ON Semiconductor

Is Now

To learn more about onsemi™, please visit our website at www.onsemi.com

onsemi and ONSEMI. and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/ or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application,

Power MOSFET 32 Amps, 60 Volts

Logic Level, N-Channel DPAK

Designed for low voltage, high speed switching applications in power supplies, converters and power motor controls and bridge circuits.

Features

- Smaller Package than MTB30N06VL
- Lower R_{DS(on)}, V_{DS(on)}, and Total Gate Charge
- Lower and Tighter V_{SD}
- Lower Diode Reverse Recovery Time
- Lower Reverse Recovery Stored Charge
- Pb-Free Packages are Available

Typical Applications

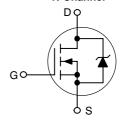
- Power Supplies
- Converters
- Power Motor Controls
- Bridge Circuits

MAXIMUM RATINGS (T_J = 25°C unless otherwise noted)

Rating	Symbol	Value	Unit
Drain-to-Source Voltage	V_{DSS}	60	Vdc
Drain-to-Gate Voltage ($R_{GS} = 10 \text{ M}\Omega$)	V_{DGR}	60	Vdc
$ \begin{array}{c cccc} Gate\text{-to-Source} & Voltage & - Continuous \\ & - Non\text{-Repetitive} & (t_p \! \leq \! 10 \text{ ms}) \end{array} $	V_{GS}	±20 ±30	Vdc
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	_ _D _ _D	32 22 90	Adc Apk
Total Power Dissipation @ T_A = 25°C Derate above 25°C Total Power Dissipation @ T_A = 25°C (Note 1) Total Power Dissipation @ T_A = 25°C (Note 2)	P_{D}	93.75 0.625 2.88 1.5	W W/°C W W
Operating and Storage Temperature Range	T _J , T _{stg}	-55 to +175	°C
Single Pulse Drain-to-Source Avalanche Energy - Starting $T_J = 25^{\circ}C$ (Note 3) ($V_{DD} = 50$ Vdc, $V_{GS} = 5$ Vdc, $L = 1.0$ mH, $I_{L(pk)} = 25$ A, $V_{DS} = 60$ Vdc, $R_G = 25$ Ω)	E _{AS}	313	mJ
Thermal Resistance - Junction-to-Case - Junction-to-Ambient (Note 1) - Junction-to-Ambient (Note 2)	$egin{array}{l} R_{ hetaJC} \ R_{ hetaJA} \ R_{ hetaJA} \end{array}$	1.6 52 100	°C/W
Maximum Lead Temperature for Soldering Purposes, 1/8 in from case for 10 seconds	TL	260	°C

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

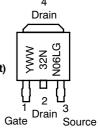
- 1. When surface mounted to FR4 board using 0.5 in pad size.
- 2. When surface mounted to FR4 board using minimum recommended pad size.
- 3. Repetitive rating; pulse width limited by maximum junction temperature.



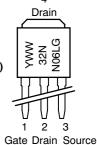
ON Semiconductor®

http://onsemi.com

V _{DSS}	R _{DS(ON)} TYP	I _D MAX
60 V	23.7 m Ω	32 A


N-Channel

MARKING DIAGRAMS & PIN ASSIGNMENTS



DPAK CASE 369C (Surface Mount) STYLE 2

DPAK CASE 369D (Straight Lead) STYLE 2

Y = Year

WW = Work Week

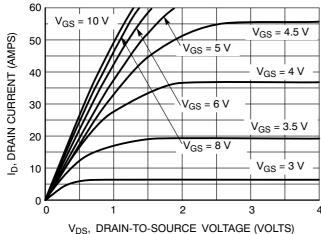
32N06L = Device Code

G = Pb-Free Package

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 2 of this data sheet.

