (fx or fx/2)

fx: Main system clock oscillation frequency

Data Sheet U10606EJ3V1DS

 μ PD78P078Y

Tcy vs. Vdd (Main System Clock fxx = fx/2 Operation)


60
Operation
Guaranteed Range

2.0
0.5
0.4

1 2 3 4 5 6

Power Supply Voltage V_{DD} [V]

Tcy vs. VDD (Main System Clock fxx = fx Operation)

(2) Read/Write Operation

(a) When MCS = 1, PCC2 to PCC0 = 000B ($T_A = -40 \text{ to } +85^{\circ}\text{C}$, $V_{DD} = 4.5 \text{ to } 5.5 \text{ V}$)

Parameter	Symbol	Test Conditions	MIN.	MAX.	Unit
ASTB high-level with	tasth		0.85tcy - 50		ns
Address setup time	tads		0.85tcy - 50		ns
Address hold time	tadh		50		ns
$Address \to Data \; input \; time$	tADD1			(2.85 + 2n) tcy - 80	ns
	tADD2			(4 + 2n) tcy - 100	ns
$\overline{RD} \downarrow \to Data$ input time	tnDD1			(2 + 2n) toy - 100	ns
	tRDD2			(2.85 + 2n) toy - 100	ns
Read data hold time	tпрн		0		ns
RD low-level width	trDL1		(2 + 2n) tcy - 60		ns
	tRDL2		(2.85 + 2n) tcy - 60		ns
$\overline{RD} \downarrow \to \overline{WAIT} \downarrow input\ time$	tndwt1			0.85tcy - 50	ns
	trdwt2			2tcy - 60	ns
$\overline{\overline{WR}}\downarrow \to \overline{WAIT}\downarrow \text{ input time}$	twrwt			2tcy - 60	ns
WAIT low-level width	twTL		(1.15 + 2n) tcy	(2 + 2n) tcy	ns
Write data setup time	twos		(2.85 + 2n) tcy - 100		ns
Write data hold time	twoH	load resistance $\geq 5 \text{ k}\Omega$	20		ns
WR low-level width	twrL		(2.85 + 2n) tcy - 60		ns
$\overline{ASTB \downarrow \to \overline{RD} \downarrow delay\ time}$	tastrd		25		ns
$ASTB \downarrow \to \overline{WR} \downarrow delay\ time$	tastwr		0.85tcy + 20		ns
In external fetch $\overline{\rm RD}$ \uparrow \to ASTB \uparrow delay time	trdast		0.85tcy - 10	1.15tcy + 20	ns
In external fetch $\overline{\rm RD}$ \uparrow \to address hold time	trdadh		0.85tcy - 50	1.15tcy + 50	ns
$\overline{RD} \uparrow \to write$ data output time	tRDWD		40		ns
$\overline{ m WR} \downarrow ightarrow$ write data output time	twrwd		0	50	ns
$\overline{ m WR} \uparrow ightarrow$ address hold time	twradh		0.85tcy – 20	1.15tcy + 40	ns
$\overline{\text{WAIT}} \uparrow \rightarrow \overline{\text{RD}} \uparrow \text{delay time}$	twtrd		1.15tcy + 40	3.15tcy + 40	ns
$\overline{\mathrm{WAIT}} \uparrow \to \overline{\mathrm{WR}} \uparrow \mathrm{delay\ time}$	twrwn		1.15tcy + 30	3.15tcy + 30	ns

Remarks 1. MCS: Bit 0 of the oscillation mode selection register (OSMS)

2. PCC2 to PCC0: Bit 2 to bit 0 of the processor clock control register (PCC)

- **3.** $t_{CY} = T_{CY}/4$
- 4. n indicates the number of waits.

Data Sheet U10606EJ3V1DS

(b) Except When MCS = 1, PCC2 to PCC0 = 000B ($T_A = -40 \text{ to } +85^{\circ}\text{C}$, $V_{DD} = 2.7 \text{ to } 5.5 \text{ V}$)

Parameter	Symbol	Test Conditions	MIN.	MAX.	Unit
ASTB high-level with	tasth		tcy - 80		ns
Address setup time	tads		tcy - 80		ns
Address hold time	tadh		0.4tcy - 10		ns
Address → Data input time	t _{ADD1}			(3 + 2n) toy - 160	ns
	tADD2			(4 + 2n) toy - 200	ns
$\overline{RD} \downarrow \to Data$ input time	tRDD1			(1.4 + 2n) tcy - 70	ns
	tRDD2			(2.4 + 2n) tcy - 70	ns
Read data hold time	t RDH		0		ns
RD low-level width	trDL1		(1.4 + 2n) tcy - 20		ns
	tRDL2		(2.4 + 2n) tcy - 20		ns
$\overline{RD} \downarrow \to \overline{WAIT} \downarrow input\ time$	tRDWT1			tcy - 100	ns
	trdwt2			2tcy - 100	ns
$\overline{ m WR}\downarrow ightarrow \overline{ m WAIT}\downarrow \ \ { m input\ time}$	twrwt			2tcy - 100	ns
WAIT low-level width	twTL		(1 + 2n) tcy	(2 + 2n) tcy	ns
Write data setup time	twos		(2.4 + 2n) tcy - 60		ns
Write data hold time	twdн	load resistance $\geq 5 \text{ k}\Omega$	20		ns
WR low-level width	twrL		(2.4 + 2n) tcy - 20		ns
$ASTB \downarrow \to \overline{RD} \downarrow delay\ time$	tastrd		0.4tcy - 30		ns
$ASTB \downarrow \to \overline{WR} \downarrow delay \ time$	tastwr		1.4tcy - 30		ns
In external fetch $\overline{\rm RD}$ \uparrow \to ASTB \uparrow delay time	trdast		tcy - 10	tcy + 20	ns
In external fetch $\overline{\rm RD} \uparrow \to {\rm address}$ hold time	trdadh		tcy - 80	tcy + 50	ns
$\overline{RD} \uparrow \to write$ data output time	trowd		0.4tcy - 30		ns
$\overline{\rm WR} \downarrow \rightarrow$ write data output time	twrwd		0	60	ns
$\overline{\mathrm{WR}} \uparrow \rightarrow \mathrm{address} \ \mathrm{hold} \ \mathrm{time}$	twradh		tcy - 60	tcy + 60	ns
$\overline{\text{WAIT}} \uparrow \rightarrow \overline{\text{RD}} \uparrow \text{delay time}$	twtrd		0.6tcy + 180	2.6tcy +180	ns
$\overline{\text{WAIT}} \uparrow \rightarrow \overline{\text{WR}} \uparrow \text{delay time}$	twrwn		0.6tcy + 120	2.6tcy + 120	ns

Remarks 1. MCS: Bit 0 of the oscillation mode selection register (OSMS)

2. PCC2 to PCC0: Bit 2 to bit 0 of the processor clock control register (PCC)

3. $t_{CY} = T_{CY}/4$

4. n indicates the number of waits.

(3) Serial Interface ($T_A = -40 \text{ to } +85^{\circ}\text{C}, V_{DD} = 1.8 \text{ to } 5.5 \text{ V}$)

(a) Serial Interface Channel 0

(i) 3-wire serial I/O mode (SCK0 ...internal clock output)

Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
SCK0 cycle time	tkcy1	$4.5~\text{V} \leq \text{V}_{\text{DD}} \leq 5.5~\text{V}$	800			ns
		$2.7~V \leq V_{DD} \leq 4.5~V$	1600			ns
		$2.0~\text{V} \leq \text{V}_\text{DD} \leq 2.7~\text{V}$	3200			ns
			4800			ns
SCK0 high-/low-level width	t кн1,	V _{DD} = 4.5 to 5.5 V	tkcy1/2-50			ns
	t _{KL1}		tксү1/2-100			ns
SI0 setup time	tsıĸı	$4.5~V \leq V_{DD} \leq 5.5~V$	100			ns
(to SCK0 ↑)		$2.7~V \leq V_{DD} \leq 4.5~V$	150			ns
		$2.0~V \leq V_{DD} \leq 2.7~V$	300			ns
			400			ns
SI0 hold time (from SCK0 ↑)	t _{KSI1}		400			ns
$\overline{\text{SCK0}} \downarrow \rightarrow \text{SO0}$ output delay time	tkso1	C = 100 pF ^{Note}			300	ns

Note C is the SO0 output line load capacitance.

