

# QUICKSWITCH® PRODUCTS 2.5V / 3.3V 32:16 MUX/DEMUX HIGH BANDWIDTH BUS SWITCH

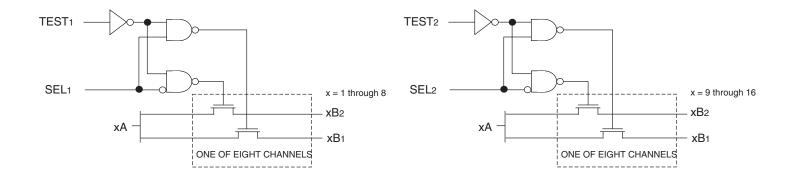
# IDTQS3VH16233

#### FEATURES:

- N channel FET switches with no parasitic diode to Vcc
  - Isolation under power-off conditions
  - No DC path to Vcc or GND
  - 5V tolerant in OFF and ON state
- 5V tolerant I/Os
- Low Ron  $4\Omega$  typical
- · Flat RON characteristics over operating range
- Rail-to-rail switching 0 5V
- Bidirectional dataflow with near-zero delay: no added ground bounce
- · Excellent RON matching between channels
- Vcc operation: 2.3V to 3.6V
- High bandwidth up to 500 MHz
- LVTTL-compatible control Inputs
- · Undershoot Clamp Diodes on all switch and control Inputs
- Low I/O capacitance, 4pF typical
- Available in TSSOP package

### **APPLICATIONS:**

- · Hot-swapping
- 10/100 Base-T, Ethernet LAN switch
- · Low distortion analog switch
- · Replaces mechanical relay
- ATM 25/155 switching

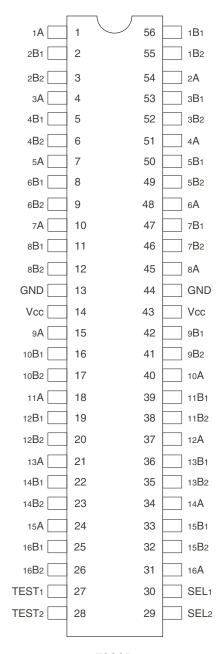

# FUNCTIONAL BLOCK DIAGRAM

# **DESCRIPTION:**

The QS3VH16233 HotSwitch is a 32-bit to 16-bit high bandwidth bus switch, which can multiplex or demultiplex data. The QS3VH16233 has very low ON resistance, resulting in under 250ps propagation delay through the switch. This device can be used as two 16-bit to 8-bit multiplexers or as one 32-bit to 16-bit multiplexer. SELx inputs control the data flow. TESTx inputs control either one or two ports connection. In the OFF and ON states, the switches are 5V-tolerant. In the OFF state, the switches offer very high impedance at the terminals.

The combination of near-zero propagation delay, high OFF impedance, and over-voltage tolerance also makes the QS3VH16233 ideal for high performance communications applications.

The QS3VH16233 is characterized for operation from -40°C to +85°C.




The IDT logo is a registered trademark of Integrated Device Technology, Inc

#### INDUSTRIAL TEMPERATURE RANGE

#### **NDUSTRIAL TEMPERATURE RANG**

#### **PIN CONFIGURATION**



TSSOP TOP VIEW

### ABSOLUTE MAXIMUM RATINGS(1)

| Symbol               | Description                          | Max.         | Unit |
|----------------------|--------------------------------------|--------------|------|
| VTERM(2)             | Supply Voltage to Ground             | -0.5 to 4.6  | V    |
| VTERM(3)             | DC Switch Voltage Vs                 | -0.5 to 5.5  | V    |
| VTERM <sup>(3)</sup> | DC Input Voltage VIN                 | - 0.5 to 5.5 | V    |
| VAC                  | AC Input Voltage (pulse width ≤20ns) | -3           | V    |
| Ιουτ                 | DC Output Current (max. current/pin) | 120          | mA   |
| Tstg                 | StorageTemperature                   | -65 to +150  | °C   |

NOTES:

 Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

2. Vcc terminals.

3. All terminals except Vcc.

#### CAPACITANCE (TA = +25°C, f = 1MHz, VIN = 0V, VOUT = 0V) Parameter<sup>(1)</sup> Max. Symbol Тур. Unit CIN **Control Inputs** 3 5 pF CI/O **Quickswitch Channels** Mux 8 12 pF (Switch OFF) Demux 4 6 CI/O Quickswitch Channels Mux 16 24 рF 8 12 (Switch ON) Demux

NOTE:

1. This parameter is guaranteed but not production tested.

### **PIN DESCRIPTION**

| Pin Names | I/O | Description |
|-----------|-----|-------------|
| хA        | I/O | Bus A       |
| xBx       | I/O | Bus B       |
| SELx      |     | Data Select |
| TESTx     |     | PortSelect  |

#### **FUNCTION TABLE(1)**

| SELx | TESTx | хА       | Function          |
|------|-------|----------|-------------------|
| L    | L     | xB1      | xA to xB1         |
| Н    | L     | xB2      | xA to xB2         |
| Х    | Н     | xB1, xB2 | xA to xB1 and xB2 |

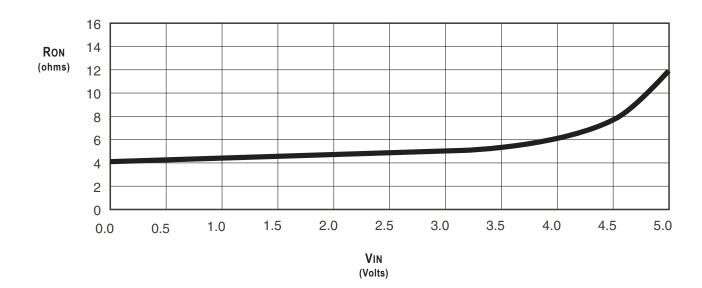
NOTE:

1. H = HIGH Voltage Level

L = LOW Voltage Level

X = Don't Care

# DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE<sup>(1)</sup>


Following Conditions Apply Unless Otherwise Specified: Industrial:  $TA = -40^{\circ}C$  to  $+85^{\circ}C$ ,  $VCC = 3.3V \pm 0.3V$ 

| Symbol | Parameter                              | Test Conditions                     |            | Min.               | Typ. <sup>(1)</sup> | Max. | Unit |   |
|--------|----------------------------------------|-------------------------------------|------------|--------------------|---------------------|------|------|---|
| Vih    | Input HIGH Voltage                     | Guaranteed Logic HI                 | GH         | Vcc = 2.3V to 2.7V | 1.7                 | —    | _    | V |
|        |                                        | for Control Inputs                  |            | Vcc = 2.7V to 3.6V | 2                   | —    | _    |   |
| Vil    | Input LOW Voltage                      | Guaranteed Logic HI                 | GH         | Vcc = 2.3V to 2.7V | -                   | —    | 0.7  | V |
|        |                                        | for Control Inputs                  |            | Vcc = 2.7V to 3.6V | _                   | —    | 0.8  |   |
| lin    | Input Leakage Current (Control Inputs) | $0V \le VIN \le VCC$                |            | _                  | —                   | ±1   | μA   |   |
| loz    | Off-State Current (Hi-Z)               | $0V \le VOUT \le 5V$ , Switches OFF |            | -                  | —                   | ±1   | μA   |   |
| IOFF   | Data Input/Output Power Off Leakage    | VIN or VOUT 0V to 5V, Vcc = 0V      |            | -                  | —                   | ±1   | μA   |   |
|        |                                        | Vcc = 2.3V                          | VIN = 0V   | ION = 30mA         | _                   | 6    | 8    |   |
| Ron    | Switch ON Resistance                   | (Typ. at Vcc = 2.5V)                | VIN = 1.7V | ION = 15mA         | _                   | 7    | 9    | Ω |
|        |                                        | Vcc = 3V                            | VIN = 0V   | ION = 30mA         | _                   | 4    | 6    |   |
|        |                                        |                                     | VIN = 2.4V | ION = 15mA         | _                   | 5    | 8    |   |

NOTE:

1. Typical values are at Vcc = 3.3V and TA = 25°C, unless otherwise noted.

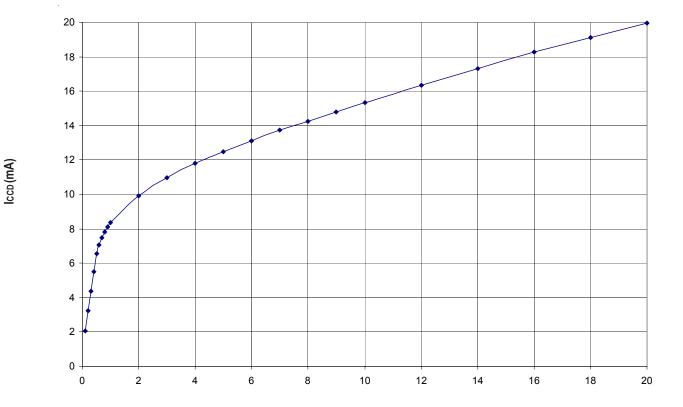
### TYPICAL ON RESISTANCE vs VIN AT Vcc = 3.3V