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise noted)


	haracteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS		-,	1	_ ,-		
Drain-to-Source Breakdown Vo $(V_{GS} = 0 \text{ Vdc}, I_D = 250 \mu\text{Adc})$ Temperature Coefficient (Positiv	V _{(BR)DSS}	60	70 62	- -	Vdc mV/°C	
Zero Gate Voltage Drain Curren ($V_{DS} = 60 \text{ Vdc}$, $V_{GS} = 0 \text{ Vdc}$) ($V_{DS} = 60 \text{ Vdc}$, $V_{GS} = 0 \text{ Vdc}$, T_J		I _{DSS}	- -		1.0 10	μAdc
Gate-Body Leakage Current (V	_{GS} = ±20 Vdc, V _{DS} = 0 Vdc)	I _{GSS}	-	-	±100	nAdc
ON CHARACTERISTICS (Note	4)					
Gate Threshold Voltage (Note 4) $(V_{DS} = V_{GS}, I_D = 250 \mu Adc)$ Threshold Temperature Coefficient		V _{GS(th)}	1.0	1.7 4.8	2.0	Vdc mV/°C
Static Drain-to-Source On-Resi (V _{GS} = 5 Vdc, I _D = 16 Adc)	stance (Note 4)	R _{DS(on)}	-	23.7	28	mΩ
Static Drain-to-Source On-Resi $(V_{GS} = 5 \text{ Vdc}, I_D = 20 \text{ Adc})$ $(V_{GS} = 5 \text{ Vdc}, I_D = 32 \text{ Adc})$ $(V_{GS} = 5 \text{ Vdc}, I_D = 16 \text{ Adc}, T_J =$	V _{DS(on)}	- - -	0.48 0.78 0.61	0.67 - -	Vdc	
Forward Transconductance (No	te 4) (V _{DS} = 6 Vdc, I _D = 16 Adc)	9FS	-	27	-	mhos
DYNAMIC CHARACTERISTICS	3		•	•		•
Input Capacitance		C _{iss}	-	1214	1700	pF
Output Capacitance	(V _{DS} = 25 Vdc, V _{GS} = 0 Vdc, f = 1.0 MHz)	C _{oss}	-	343	480	
Transfer Capacitance	- 1.0 WH12)	C _{rss}	-	87	180	
SWITCHING CHARACTERISTI	CS (Note 5)					
Turn-On Delay Time		t _{d(on)}	-	12.8	30	ns
Rise Time	$(V_{DD} = 30 \text{ Vdc}, I_D = 32 \text{ Adc},$	t _r	-	221	450	
Turn-Off Delay Time	V _{GS} = 5 Vdc, R _G = 9.1 Ω) (Note 4)	t _{d(off)}	-	37	80	
Fall Time		t _f	-	128	260	
Gate Charge		Q_{T}	-	23	50	nC
	(V _{DS} = 48 Vdc, I _D = 32 Adc, V _{GS} = 5 Vdc) (Note 4)	Q ₁	-	4.5	-	
	VGS = 0 Vd0) (14010 4)	Q ₂	-	- 14 -	1	
SOURCE-DRAIN DIODE CHAP	RACTERISTICS					
Forward On-Voltage		V _{SD}	- - -	0.89 0.95 0.74	1.0 - -	Vdc
Reverse Recovery Time		t _{rr}	-	56	-	ns
	(I _S = 32 Adc, V _{GS} = 0 Vdc, dI _S /dt = 100 A/μs) (Note 4)	t _a	-	31	-	
	dig/di = 100 Αγμο) (Note 4)	t _b	-	25	-	
Reverse Recovery Stored Charge		Q _{RR}	_	0.093	_	μС

ORDERING INFORMATION

Device	Package	Shipping [†]
NTD32N06L	DPAK	75 Units / Rail
NTD32N06LG	DPAK (Pb-Free)	75 Units / Rail
NTD32N06L-1	DPAK (Straight Lead)	75 Units / Rail
NTD32N06L-1G	DPAK (Straight Lead) (Pb-Free)	75 Units / Rail
NTD32N06LT4	DPAK	2500 Units / Tape & Reel
NTD32N06LT4G	DPAK (Pb-Free)	2500 Units / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

Pulse Test: Pulse Width ≤ 300 μs, Duty Cycle ≤ 2%.
 Switching characteristics are independent of operating junction temperatures.