(ii) 3-wire serial I/O mode (SCK0 ...external clock input)

Parameter	Symbol	Test C	Conditions	MIN.	TYP.	MAX.	Unit
SCK0 cycle time	tkcy2	$4.5~V \leq V_{\text{DD}} \leq 5.5$	V	800			ns
		$2.7 \text{ V} \leq V_{DD} \leq 4.5 \text{ V}$		1600			ns
		$2.0~V \leq V_{DD} \leq 2.7$	V	3200			ns
				4800			ns
SCK0 high-/low-level width	t кн2,	$4.5~V \leq V_{DD} \leq 5.5$	V	400			ns
	t _{KL2}	$2.7 \text{ V} \le \text{V}_{DD} \le 4.5 \text{ V}$ $2.0 \text{ V} \le \text{V}_{DD} \le 2.7 \text{ V}$		800			ns
				1600			ns
				2400			ns
SI0 setup time	tsık2	V _{DD} = 2.0 to 5.5 V	,	100			ns
(to SCK0 ↑)				150			ns
SI0 hold time (from SCK0 ↑)	tksi2			400			ns
$\overline{SCK0} \downarrow \to SO0$	tkso2	C = 100 pF ^{Note}	V _{DD} = 2.0 to 5.5 V			300	ns
output delay time						500	ns
SCK0 rise, fall time	t _{R2} ,	When using external device expansion function				160	ns
		When not using e expansion function				1000	ns

Note C is the SO0 output line load capacitance.

(iii) 2-wire serial I/O mode (SCK0 ...internal clock output)

Parameter	Symbol	Test Co	onditions	MIN.	TYP.	MAX.	Unit
SCK0 cycle time	tксүз	$R = 1 k\Omega$,	$2.7~V \leq V_{DD} \leq 5.5~V$	1600			ns
		C = 100 pF	$2.0~V \leq V_{DD} \leq 2.7~V$	3200			ns
				4800			ns
SCK0 high-level width	tкнз		V _{DD} = 2.7 to 5.5 V	tксүз/2-160			ns
				tксүз/2-190			ns
SCK0 low-level width	tкьз		V _{DD} = 4.5 to 5.5 V	tксүз/2-50			ns
				tксүз/2-100			ns
SB0, SB1 setup time	tsik3		$4.5~V \leq V_{DD} \leq 5.5~V$	300			ns
(to SCK0 ↑)			$2.7~V \leq V_{DD} \leq 4.5~V$	350			ns
			$2.0~V \leq V_{DD} \leq 2.7~V$	400			ns
				500			ns
SB0, SB1 hold time (from SCK0 ↑)	tksi3			600			ns
SCK0 ↓ → SB0, SB1 output delay time	tкsоз			0		300	ns

Note R and C are the SCKO, SB0, SB1 output line load resistance and load capacitance.

(iv) 2-wire serial I/O mode (SCK0 ...external clock input)

Parameter	Symbol	Test Co	onditions	MIN.	TYP.	MAX.	Unit
SCK0 cycle time	tkcy4	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$		1600			ns
		$2.0~\text{V} \leq \text{V}_{\text{DD}} \leq 2.7~\text{V}$		3200			ns
				4800			ns
SCK0 high-level width	t _{KH4}	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$		650			ns
		$2.0~\text{V} \leq \text{V}_{\text{DD}} \leq 2.7~\text{V}$		1300			ns
				2100			ns
SCK0 low-level width	t _{KL4}	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	2.7 V ≤ V _{DD} ≤ 5.5 V				ns
		2.0 V ≤ V _{DD} ≤ 2.7 V		1600			ns
				2400			ns
SB0, SB1 setup time	tsık4	V _{DD} = 2.0 to 5.5 V		100			ns
(to SCK0 ↑)				150			ns
SB0, SB1 hold time (from SCK0 ↑)	tksi4			tkcy4/2			
$\overline{SCK0}\downarrow \to SB0, SB1$	tkso4	$R = 1 k\Omega$,	$4.5~\text{V} \leq \text{V}_{\text{DD}} \leq 5.5~\text{V}$	0		300	ns
output delay time		C = 100 pF ^{Note}	$2.0~V \leq V_{DD} \leq 4.5~V$	0		500	ns
SCK0 rise, fall time	t _{R4} ,	When using externation	l device expansion			160	ns
		When not using external expansion function	ernal device			1000	ns

Note R and C are the SB0, SB1 output line load resistance and load capacitance.

(v) I²C bus mode (SCL ...internal clock output)

Parameter	Symbol	Test	Conditions	MIN.	TYP.	MAX.	Unit
SCL cycle time	tkcy5	$R = 1 k\Omega$,	$2.7~V \leq V_{DD} \leq 5.5~V$	10			ns
		C = 100 pF ^{Note}	$2.0~V \leq V_{DD} \leq 2.7~V$	20			ns
				30			ns
SCL high-level width	t _{KH5}		V _{DD} = 2.0 to 5.5 V	tkcy5/2-160			ns
				tkcy5/2-190			ns
SCL low-level width	t _{KL5}		V _{DD} = 4.5 to 5.5 V	tkcy5/2-50			ns
				tkcy5/2-100			ns
SDA0, SDA1 setup time	tksi5		$2.7~V \leq V_{DD} \leq 5.5~V$	200			ns
(to SCL ↑)			$2.0~V \leq V_{DD} \leq 2.7~V$	300			ns
				400			ns
SDA0, SDA1 hold time (from SCL ↓)	tksi5			0			ns
$SCL \downarrow \rightarrow SDA0$, SDA1 output	t KSO5		$4.5~\text{V} \leq \text{V}_{\text{DD}} \leq 5.5~\text{V}$	0		300	ns
delay time			$2.0~V \leq V_{DD} \leq 4.5~V$	0		500	ns
				0		600	ns
SCL \uparrow → SDA0, SDA1 \downarrow or SCL \uparrow → SDA0, SDA1 \uparrow	tksb			200			ns
SCA0, SDA1 $\downarrow \rightarrow$ SCL \downarrow	tsвк		V _{DD} = 2.0 to 5.5 V	400			ns
				500			ns
SDA0, SDA1 high level width	tsвн			500			ns

Note R and C are the SCL, SDA0, SDA1 output line load resistance and load capacitance.

(vi) I²C bus mode (SCL ... external clock input)

Parameter	Symbol	Test C	onditions	MIN.	TYP.	MAX.	Unit
SCL cycle time	tkcy6			1000			ns
SCL high-/low-level width	t кн6,	V _{DD} = 2.0 to 5.5 V		400			ns
	t _{KL6}			600			ns
SDA0, SDA1 setup time (to	tsik6	V _{DD} = 2.0 to 5.5 V		200			ns
SCL ↑)				300			ns
SDA0, SDA1 hold time (from SCL ↓)	tksi6			0			ns
$SCL \downarrow \to SDA0$, SDA1 output	tkso6	$R = 1 k\Omega$,	$4.5~\textrm{V} \leq \textrm{V}_\textrm{DD} \leq 5.5~\textrm{V}$	0		300	ns
delay time		C = 100 pF ^{Note}	$2.0~V \leq V_{DD} \leq 4.5~V$	0		500	ns
				0		600	ns
$SCL \downarrow \to SDA0, SDA1 \downarrow$	tĸsв			200			ns
or SCL $\downarrow \rightarrow$ SDA0, SDA1 \uparrow							
SDA0, SDA1 $\downarrow \rightarrow$ SCL \downarrow	tsвк	V _{DD} = 2.0 to 5.5 V		400			ns
				500			ns
SDA0, SDA1 high-level width	tsвн	V _{DD} = 2.0 to 5.5 V		500			ns
				800			ns
SCL rise, fall time	tre, tre	When using externa function	I device expansion			160	ns
		When not using externation	ernal device expansion			1000	ns

Note R and C are the SDA0, SDA1 output line load resistance and load capacitance.

(b) Serial Interface Channel 1

(i) 3-wire serial I/O mode (SCK1 ...internal clock output)

Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
SCK1 cycle time	t ксү7	$4.5 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$	800			ns
		$2.7~V \leq V_{DD} \leq 4.5~V$	1600			ns
		$2.0~V \leq V_{DD} \leq 2.7~V$	3200			ns
			4800			ns
SCK1 high-/low-level width	t кн7,	V _{DD} = 4.5 to 5.5 V	tkcy7/2-50			ns
	t KL7		tксүл/2-100			ns
SI1_setup time	tsık7	$4.5 \text{ V} \leq \text{V}_{DD} \leq 5.5 \text{ V}$	100			ns
(to SCK1 ↑)		$2.7~V \leq V_{DD} \leq 4.5~V$	150			ns
		$2.0~V \leq V_{DD} \leq 2.7~V$	300			ns
			400			ns
SI1 hold time (from SCK1 ↑)	t _{KS7}		400			ns
$\overline{\text{SCK1}} \downarrow \rightarrow \text{SO1}$ output delay time	tkso7	C = 100 pF ^{Note}			300	ns

Note C is the SO1 output line load capacitance.