### **POWER SUPPLY CHARACTERISTICS**

| Symbol       | Parameter                                                                                | Test Conditions <sup>(1)</sup>                | Min.          | Тур.          | Max.          | Unit     |
|--------------|------------------------------------------------------------------------------------------|-----------------------------------------------|---------------|---------------|---------------|----------|
| lccq         | Quiescent Power Supply Current                                                           | Vcc = Max., VIN = GND or Vcc, f = 0           | —             | 1.5           | 3             | mA       |
| $\Delta$ lcc | Power Supply Current <sup>(2,3)</sup> per Input HIGH                                     | Vcc = Max., VIN = 3V, f = 0 per Control Input | —             | —             | 30            | μA       |
| ICCD         | Dynamic Power Supply Current <sup>(4)</sup> Vcc = 3.3V, A and B Pins Open, Control Input |                                               | See Typical I | CCD vs Enable | Frequency gra | ph below |
|              |                                                                                          | Toggling @ 50% Duty Cycle                     |               |               |               |          |

NOTES:


1. For conditions shown as Min. or Max., use the appropriate values specified under DC Electrical Characteristics.

2. Per input driven at the specified level. A and B pins do not contribute to  $\Delta$ lcc.

3. This parameter is guaranteed but not tested.

4. This parameter represents the current required to switch internal capacitance at the specified frequency. The A and B inputs do not contribute to the Dynamic Power Supply Current. This parameter is guaranteed but not production tested.

### TYPICAL ICCD vs ENABLE FREQUENCY CURVE AT Vcc = 3.3V



**ENABLE FREQUENCY (MHz)** 

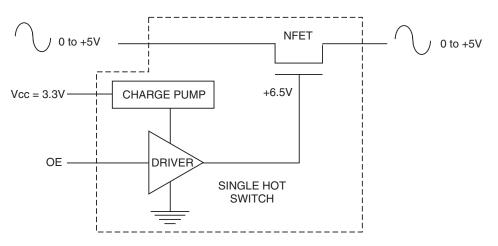
# SWITCHING CHARACTERISTICS OVER OPERATING RANGE

T<sub>A</sub> = -40°C to +85°C

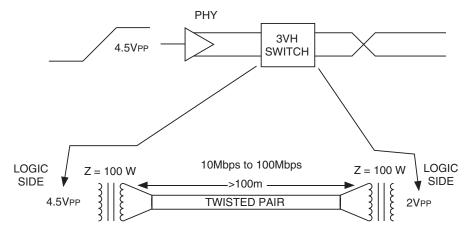
|              |                                               | $Vcc = 2.5 \pm 0.2V^{(1)}$ |      | $Vcc = 3.3 \pm 0.3 V^{(1)}$ |      |      |  |
|--------------|-----------------------------------------------|----------------------------|------|-----------------------------|------|------|--|
| Symbol       | Parameter                                     | Min. <sup>(4)</sup>        | Max. | Min. <sup>(4)</sup>         | Max. | Unit |  |
| <b>t</b> PLH | Data Propagation Delay <sup>(2,3)</sup>       | _                          | 0.2  |                             | 0.2  | ns   |  |
| <b>t</b> PHL | A to B or B to A                              |                            |      |                             |      |      |  |
| tвx          | Switch Multiplex Delay                        | 1.5                        | 9    | 1.5                         | 7.5  | ns   |  |
|              | SEL to xA                                     |                            |      |                             |      |      |  |
| tрzн         | Switch Turn-On Delay                          | 1.5                        | 9    | 1.5                         | 8    | ns   |  |
| tPZL         | SEL to xBx                                    |                            |      |                             |      |      |  |
| tPHZ         | Switch Turn-Off Delay                         | 1.5                        | 7.5  | 1.5                         | 7.5  | ns   |  |
| tPLZ         | SEL to xBx                                    |                            |      |                             |      |      |  |
| tPZH         | Switch Turn-On Delay                          | 1.5                        | 8.5  | 1.5                         | 9    | ns   |  |
| tPZL         | TEST to xBx                                   |                            |      |                             |      |      |  |
| <b>t</b> PHZ | Switch Turn-Off Delay                         | 1.5                        | 8.5  | 1.5                         | 8.5  | ns   |  |
| tPLZ         | TEST to xBx                                   |                            |      |                             |      |      |  |
| fSx          | Operating Frequency - Enable <sup>(2,5)</sup> | —                          | 7.5  |                             | 15   | MHz  |  |

NOTES:

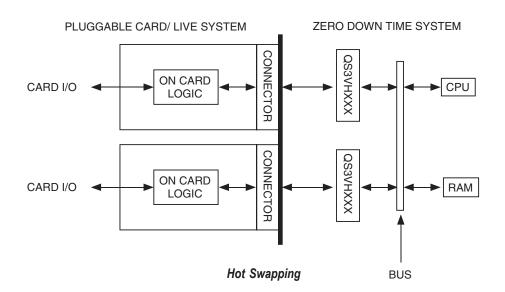
1. See Test Conditions under TEST CIRCUITS AND WAVEFORMS.


2. This parameter is guaranteed but not production tested.

3. The bus switch contributes no propagation delay other than the RC delay of the ON resistance of the switch and the load capacitance. The time constant for the switch alone is of the order of 0.2ns at CL = 50pF. Since this time constant is much smaller than the rise and fall times of typical driving signals, it adds very little propagation delay to the system. Propagation delay of the bus switch, when used in a system, is determined by the driving circuit on the driving side of the switch and its interaction with the load on the driven side.


4. Minimums are guaranteed but not production tested.

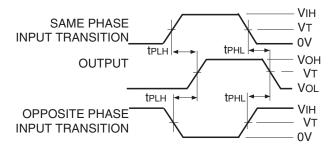
5. Maximum toggle frequency for Sx control input (pass voltage > Vcc, VIN = 5V, RLOAD  $\geq$  1M $\Omega$ , no CLOAD).


### SOME APPLICATIONS FOR HOTSWITCH PRODUCTS

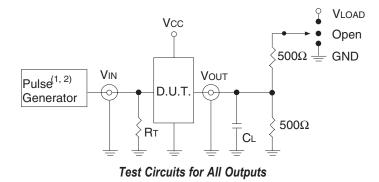


Rail-to-Rail Switching




Fast Ethernet Data Switching (LAN Switch)




# **TEST CIRCUITS AND WAVEFORMS**

### **TEST CONDITIONS**

| Symbol | $Vcc^{(1)}= 3.3V \pm 0.3V$ | $Vcc^{(2)}= 2.5V \pm 0.2V$ | Unit |
|--------|----------------------------|----------------------------|------|
| VLOAD  | 6                          | 2 x Vcc                    | V    |
| Vih    | 3                          | Vcc                        | V    |
| VT     | 1.5                        | Vcc/2                      | V    |
| Vlz    | 300                        | 150                        | mV   |
| VHZ    | 300                        | 150                        | mV   |
| CL     | 50                         | 30                         | pF   |

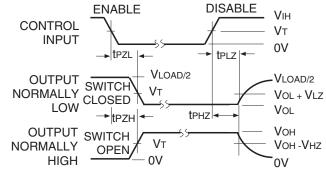


#### **Propagation Delay**



#### **DEFINITIONS:**

CL = Load capacitance: includes jig and probe capacitance.

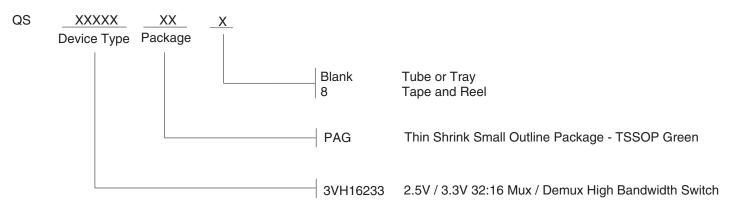

RT = Termination resistance: should be equal to ZOUT of the Pulse Generator.

#### NOTES:

- 1. Pulse Generator for All Pulses: Rate  $\leq$  1.0MHz; tF  $\leq$  2.5ns; tR  $\leq$  2.5ns.
- 2. Pulse Generator for All Pulses: Rate  $\leq$  1.0MHz; tF  $\leq$  2ns; tR  $\leq$  2ns.

# SWITCH POSITION

| Test      | Switch |
|-----------|--------|
| tplz/tpzl | Vload  |
| tphz/tpzh | GND    |
| tPD       | Open   |




#### NOTE:

1. Diagram shown for input Control Enable-LOW and input Control Disable-HIGH.

#### **Enable and Disable Times**

# **ORDERING INFORMATION**



#### IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES ("RENESAS") PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers skilled in the art designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only for development of an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising out of your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use o any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.

(Disclaimer Rev.1.0 Mar 2020)

#### **Corporate Headquarters**

TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan www.renesas.com

#### **Trademarks**

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners. **Contact Information** 

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit: <u>www.renesas.com/contact/</u>