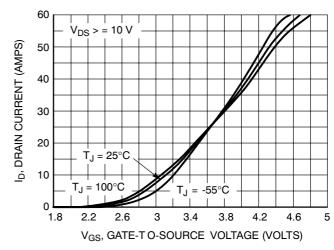
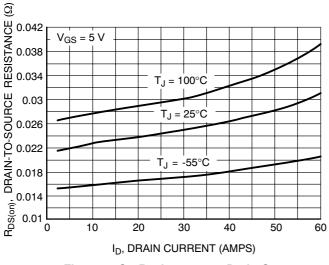



Figure 1. On-Region Characteristics

Figure 2. Transfer Characteristics

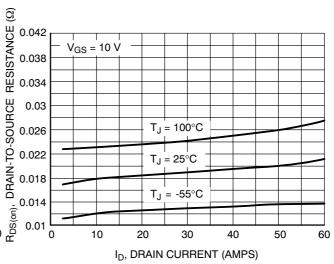


Figure 3. On-Resistance vs. Drain Current

Figure 4. On-Resistance vs. Drain Current

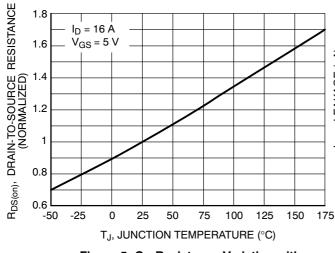


Figure 5. On-Resistance Variation with **Temperature**

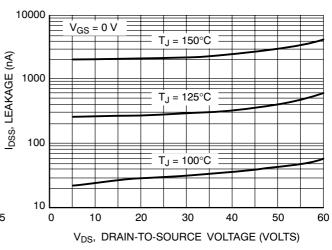


Figure 6. Drain-to-Source Leakage Current vs. Voltage

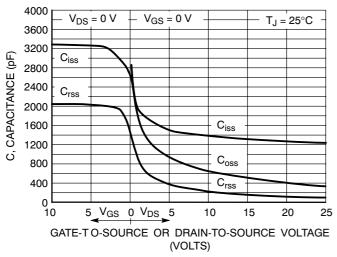


Figure 7. Capacitance Variation

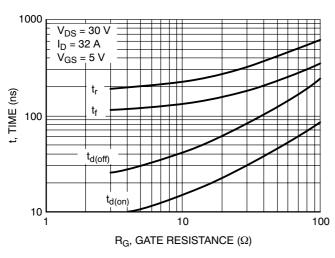


Figure 9. Resistive Switching Time Variation vs. Gate Resistance

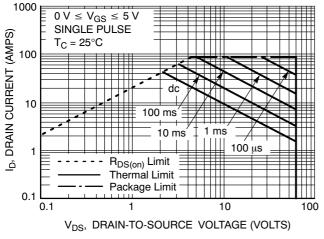


Figure 11. Maximum Rated Forward Biased Safe Operating Area

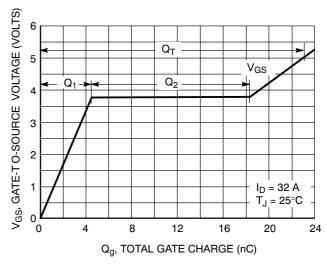


Figure 8. Gate-to-Source and Drain-to-Source Voltage vs. Total Charge

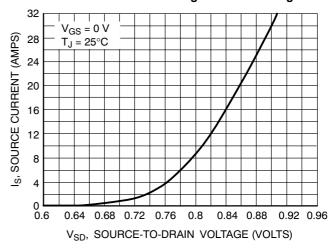


Figure 10. Diode Forward Voltage vs. Current

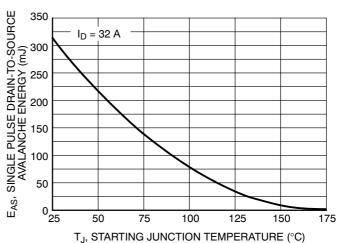


Figure 12. Maximum Avalanche Energy vs. Starting Junction Temperature

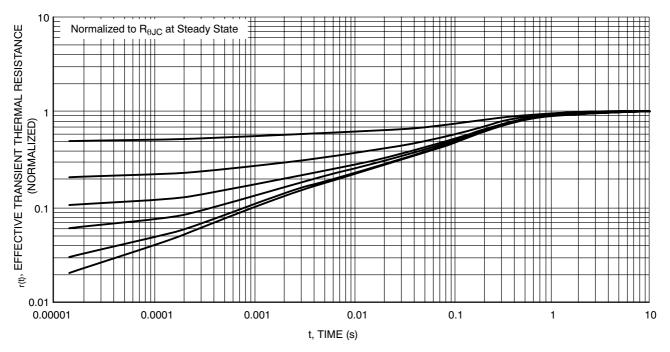


Figure 13. Thermal Response

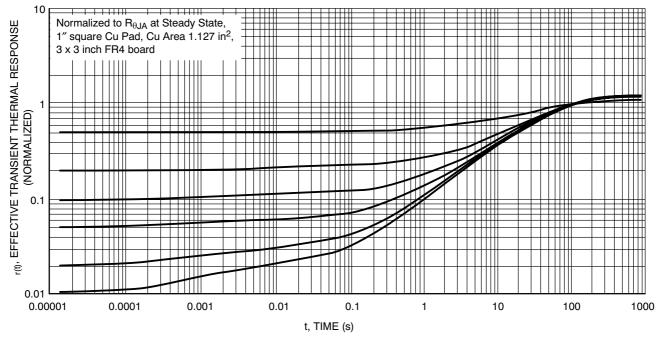
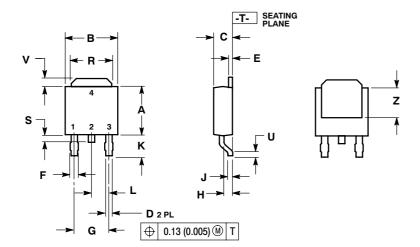



Figure 14. Thermal Response

PACKAGE DIMENSIONS

DPAK

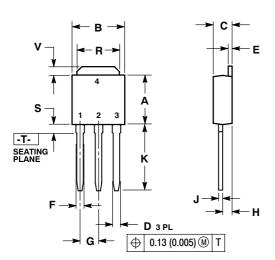
CASE 369C-01 ISSUE O

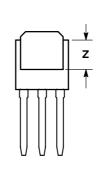
- NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH.

	INCHES		MILLIMETERS		
DIM	MIN	MAX	MIN	MAX	
Α	0.235	0.245	5.97	6.22	