(ii) 3-wire serial I/O mode (SCK1 ...external clock input)

Parameter	Symbol	Test C	Conditions	MIN.	TYP.	MAX.	Unit
SCK1 cycle time	t ксу8	$4.5~V \le V_{DD} \le 5.5$	V	800			ns
		$2.7~V \leq V_{DD} \leq 4.5$	V	1600			ns
		$2.0~V \leq V_{DD} \leq 2.7$	V	3200			ns
							ns
SCK1 high-/low-level width	tкнв,	4.5 V ≤ V _{DD} ≤ 5.5 V		400			ns
	t _{KL8}	$2.7~V \leq V_{DD} \leq 4.5$	2.7 V ≤ V _{DD} ≤ 4.5 V				ns
		$2.0~V \le V_{DD} \le 2.7$	2.0 V ≤ V _{DD} ≤ 2.7 V				ns
				2400			ns
SI1 setup time	tsik8	V _{DD} = 2.0 to 5.5 V	,	100			ns
(to SCK1 ↑)				150			ns
SI1 hold time (from SCK1 ↑)	tksi8			400			ns
$\overline{\text{SCK1}} \downarrow \rightarrow \text{SO1}$	tkso8	C = 100 pF ^{Note}	V _{DD} = 2.0 to 5.5 V			300	ns
output delay time						500	ns
SCK1 rise, fall time	t _{R8} ,	When using external device expansion function				160	ns
		When not using e expansion functio				1000	ns

Note C is the SO1 output line load capacitance.

(iii) 3-wire serial I/O mode with automatic transmission/reception function ($\overline{\text{SCK1}}$...internal clock output)

Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
SCK1 cycle time	tkcy97	$4.5~V \leq V_{DD} \leq 5.5~V$	800			ns
		$2.7~V \leq V_{DD} \leq 4.5~V$	1600			ns
		$2.0~\text{V} \leq \text{V}_{\text{DD}} \leq 2.7~\text{V}$	3200			ns
			4800			ns
SCK1 high-/low-level width	tкн9,	V _{DD} = 4.5 to 5.5 V	tксү9/2-50			ns
	t _{KL9}		tксү9/2-100			ns
SI1 setup time	tsik9	$4.5 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$	100			ns
(to SCK1 ↑)		$2.7~V \leq V_{DD} \leq 4.5~V$	150			ns
		$2.0~V \leq V_{DD} \leq 2.7~V$	300			ns
			400			ns
SI1 hold time (from SCK1 ↑)	tks9		400			ns
$\overline{\text{SCK1}}\downarrow \to \text{SO1}$ output delay time	tks09	C = 100 pF ^{Note}			300	ns
$\overline{SCK1} \downarrow \to STB \uparrow$	tsbD		tксү9/2-100		tkcy9/2+100	ns
Strobe signal high-level	tssw	2.7 V ≤ V _{DD} ≤ 4.5 V	tксү9/2-30		tксү9/2+30	ns
width		$2.0~V \leq V_{DD} \leq 2.7~V$	tксү9/2-60		tксү9/2+60	ns
			tксү9/2-90		tксү9/2+90	ns
Busy signal setup time (to busy signal detection timing)	teys		100			ns
Busy signal hold time (from	tвүн	4.5 V ≤ V _{DD} ≤ 5.5 V	100			ns
busy signal detection timing)		$2.7~V \le V_{DD} \le 4.5~V$	150			ns
		$2.0 \text{ V} \leq \text{V}_{DD} \leq 2.7 \text{ V}$	200			ns
			300			ns
Busy inactive $\rightarrow \overline{\text{SCK1}} \downarrow$	tsps				2tксү9	ns

Note C is the SO1 output line load capacitance.

(iv) 3-wire serial I/O mode with automatic transmission/reception function ($\overline{\text{SCK1}}$...external clock output)

Parameter	Symbol	Test C	Conditions	MIN.	TYP.	MAX.	Unit
SCK1 cycle time	tKCY10	$4.5~V \leq V_{\text{DD}} \leq 5.5$	V	800			ns
		$2.7~V \leq V_{DD} \leq 4.5$	V	1600			ns
		$2.0~V \leq V_{DD} \leq 2.7$	V	3200			ns
							ns
SCK1 high-/low-level width	t кн10,	$4.5~V \leq V_{\text{DD}} \leq 5.5$	V	400			ns
	t _{KL10}	2.7 V ≤ V _{DD} ≤ 4.5 V		800			ns
		2.0 V ≤ V _{DD} ≤ 2.7 V		1600			ns
				2400			ns
SI1 setup time	tsik10	V _{DD} = 2.0 to 5.5 V	,	100			ns
(to SCK1 ↑)				150			ns
SI1 hold time (from SCK1 ↑)	tksi10			400			ns
$\overline{\text{SCK1}} \downarrow \rightarrow \text{SO1}$	t KSO10	C = 100 pF ^{Note}	V _{DD} = 2.0 to 5.5 V			300	ns
output delay time						500	ns
SCK1 rise, fall time	t _{R10} , t _{F10}	When using external device expansion function				160	ns
		When not using e expansion function				1000	ns

Note C is the SO1 output line load capacitance.

(c) Serial Interface Channel 2

(i) 3-wire serial I/O mode (SCK2 ...internal clock output)

Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
SCK2 cycle time	tkCY11	$4.5 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$	800			ns
		$2.7~V \leq V_{DD} \leq 4.5~V$	1600			ns
		$2.0 \text{ V} \leq \text{V}_{DD} \leq 2.7 \text{ V}$	3200			ns
			4800			ns
SCK2 high-/low-level width	t кн11,	V _{DD} = 4.5 to 5.5 V	tkcY11/2-50			ns
	t KL11		tkcy11/2-100			ns
SI2 setup time	tsiĸ11	$4.5 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$	100			ns
(to SCK2 ↑)		$2.7~V \leq V_{DD} \leq 4.5~V$	150			ns
		$2.0~V \leq V_{DD} \leq 2.7~V$	300			ns
			400			ns
SI2 hold time (from SCK2 ↑)	tksi11		400			ns
SCK2 ↓ → SO2 output delay time	tkso11	C = 100 pF ^{Note}			300	ns

Note C is the SO2 output line load capacitance.

(ii) 3-wire serial I/O mode (SCK2 ...external clock input)

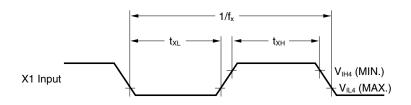
Parameter	Symbol	Test C	Conditions	MIN.	TYP.	MAX.	Unit
SCK2 cycle time	tKCY12	$4.5~V \leq V_{\text{DD}} \leq 5.5$	V	800			ns
		$2.7~V \leq V_{DD} \leq 4.5$	V	1600			ns
		$2.0~V \leq V_{DD} \leq 2.7$	V	3200			ns
				4800			ns
SCK2 high-/low-level width	t KH12,	4.5 V ≤ V _{DD} ≤ 5.5 V		400			ns
	t _{KL12}	$2.7~V \leq V_{DD} \leq 4.5$	V	800			ns
		$2.0~V \leq V_{DD} \leq 2.7$	V	1600			ns
				2400			ns
SI2 setup time	tsik12	V _{DD} = 2.0 to 5.5 V		100			ns
(to SCK2 ↑)				150			ns
SI2 hold time (from SCK2 ↑)	tksi12			400			ns
$\overline{\text{SCK2}} \downarrow \rightarrow \text{SO2}$	t KSO12	C = 100 pF ^{Note}	V _{DD} = 2.0 to 5.5 V			300	ns
output delay time						500	ns
SCK2 rise, fall time	t _{R12} ,	V _{DD} = 4.5 to 5.5 V				1000	ns
	t F12	When not using e expansion functio					
						160	ns

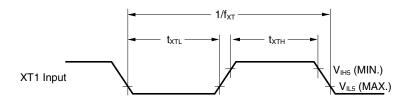
 $\begin{tabular}{ll} \textbf{Note} & C is the SO2 output line load capacitance. \end{tabular}$

(iii) UART mode (Dedicated baud rate generator output)

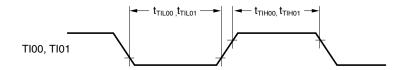
Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
Transfer rage		$4.5~V \leq V_{DD} \leq 5.5~V$			78125	bps
		$2.7~V \leq V_{DD} \leq 4.5~V$			39063	bps
		$2.0~V \leq V_{DD} \leq 2.7~V$			19531	bps
					9766	bps

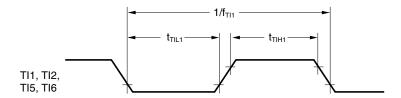
(iv) UART mode (External clock input)


Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
ASCK cycle time	t KCY13	$4.5 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$	800			bps
		$2.7~V \leq V_{DD} \leq 4.5~V$	1600			bps
		$2.0~\textrm{V} \leq \textrm{V}_\textrm{DD} \leq 2.7~\textrm{V}$	3200			bps
			4800			bps
ASCK high-/low-level width	t кн13,	$4.5 \text{ V} \leq \text{V}_{DD} \leq 5.5 \text{ V}$	400			bps
	t _{KL13}	$2.7~V \leq V_{DD} \leq 4.5~V$	800			bps
		2.0 V ≤ V _{DD} ≤ 2.7 V	1600			bps
			2400			bps
Transfer rate		$4.5 \text{ V} \leq \text{V}_{DD} \leq 5.5 \text{ V}$			39063	bps
		2.7 V ≤ V _{DD} ≤ 4.5 V			19531	bps
		2.0 V ≤ V _{DD} ≤ 2.7 V			9766	bps
					6510	bps
ASCK rise, fall time	t _{R13} ,	V _{DD} = 4.5 to 5.5 V			1000	ns
	t F13	When not using external device expansion function				
					160	ns

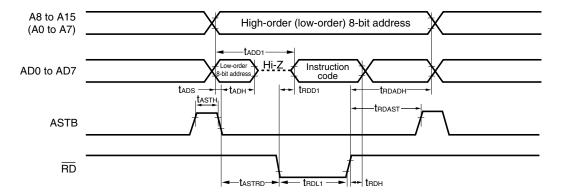


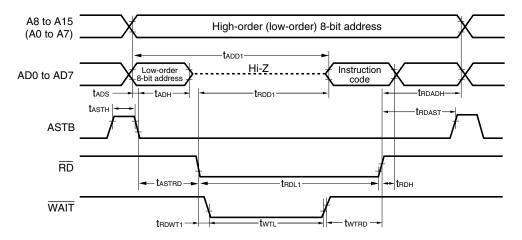
AC Timing Test point (Excluding X1, XT1 Input)




Clock Timing

TI Timing



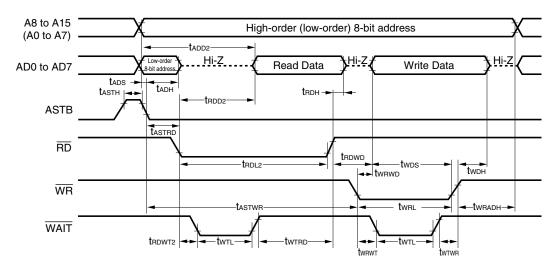

Read/Write Operation

External fetch (no wait):

Remark () is effective only is separate bus mode.

External fetch (wait insertion):

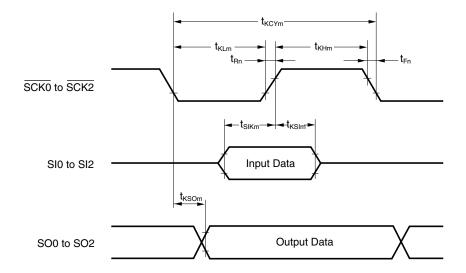
Remark () is effective only is separate bus mode.


Data Sheet U10606EJ3V1DS 55

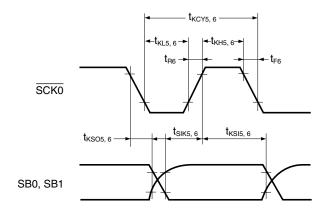
External data access (no wait):

Remark () is effective only is separate bus mode.

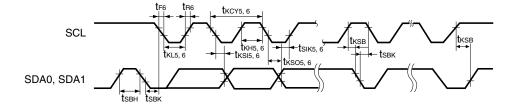
External data access (wait insertion):



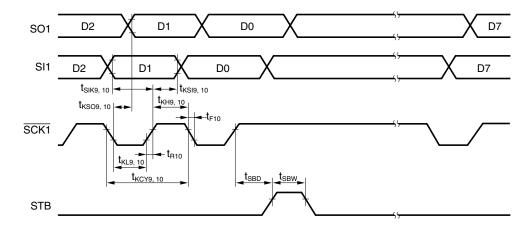
Remark () is effective only is separate bus mode.

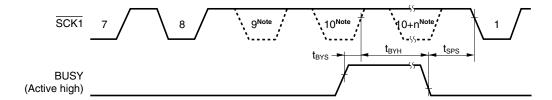

Serial Transfer Timing

3-wire serial I/O mode:

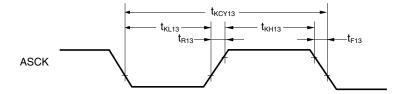


Remark m = 1, 2, 7, 8, 11, 12n = 2, 8, 12


2-wire serial I/O mode:


I²C bus mode

3-wire serial I/O mode with automatic transmission/reception function:



3-wire serial I/O mode with automatic transmission/reception function (busy processing):

Note The signal is not actually low here, but is represented in this way to show the timing.

UART mode (external clock input):

A/D Converter Characteristics ($T_A = -40 \text{ to } +85^{\circ}\text{C}$, $AV_{DD} = V_{DD} = 2.7 \text{ to } 5.5 \text{ V}$, $AV_{SS} = V_{SS} = 0 \text{ V}$)

Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
Resolution			8	8	8	bit
Total error ^{Note}		2.7 V ≤ AV _{REF0} ≤ AV _{DD}			1.4	%
Conversion time	tconv		19.1		200	μs
Sampling time	tsamp		12/fxx			μs
Analog input voltage	VIAN		AVss		AV _{REF0}	V
Reference voltage	AV _{REF0}		2.7		AV _{DD}	V
AVREFO to AVss resistance	RAIREFO		4			kΩ

Note Excluding quantization error ($\pm 1/2$ LSB). Shown as a percentage of the full scale value.

Remark fxx: Main system clock frequency (fx or fx/2)

fx: Main system clock oscillation frequency

D/A Converter Characteristics ($T_A = -40 \text{ to } +85^{\circ}\text{C}$, $V_{DD} = 1.8 \text{ to } 5.5 \text{ V}$, $AV_{SS} = V_{SS} = 0 \text{ V}$)

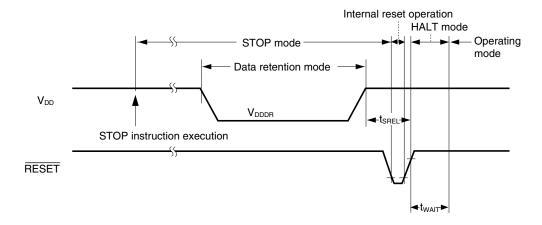
Parameter	Symbol	Tes	st Conditions	MIN.	TYP.	MAX.	Unit
Resolution						8	bit
Total error		$R = 2 M\Omega^{\text{Note 1}}$				1.2	%
		$R = 4 M\Omega^{Note 1}$				0.8	%
		$R = 10 \text{ M}\Omega^{\text{Note 1}}$				0.6	%
Setting time		C = 30 pF ^{Note 1}	4.5 V ≤ AV _{REF1} ≤ 5.5 V			10	μs
			$2.7~V \leq AV_{REF1} \leq 4.5~V$			15	μs
			1.8 V ≤ AV _{REF1} ≤ 2.7 V			20	μs
Output resistor	Ro	Note 2			10		kΩ
Analog reference voltage	AV _{REF1}			1.8		V _{DD}	V
AVREF1 to AVss resistance	RAIREF1	DACS0, DACS1	DACS0, DACS1 = 55 H ^{Note 2}		8		kΩ

Notes 1. R and C are the D/A converter output pin load resistance and load capacitance.

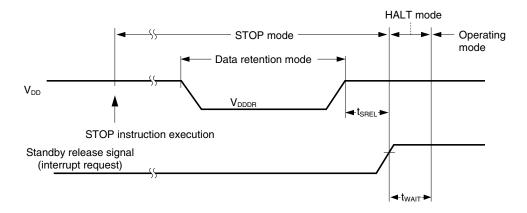
2. Value for one D/A converter channel.

Remark DACS0, DACS1: D/A conversion value setting register 0, 1

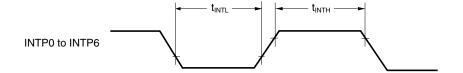
Data Memory STOP Mode Low Supply Voltage Data Retention Characteristics ($T_A = -40 \text{ to } +85^{\circ}\text{C}$)

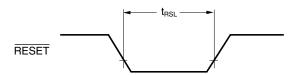

Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
Data retention supply voltage	VDDDR		1.8		5.5	V
Data retention supply current	IDDDR	VDDDR = 1.8 V When subsystem clock stopped and feedback resistor disconnected		0.1	10	μΑ
Release signal setup time	tsrel		0			μs
Oscillation stabilization wait time	twait	Release by RESET		2 ¹⁷ /fx		ms
		Release by interrupt		Note		ms

Note 2^{12} /fxx or 2^{14} /fxx to 2^{17} /fxx can be selected by bit 0 to bit 2 (OSTS0 to OSTS2) of oscillation stabilization time selection register.


Remark fxx: Main system clock frequency (fx or fx/2)

fx: Main system clock oscillation frequency


Data Retention Timing (STOP mode released by RESET)


Data Retention Timing (Standby release signal: STOP mode released by interrupt signal)

Interrupt Input Timing

RESET Input Timing

PROM Programming Characteristics

DC Characteristics

(1) **PROM Write Mode** (TA = $25 \pm 5^{\circ}$ C, V_{DD} = 6.5 ± 0.25 V, V_{PP} = 12.5 ± 0.3 V)

Parameter	Symbol	Symbol ^{Note}	Test Conditions	MIN.	TYP.	MAX.	Unit
Input voltage, high	VIH	VIH		0.7V _{DD}		V _{DD}	٧
Input voltage, low	VIL	VIL		0		0.3V _{DD}	٧
Output voltage, high	Vон	Vон	lон = −1 mA	V _{DD} - 1.0			٧
Output voltage, low	Vol	Vol	IoL = 1.6 mA			0.4	٧
Input leakage current	lu	lu	$0 \le V_{\text{IN}} \le V_{\text{DD}}$	-10		+10	μΑ
V _{PP} supply voltage	V _{PP}	VPP		12.2	12.5	12.8	V
V _{DD} supply voltage	V _{DD}	Vcc		6.25	6.5	6.75	V
VPP supply current	IPP	I PP	PGM = VIL			50	mA
V _{DD} supply current	IDD	Icc				50	mA

(2) **PROM Read Mode** (TA = $25 \pm 5^{\circ}$ C, VDD = 5.0 ± 0.5 V, VPP = VDD ± 0.6 V)

Parameter	Symbol	Symbol ^{Note}	Test Conditions	MIN.	TYP.	MAX.	Unit
Input voltage, high	VIH	VIH		0.7V _{DD}		V _{DD}	٧
Input voltage, low	VIL	VIL		0		0.3V _{DD}	٧
Output voltage, high	V _{OH1}	V _{OH1}	lон = −1 mA	V _{DD} - 1.0			٧
	V _{OH2}	V _{OH2}	Iон = −100 <i>μ</i> A	V _{DD} - 0.5			٧
Output voltage, low	Vol	VoL	loL = 1.6 mA			0.4	٧
Input leakage current	lu	lu	$0 \le V_{IN} \le V_{DD}$	-10		+10	μΑ
Output leakage current	ILO	Іьо	$0 \le V_{OUT} \le V_{DD}, \overline{OE} = V_{IH}$	-10		+10	μΑ
VPP supply voltage	V _{PP}	V _{PP}		V _{DD} - 0.6	V _{DD}	V _{DD} + 0.6	٧
V _{DD} supply voltage	V _{DD}	Vcc		4.5	5.0	5.5	٧
VPP supply current	IPP	I PP	$V_{PP} = V_{DD}$			100	μΑ
V _{DD} supply current	IDD	ICCA1	CE = VIL, VIN = VIH			50	mA

Note Corresponding μ PD27C1001A symbol.

AC Characteristics

(1) PROM Write Mode

(a) Page program mode (T_A = $25 \pm 5^{\circ}$ C, V_{DD} = 6.5 ± 0.25 V, V_{PP} = 12.5 ± 0.3 V)

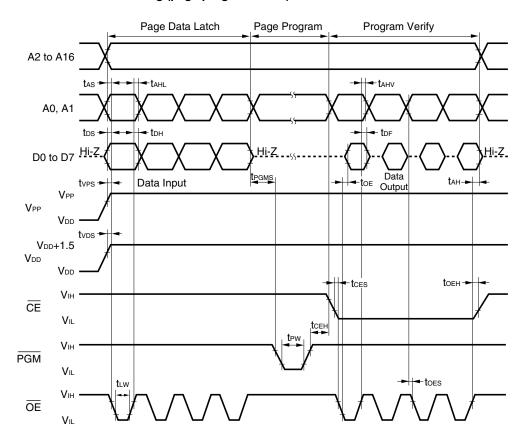
Parameter	Symbol	Symbol ^{Note}	Test Conditions	MIN.	TYP.	MAX.	Unit
Address setup time (to $\overline{\sf OE}\ \downarrow$)	tas	tas		2			μs
OE setup time	toes	toes		2			μs
OE setup time (to OE ↓)	tces	tces		2			μs
Input data setup time (to $\overline{\sf OE}\ \downarrow$)	tos	tos		2			μs
Address hold time (from $\overline{\sf OE}$ \uparrow)	tан	tан		2			μs
	t ahl	tahl		2			μs
	tahv	tahv		0			μs
Input data hold time (from $\overline{\text{OE}}\downarrow$)	tон	tон		2			μs
$\overline{\text{OE}} \uparrow \rightarrow \text{Data output float delay}$ time	tof	tof		0		250	ns
V_{PP} setup time (to $\overline{OE} \downarrow$)	tvps	tvps		1.0			ms
V_{DD} setup time (to $\overline{OE} \downarrow$)	tvos	tvcs		1.0			ms
Program pulse width	tpw	tpw		0.095	0.1	0.105	ms
$\overline{OE} \downarrow \to Valid$ data delay time	toe	toe				1	μs
OE pulse width during data latching	tLw	tLW		1			μs
PGM setup time	t PGMS	tpgms		2			μs
CE hold time	t CEH	tсен		2			μs
OE hold time	tоен	tоен		2			μs

(b) Byte program mode (TA = 25 $\pm 5^{\circ}$ C, VDD = 6.5 ± 0.25 V, VPP = 12.5 ± 0.3 V)

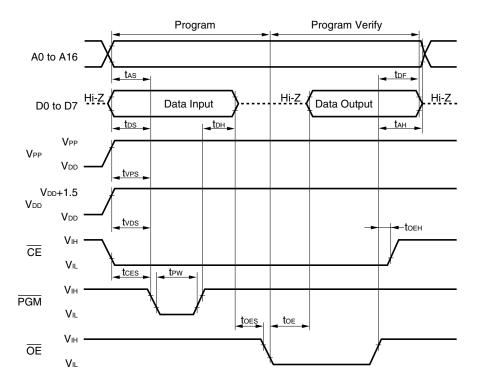
Parameter	Symbol	Symbol ^{Note}	Test Conditions	MIN.	TYP.	MAX.	Unit
Address setup time (to $\overline{\sf OE}\ \downarrow$)	tas	tas		2			μs
OE setup time	toes	toes		2			μs
\overline{OE} setup time (to $\overline{PGM} \downarrow$)	tces	tces		2			μs
Input data setup time (to $\overline{\text{PGM}} \downarrow$)	tos	tos		2			μs
Address hold time (from $\overline{\text{OE}} \uparrow$)	t ah	tан		2			μs
Input data hold time (from PGM)	tон	tон		2			μs
$\overline{\mbox{OE}} \uparrow \rightarrow \mbox{Data output float delay}$ time	tof	tor		0		250	ns
V _{PP} setup time (to $\overline{\text{PGM}}$ ↓)	tvps	tvps		1.0			ms
V _{DD} setup time (to $\overline{\text{PGM}}$ ↓)	tvds	tvcs		1.0			ms
Program pulse width	tpw	tpw		0.095	0.1	0.105	ms
$\overline{OE} \downarrow \to Valid$ data delay time	toe	toe				1	μs
OE hold time	tоен	_		2			μs

Note Corresponding μ PD27C1001A symbol.

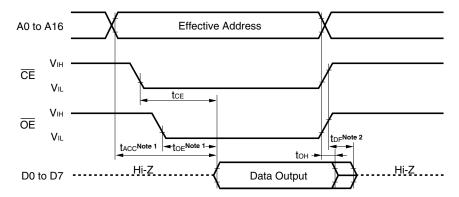
(2) PROM Read Mode (T_A = 25 \pm 5°C, V_{DD} = 5.0 \pm 0.5 V, V_{PP} = V_{DD} \pm 0.6 V)


Parameter	Symbol	Symbol ^{Note}	Test Conditions	MIN.	TYP.	MAX.	Unit
$Address \to Data \ output \ delay$	tacc	tacc	CE = OE = VIL			800	ns
time							
$\overline{\text{CE}}\downarrow \to \text{Data output delay time}$	tce	tce	OE = V _I L			800	ns
$\overline{\text{OE}}\downarrow \to \text{Data}$ output delay time	toe	toe	 CE = V _I ∟			200	ns
$\overline{OE} \downarrow \to Data$ output float delay	tof	tof	Œ = Vı∟	0		60	ns
time							
Address → Data hold time	tон	tон	CE = OE = VIL	0			ns

(3) PROM Programming Mode (T_A = 25°C, Vss = 0 V)

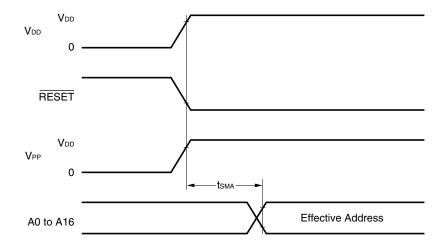

Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
PROM programming mode setup time	t sma		10			μs

PROM Write Mode Timing (page program mode)

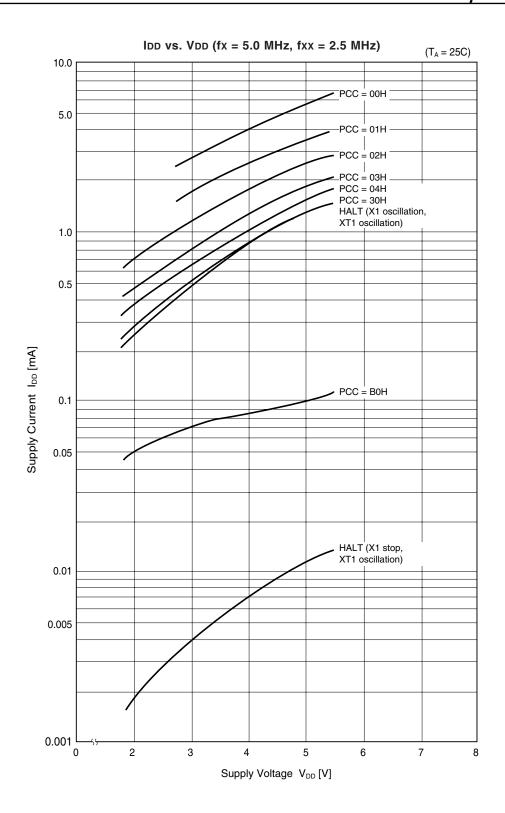

PROM Write Mode Timing (byte program mode)

Cautions 1. VDD should be applied before VPP, and removed after VPP.

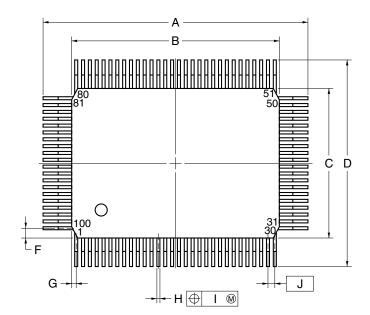
- 2. VPP must not exceed +13.5 V including overshoot.
- 3. Reliability may be adversely affected if removal/reinsertion is performed while +12.5 V is being applied to V_{PP}.

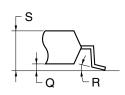

PROM Read Mode Timing

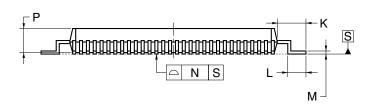
Notes 1. If you want to read within the range of tacc, make the \overline{OE} input delay time from the fall of \overline{CE} a maximum of tacc-toe.


2. t_{DF} is the time from when either \overline{OE} or \overline{CE} first reaches V_{IH} .

PROM Programming Mode Setting Timing


8. CHARACTERISTIC CURVES (REFERENCE VALUES)

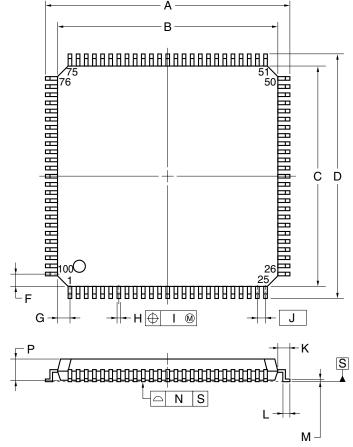



9. PACKAGE DRAWINGS

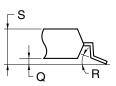
100-PIN PLASTIC QFP (14x20)

detail of lead end

NOTE


Each lead centerline is located within 0.15 mm of its true position (T.P.) at maximum material condition.

ITEM	MILLIMETERS
Α	23.6±0.4
В	20.0±0.2
С	14.0±0.2
D	17.6±0.4
F	0.8
G	0.6
Н	0.30±0.10
ı	0.15
J	0.65 (T.P.)
K	1.8±0.2
L	0.8±0.2
М	$0.15^{+0.10}_{-0.05}$
N	0.10
Р	2.7±0.1
Q	0.1±0.1
R	5°±5°
S	3.0 MAX.
В	100CE-65-2BA1


P100GF-65-3BA1-4

Remark The shape and material of ES versions are the same as those of mass-produced versions.

100-PIN PLASTIC LQFP (FINE PITCH) (14x14)

detail of lead end

NOTE

Each lead centerline is located within 0.08 mm of its true position (T.P.) at maximum material condition.

ITEM	MILLIMETERS	
Α	16.00±0.20	
В	14.00±0.20	
С	14.00±0.20	
D	16.00±0.20	
F	1.00	
G	1.00	
Н	$0.22^{+0.05}_{-0.04}$	
I	0.08	
J	0.50 (T.P.)	
K	1.00±0.20	
L	0.50±0.20	
М	$0.17^{+0.03}_{-0.07}$	
N	0.08	
Р	1.40±0.05	
Q	0.10±0.05	
R	3° ^{+7°} -3°	
S	1.60 MAX.	
S100GC-50-8EU, 8EA-2		

Remark The shape and material of ES versions are the same as those of mass-produced versions.

10. RECOMMENDED SOLDERING CONDITIONS

It is recommended that the μ PD78P078Y be soldered under the following conditions.

For soldering methods and conditions other than those recommended, please contact your NEC sales representative.

For technical information, see the following website.

Semiconductor Device Mount Manual (http://www.necel.com/pkg/en/mount/index.html)

Table 10-1. Soldering Conditions for Surface Mount Devices (1/2)

(1) μ PD78P078YGF-3BA: 100-pin plastic QFP (14 × 20 mm, resin thickness: 2.7 mm)

Soldering Method	Soldering Conditions	Symbol
Infrared ray reflow	Package peak temperature: 235°C, Reflow time: 30 seconds or less (at 210°C or higher), Number of reflow processes: 3 or less	IR35-00-3
VPS	Package peak temperature: 215°C, Reflow time: 40 seconds or less (at 200°C or higher), Number of reflow processes: 3 or less	VP15-00-3
Wave soldering	Solder temperature: 260°C or below, Flow time: 10 seconds or less, Number of flow processes: 1, Preheating temperature: 120°C max. (package surface temperature)	WS60-00-1
Partial heating	Pin temperature: 350°C or below, Flow time: 3 seconds or less (per pin row)	-

Caution Do not use different soldering methods together (except for partial heating method).

(2) μ PD78P078YGC-8EU: 100-pin plastic LQFP (fine pitch) (14 × 14 mm, resin thickness: 1.40 mm)

Soldering Method	Soldering Conditions	Symbol
Infrared ray reflow	Package peak temperature: 235°C, Reflow time: 30 seconds or less (at 210°C or higher), Number of reflow processes: 2 or less, Exposure limit: 7 days (10 hours pre-baking is required at 125°C afterwards)	IR35-107-2
VPS	Package peak temperature: 215°C, Reflow time: 40 seconds or less (at 200°C or higher), Number of reflow processes: 2 or less, Exposure limit: 7 days (10 hours pre-baking is required at 125°C afterwards)	VP15-107-2
Partial heating	Pin temperature: 350°C or below, Flow time: 3 seconds or less (per pin row)	-

Note Exposure limit before soldering after the dry pack package is opened. Storage conditions: 25°C and relative humidity at 65% or less.

Caution Do not use different soldering methods together (except for partial heating method).

Table 10-1. Soldering Conditions for Surface Mount Devices (2/2)

(3) μ PD78P078YGF-3BA-A: 100-pin plastic QFP (14 × 20 mm, resin thickness: 2.7 mm)

Soldering Method	Soldering Conditions	Recommended Condition Symbol
Infrared reflow	Package peak temperature: 260°C, Time: 60 seconds max. (at 220°C or higher), Count: Three times or less, Exposure limit: 3 days ^{Note} (after that, prebake at 125°C for 20 hours)	IR60-203-3
Wave soldering	For details, contact an NEC Electronics sales representative.	-
Partial heating	Pin temperature: 350°C max., Time: 3 seconds max. (per pin row)	-

Note After opening the dry pack, store it at 25°C or less and 65% RH or less for the allowable storage period.

Caution Do not use different soldering methods together (except for partial heating).

Remark Products that have the part numbers suffixed by "-A" are lead-free products.

APPENDIX A. DEVELOPMENT TOOLS

The following dvelopment tools are available to support development of systems using the μ PD78P078Y.

Language Processing Software

RA78K/0 ^{Notes 1, 2, 3, 4}	Assembler package common to the 78K/0 Series	
CC78K/0 ^{Notes 1, 2, 3, 4}	C compiler package common to the 78K/0 Series	
DF78078 ^{Notes 1, 2, 3, 4}	Device file common to the μ PD78078 Subseries	
CC78K/0-L ^{Notes 1, 2, 3, 4}	C compiler library source file common to the 78K/0 Series	

PROM Writing Tools

PG-1500	PROM programmer
PA-78P078GC PA-78P078GF	Programmer adapter connected to the PG-1500
PA-78P078KL-T	
PG-1500 Controller ^{Notes 1, 2}	Control program for the PG-1500

Debugging Tools

	IE-78000-R	In-circuit emulator common to the 78K/0 Series	
*	IE-78000-R-A	In-circuit emulator common to the 78K/0 Series (for integrated debugger)	
	IE-78000-R-BK	Break board common to the 78K/0 Series	
	IE-78078-R-EM	Emulation board for evaluation of the μ PD78078 Subseries	
	EP-78064GC-R	Emulation probe common to the μ PD78064 Subseries	
	EP-78064GF-R		
	EV-9200GF-100	Socket mounted on the target system board prepared for 100-pin plastic QFP (GF-3BA type)	
*	TGC-100SDW	Adapter mounted on the target system board prepared for 100-pin plastic LQFP (GC-8EU type)	
		This is a product of TOKYO ELETECH Corporation (Tokyo (03) 5295-1661). Consult an NEC sales representative for purchase.	
	EV-9900	Tool used for removing the μ PD78P078YKL-T from the EV-9200GF-100.	
	SM78K0 ^{Notes 5, 6, 7}	System simulator common to the 78K/0 Series	
	ID78K0 ^{Notes 4, 5, 6, 7}	Integrated debugger for the IE-78000-R-A	
	SD78K/0 ^{Notes 1, 2}	Screen debugger for the IE-78000-R	
	DF78078 ^{Notes 1, 2, 4, 5, 6, 7}	Device file common to the μPD78078 Subseries	

Real-Time OS

RX78K/0 ^{Notes 1, 2, 3, 4}	Real-time OS used for the 78K/0 Series
MX78K0 ^{Notes 1, 2, 3, 4}	OS used for the 78K/0 Series

Fuzzy Inference Development Support System

FE9000 ^{Note 1} /FE9200 ^{Note 3}	Fuzzy knowledge data creation tool	
FT9080 ^{Note 1} /FT9085 ^{Note 2}	Translator	
FI78K0 ^{Notes 1, 2}	Fuzzy inference module	
FD78K0 ^{Notes 1, 2}	Fuzzy inference debugger	

- Notes 1. PC-9800 Series (MS-DOS[™]) based
 - 2. IBM PC/AT[™] and its compatibles (PC DOS[™]/IBM DOS[™]/MS-DOS) based
 - **3.** HP9000 Series 300[™] (HP-UX[™]) based
 - **4.** HP9000 Series 700[™] (HP-UX), SPARCstation[™] (SunOS[™]), and EWS4800 Series (EWS-UX/V) based
 - **5.** PC-9800 Series (MS-DOS + Windows[™]) based
 - 6. IBM PC/AT and its compatibles (PC DOS/IBM DOS/MS-DOS + Windows) based
 - 7. NEWS[™] (NEWS-OS[™]) based
- Remarks 1. Refer to the 78K/0 Series Selection Guide (U11126E) for information on third party development tools.
 - 2. Use the RA78K/0, CC78K/0, SM78K/0, ID78K0, SD78K/0, and RX78K/0 in combination with the DF78078.

75

DRAWINGS OF CONVERSION SOCKET (EV-9200GF-100) AND RECOMMENDED FOOTPRINT

No.1 pin index

Н

Figure A-1. Drawing of EV-9200GF-100 (for reference only)

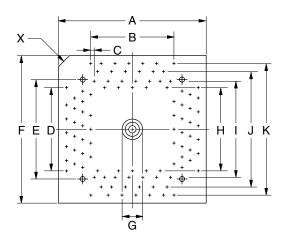
EV-9200GF-100-G0E

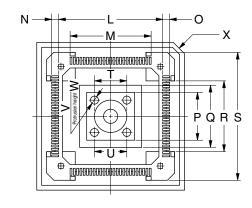
ITEM	MILLIMETERS	INCHES
Α	24.6	0.969
В	21	0.827
С	15	0.591
D	18.6	0.732
Е	4-C 2	4-C 0.079
F	0.8	0.031
G	12.0	0.472
Н	22.6	0.89
I	25.3	0.996
J	6.0	0.236
K	16.6	0.654
L	19.3	0.76
М	8.2	0.323
N	8.0	0.315
0	2.5	0.098
Р	2.0	0.079
Q	0.35	0.014
R	φ2.3	φ0.091
S	φ 1.5	φ0.059

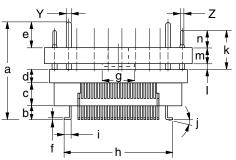
Figure A-2. Recommended Footprint of EV-9200GF-100 (for reference only)

		-P1F

ITEM	MILLIMETERS	INCHES
Α	26.3	1.035
В	21.6	0.85
С	0.65±0.02 × 29=18.85±0.05	$0.026^{+0.001}_{-0.002} \times 1.142 = 0.742^{+0.002}_{-0.002}$
D	$0.65\pm0.02\times19=12.35\pm0.05$	$0.026^{+0.001}_{-0.002} \times 0.748 = 0.486^{+0.003}_{-0.002}$
Е	15.6	0.614
F	20.3	0.799
G	12±0.05	$0.472^{+0.003}_{-0.002}$
Н	6±0.05	$0.236^{+0.003}_{-0.002}$
I	0.35±0.02	$0.014^{+0.001}_{-0.001}$
J	φ2.36±0.03	$\phi_{0.093^{+0.001}_{-0.002}}$
K	φ2.3	φ0.091
L	φ1.57±0.03	ϕ 0.062 $^{+0.001}_{-0.002}$


Caution


Dimensions of mount pad for EV-9200 and that for target device (QFP) may be different in some parts. For the recommended mount pad dimensions for QFP, refer to "SEMICONDUCTOR DEVICE MOUNTING TECHNOLOGY MANUAL" (http://www.necel.com/pkg/en/mount/index.html).


Data Sheet U10606EJ3V1DS 77

* DRAWINGS OF CONVERSION ADAPTER (TGC-100SDW)

Figure A-3. Drawings of TGC-100SDW (for reference only) (Unit: mm)

ITEM	MILLIMETERS	INCHES
A	21.55	0.848
В	0.5x24=12	0.020x0.945=0.472
С	0.5	0.020
D	0.5x24=12	0.020x0.945=0.472
E	15.0	0.591
F	21.55	0.848
G	ϕ 3.55	ϕ 0.140
Н	10.9	0.429
ı	13.3	0.524
J	15.7	0.618
K	18.1	0.713
L	13.75	0.541
М	0.5x24=12.0	0.020x0.945=0.472
N	1.125±0.3	0.044±0.012
0	1.125±0.2	0.044±0.008
Р	7.5	0.295
Q	10.0	0.394
R	11.3	0.445
s	18.1	0.713
Т	ϕ 5.0	φ0.197
U	5.0	0.197
V	4- <i>ϕ</i> 1.3	$4-\phi 0.051$
W	1.8	0.071
X	C 2.0	C 0.079
Y	φ0.9	φ0.035
Z	φ0.3	φ0.012

S	ITEM	MILLIMETERS	INCHES
	а	14.45	0.569
5=0.472	b	1.85±0.25	0.073±0.010
	С	3.5	0.138
5=0.472	d	2.0	0.079
	е	3.9	0.154
	f	0.25	0.010
	g	ϕ 4.5	ϕ 0.177
	h	16.0	0.630
	i	1.125±0.3	0.044±0.012
	j	0~5°	0.000~0.197°
	k	5.9	0.232
	- 1	0.8	0.031
5=0.472	m	2.4	0.094
.012	n	2.7	0.106
.008			TGC-100SDW-G0E

TGC-100SDW-G0E

Note Product by TOKYO ELETECH CORPORATION.

* APPENDIX B. RELATED DOCUMENTS

The related documents indicated in this publication may include preliminary versions. However, preliminary versions are not marked as such.

Documents Related to Devices

Document Name	Document No.	
	Japanese	English
μPD78078, 78078Y Subseries User's Manual	U10641J	U10641E
μPD78076Y, 78078Y Data Sheet	U10605J	U10605E
μPD78P078Y Data Sheet	U10606J	This document
μPD78074BY, 78075BY Data Sheet	Planned	Planned
μPD78075B, 78075BY Subseries User's Manual	U12560J	Planned
78K/0 Series User's Manual—Instructions	U12326J	U12326E
78K/0 Series Instruction Table	U10903J	_
78K/0 Series Instruction Set	U10904J	_
μ PD78078Y Subseries Special Function Register Table	IEM-5601	_
78K/0 Series Application Note—Basics (III)	IEA-767	U10182E

Documents Related to Development Tools (User's Manual) (1/2)

Document Name		Document No.	
		Japanese	English
RA78K Series Assembler Package	Operation	EEU-809	EEU-1399
	Language	EEU-815	EEU-1404
RA78K Series Structured Assembler Preprocessor	RA78K Series Structured Assembler Preprocessor		EEU-1402
RA78K0 Assembler Package	Operation	U11802J	U11802E
	Assembly language	U11801J	U11801E
	Structured assembly language	U11789J	U11789E
CC78K Series C Compiler	Operation	EEU-656	EEU-1280
	Language	EEU-655	EEU-1284
CC78K0 C Compiler	Operation	U11517J	U11517E
	Language	U11518J	U11518E
CC78K/0 C Compiler Application Note	Programming know-how	EEA-618	EEA-1208
CC78K Series Library Source File		U12322J	_
PG-1500 PROM Programmer		U11940J	EEU-1335
PG-1500 Controller PC-9800 Series (MS-DOS) Based		EEU-704	EEU-1291
PG-1500 Controller IBM PC Series (PC DOS) Based		EEU-5008	U10540E
IE-78000-R		U11376J	U11376E
IE-78000-R-BK		EEU-867	EEU-1427
IE-78000-R-A		U10057J	U10057E
IE-78078-R-EM		U10775J	U10775E
EP-78064		EEU-934	EEU-1522

Caution The contents of the documents listed above are subject to change without prior notice. Make sure to use the latest edition when starting design.

Documents Related to Development Tools (User's Manual) (2/2)

Document Name		Document No.	
		Japanese	English
SM78K0 System Simulator Windows Based	Reference	U10181J	U10181E
SM78K Series System Simulator	External parts user open interface specification	U10092J	U10092E
ID78K0 Integrated Debugger EWS Based	Reference	U11151J	-
ID78K0 Integrated Debugger PC Based	Reference	U11539J	U11539E
ID78K0 Integrated Debugger Windows Based	Guides	U11649J	U11649E
SD78K/0 Screen Debugger PC-9800 Series (MS-DOS) Based	Introduction	EEU-852	U10539E
	Reference	U10952J	_
SD78K/0 Screen Debugger	Introduction	EEU-5024	EEU-1414
IBM PC/AT (PC DOS) Based	Reference	U11279J	U11279E

Documents Related to Embedded Software (User's Manual)

Document Name		Document No.	
		Japanese	English
78K/0 Series Real-time OS	Basics	U11537J	_
	Installation	U11536J	_
78K/0 Series OS MX78K0	Basics	U12257J	_
Fuzzy Knowledge Data Creation Tool		EEU-829	EEU-1438
78K/0, 78K/II, and 87AD Series Fuzzy Inference Development Support System Translator		EEU-862	EEU-1444
78K/0 Series Fuzzy Inference Development Support System Fuzzy Inference Module		EEU-858	EEU-1441
78K/0 Series Fuzzy Inference Development Support System Fuzzy Inference Debugger		EEU-921	EEU-1458

Other Documents

Document Name	Document No.	
	Japanese	English
SEMICONDUCTOR SELECTION GUIDE - Products and Packages -	X13769X	
Semiconductor Device Mounting Technology Manual Note		
Quality Grades on NEC Semiconductor Devices	C11531J	C11531E
NEC Semiconductor Device Reliability/Quality Control System	C10983J	C10983E
Electrostatic Discharge (ESD) Test	MEM-539	_
Guide to Quality Assurance for Semiconductor Devices	C11893J	MEI-1202
Microcomputer Product Series Guide – Third Party Products –	U11416J	_

Note See the "Semiconductor Device Mount Manual" website (http://www.necel.com/pkg/en/mount/index.html).

Caution The contents of the documents listed above are subject to change without prior notice. Be sure to use the latest edition when starting design.

80

NOTES FOR CMOS DEVICES -

(1) VOLTAGE APPLICATION WAVEFORM AT INPUT PIN

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between $V_{\rm IL}$ (MAX) and $V_{\rm IH}$ (MIN) due to noise, etc., the device may malfunction. Take care to prevent chattering noise from entering the device when the input level is fixed, and also in the transition period when the input level passes through the area between $V_{\rm IL}$ (MAX) and $V_{\rm IH}$ (MIN).

(2) HANDLING OF UNUSED INPUT PINS

Unconnected CMOS device inputs can be cause of malfunction. If an input pin is unconnected, it is possible that an internal input level may be generated due to noise, etc., causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND via a resistor if there is a possibility that it will be an output pin. All handling related to unused pins must be judged separately for each device and according to related specifications governing the device.

③ PRECAUTION AGAINST ESD

A strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it when it has occurred. Environmental control must be adequate. When it is dry, a humidifier should be used. It is recommended to avoid using insulators that easily build up static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work benches and floors should be grounded. The operator should be grounded using a wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with mounted semiconductor devices.

(4) STATUS BEFORE INITIALIZATION

Power-on does not necessarily define the initial status of a MOS device. Immediately after the power source is turned ON, devices with reset functions have not yet been initialized. Hence, power-on does not guarantee output pin levels, I/O settings or contents of registers. A device is not initialized until the reset signal is received. A reset operation must be executed immediately after power-on for devices with reset functions.

(5) POWER ON/OFF SEQUENCE

In the case of a device that uses different power supplies for the internal operation and external interface, as a rule, switch on the external power supply after switching on the internal power supply. When switching the power supply off, as a rule, switch off the external power supply and then the internal power supply. Use of the reverse power on/off sequences may result in the application of an overvoltage to the internal elements of the device, causing malfunction and degradation of internal elements due to the passage of an abnormal current.

The correct power on/off sequence must be judged separately for each device and according to related specifications governing the device.

(6) INPUT OF SIGNAL DURING POWER OFF STATE

Do not input signals or an I/O pull-up power supply while the device is not powered. The current injection that results from input of such a signal or I/O pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal elements. Input of signals during the power off state must be judged separately for each device and according to related specifications governing the device.

Regional Information

Some information contained in this document may vary from country to country. Before using any NEC Electronics product in your application, please contact the NEC Electronics office in your country to obtain a list of authorized representatives and distributors. They will verify:

- · Device availability
- · Ordering information
- · Product release schedule
- · Availability of related technical literature
- · Development environment specifications (for example, specifications for third-party tools and components, host computers, power plugs, AC supply voltages, and so forth)
- Network requirements

In addition, trademarks, registered trademarks, export restrictions, and other legal issues may also vary from country to country.

[GLOBAL SUPPORT]

http://www.necel.com/en/support/support.html

NEC Electronics America, Inc. (U.S.) NEC Electronics (Europe) GmbH

Santa Clara, California Tel: 408-588-6000 800-366-9782

Duesseldorf, Germany Tel: 0211-65030

• Sucursal en España

Madrid, Spain Tel: 091-504 27 87

• Succursale Française

Vélizy-Villacoublay, France Tel: 01-30-675800

Filiale Italiana

Milano, Italy Tel: 02-66 75 41

• Branch The Netherlands

Eindhoven, The Netherlands Tel: 040-2654010

Tyskland Filial

Taeby, Sweden Tel: 08-63 87 200

United Kingdom Branch

Milton Keynes, UK Tel: 01908-691-133

NEC Electronics Hong Kong Ltd.

Hong Kong Tel: 2886-9318

NEC Electronics Hong Kong Ltd.

Seoul Branch Seoul, Korea Tel: 02-558-3737

NEC Electronics Shanghai Ltd.

Shanghai, P.R. China Tel: 021-5888-5400

NEC Electronics Taiwan Ltd.

Taipei, Taiwan Tel: 02-2719-2377

NEC Electronics Singapore Pte. Ltd.

Novena Square, Singapore

Tel: 6253-8311

.105.6

FIP, IEBus, and QTOP are trademarks of NEC Electronics Corporation.

MS-DOS and Windows are registered trademarks or trademarks of Microsoft Corporation in the United States and/or other countries.

IBM DOS, PC/AT, and PC DOS are trademarks of International Business Machines Corporation.

HP9000 Series 300, HP9000 Series 700, and HP-UX are trademarks of Hewlett-Packard Company.

SPARCstation is a trademark of SPARC International, Inc.

SunOS is a trademark of Sun Microsystems Corporation.

NEWS and NEWS-OS are trademarks of Sony Corporation.

These commodities, technology or software, must be exported in accordance with the export administration regulations of the exporting country.

Diversion contrary to the law of that country is prohibited.

- The information in this document is current as of August, 2005. The information is subject to change without notice. For actual design-in, refer to the latest publications of NEC Electronics data sheets or data books, etc., for the most up-to-date specifications of NEC Electronics products. Not all products and/or types are available in every country. Please check with an NEC Electronics sales representative for availability and additional information.
- No part of this document may be copied or reproduced in any form or by any means without the prior
 written consent of NEC Electronics. NEC Electronics assumes no responsibility for any errors that may
 appear in this document.
- NEC Electronics does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from the use of NEC Electronics products listed in this document or any other liability arising from the use of such products. No license, express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Electronics or others.
- Descriptions of circuits, software and other related information in this document are provided for illustrative
 purposes in semiconductor product operation and application examples. The incorporation of these
 circuits, software and information in the design of a customer's equipment shall be done under the full
 responsibility of the customer. NEC Electronics assumes no responsibility for any losses incurred by
 customers or third parties arising from the use of these circuits, software and information.
- While NEC Electronics endeavors to enhance the quality, reliability and safety of NEC Electronics products, customers agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To minimize risks of damage to property or injury (including death) to persons arising from defects in NEC Electronics products, customers must incorporate sufficient safety measures in their design, such as redundancy, fire-containment and anti-failure features.
- NEC Electronics products are classified into the following three quality grades: "Standard", "Special" and "Specific".
 - The "Specific" quality grade applies only to NEC Electronics products developed based on a customer-designated "quality assurance program" for a specific application. The recommended applications of an NEC Electronics product depend on its quality grade, as indicated below. Customers must check the quality grade of each NEC Electronics product before using it in a particular application.
 - "Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots.
 - "Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support).
 - "Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems and medical equipment for life support, etc.

The quality grade of NEC Electronics products is "Standard" unless otherwise expressly specified in NEC Electronics data sheets or data books, etc. If customers wish to use NEC Electronics products in applications not intended by NEC Electronics, they must contact an NEC Electronics sales representative in advance to determine NEC Electronics' willingness to support a given application.

(Note)

- (1) "NEC Electronics" as used in this statement means NEC Electronics Corporation and also includes its majority-owned subsidiaries.
- (2) "NEC Electronics products" means any product developed or manufactured by or for NEC Electronics (as defined above).