В	0.250	0.265	6.35	6.73	
С	0.086	0.094	2.19	2.38	
D	0.027	0.035	0.69	0.88	
E	0.018	0.023	0.46	0.58	
F	0.037	0.045	0.94	1.14	
G	0.180 BSC		4.58 BSC		
н	0.034	0.040	0.87	1.01	
J	0.018	0.023	0.46	0.58	
K	0.102	0.114	2.60	2.89	
L	0.090	BSC	2.29	.29 BSC	
R	0.180	0.215	4.57	5.45	
S	0.025	0.040	0.63	1.01	
U	0.020		0.51		
V	0.035	0.050	0.89	1.27	
Z	0.155		3.93		

- STYLE 2: PIN 1. GATE 2. DRAIN 3. SOURCE 4. DRAIN

SOLDERING FOOTPRINT*




^{*}For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

PACKAGE DIMENSIONS

DPAK

CASE 369D-01 **ISSUE B**

- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 2. CONTROLLING DIMENSION: INCH.

	INCHES		MILLIMETERS		
DIM	MIN	MAX	MIN	MAX	
Α	0.235	0.245	5.97	6.35	
В	0.250	0.265	6.35	6.73	
С	0.086	0.094	2.19	2.38	
D	0.027	0.035	0.69	0.88	
Е	0.018	0.023	0.46	0.58	
F	0.037	0.045	0.94	1.14	
G	0.090 BSC		2.29	BSC	
Н	0.034	0.040	0.87	1.01	
J	0.018	0.023	0.46	0.58	
K	0.350	0.380	8.89	9.65	
R	0.180	0.215	4.45	5.45	
S	0.025	0.040	0.63	1.01	
٧	0.035	0.050	0.89	1.27	
Z	0.155		3.93		

STYLE 2:

- PIN 1. GATE 2. DRAIN
 - 3. SOURCE
 - DRAIN

ON Semiconductor and un are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice on semiconductor and are registered readerlands of semiconductor Components industries, Itc. Science seaves the right to make changes without further holice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada **Fax**: 303-675-2176 or 800-344-3867 Toll Free USA/Canada

Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5773-3850

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative