
# **Look-Ahead Carry Block**

The MC10H179 is a functional/pinout duplication of the standard MECL 10K part, with 100% improvement in propagation delay and no increase in power supply current.

- Power Dissipation, 300 mW Typical
- Improved Noise Margin 150 mV (Over Operating Voltage and Temperature Range)
- Voltage Compensated
- MECL 10K-Compatible

## DIP PIN ASSIGNMENT



Pin assignment is for Dual–in–Line Package.
For PLCC pin assignment, see the Pin Conversion Tables on page 18 of the ON Semiconductor MECL Data Book (DL122/D).



## **ON Semiconductor**

http://onsemi.com

### MARKING DIAGRAMS



CDIP-16 L SUFFIX CASE 620





PDIP-16 P SUFFIX CASE 648





1

PLCC-20 FN SUFFIX CASE 775



A = Assembly Location

WL = Wafer Lot YY = Year WW = Work Week

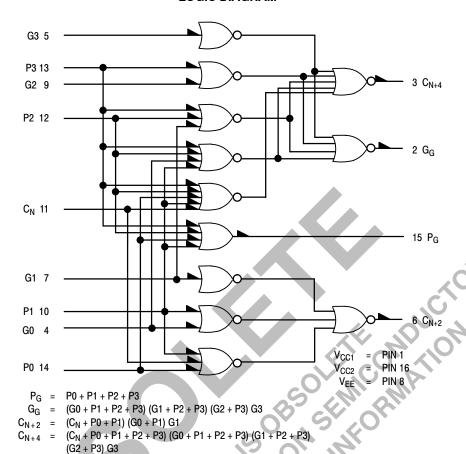
### **ORDERING INFORMATION**

| Device     | Package | Shipping      |
|------------|---------|---------------|
| MC10H179L  | CDIP-16 | 25 Units/Rail |
| MC10H179P  | PDIP-16 | 25 Units/Rail |
| MC10H179FN | PLCC-20 | 46 Units/Rail |

#### **MAXIMUM RATINGS**

| Symbol           | Characteristic                                | Rating                     | Unit |
|------------------|-----------------------------------------------|----------------------------|------|
| V <sub>EE</sub>  | Power Supply (V <sub>CC</sub> = 0)            | -8.0 to 0                  | Vdc  |
| VI               | Input Voltage (V <sub>CC</sub> = 0)           | 0 to V <sub>EE</sub>       | Vdc  |
| l <sub>out</sub> | Output Current - Continuous<br>- Surge        | 50<br>100                  | mA   |
| T <sub>A</sub>   | Operating Temperature Range                   | 0 to +75                   | °C   |
| T <sub>stg</sub> | Storage Temperature Range - Plastic - Ceramic | -55 to +150<br>-55 to +165 | °,   |

## **ELECTRICAL CHARACTERISTICS** ( $V_{EE}$ = -5.2 V ±5%) (See Note 1.)


|                  |                                                                               | 0                | 0                               | 25    | 5°                              | 7           | 75°                             |      |
|------------------|-------------------------------------------------------------------------------|------------------|---------------------------------|-------|---------------------------------|-------------|---------------------------------|------|
| Symbol           | Characteristic                                                                | Min              | Max                             | Min   | Max                             | Min         | Max                             | Unit |
| Ι <sub>Ε</sub>   | Power Supply Current                                                          | -                | 79                              | -     | 72                              | -           | 79                              | mA   |
| linH             | Input Current High Pins 5 and 9 Pins 4, 7 and 11 Pin 14 Pin 12 Pins 10 and 13 | -<br>-<br>-<br>- | 465<br>545<br>705<br>790<br>870 |       | 275<br>320<br>415<br>465<br>510 | -<br>-<br>- | 275<br>320<br>415<br>465<br>510 | μΑ   |
| l <sub>inL</sub> | Input Current Low                                                             | 0.5              | 7                               | 0.5   | _                               | 0.3         | _                               | μΑ   |
| V <sub>OH</sub>  | High Output Voltage                                                           | -1.02            | -0.84                           | -0.98 | -0.81                           | -0.92       | -0.735                          | Vdc  |
| V <sub>OL</sub>  | Low Output Voltage                                                            | -1.95            | -1.63                           | -1.95 | -1.63                           | -1.95       | -1.60                           | Vdc  |
| $V_{IH}$         | High Input Voltage                                                            | -1.17            | -0.84                           | -1.13 | -0.81                           | -1.07       | -0.735                          | Vdc  |
| V <sub>IL</sub>  | Low Input Voltage                                                             | -1.95            | -1.48                           | -1.95 | -1.48                           | -1.95       | -1.45                           | Vdc  |

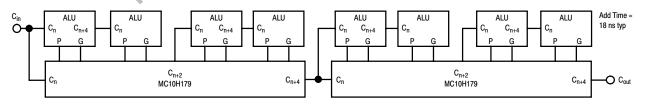
### **AC PARAMETERS**

| t <sub>pd</sub> | Propagation Delay P to P <sub>G</sub> G, P, C <sub>n</sub> to C <sub>n</sub> or G <sub>G</sub> | 0.4 | 1.4 0.4<br>2.3 0.7 | 1.5<br>2.4 | 0.5<br>0.8 | 1.7<br>2.6 | ns |
|-----------------|------------------------------------------------------------------------------------------------|-----|--------------------|------------|------------|------------|----|
| t <sub>r</sub>  | Rise Time                                                                                      | 0.5 | 1.7 0.5            | 1.8        | 0.5        | 1.9        | ns |
| t <sub>f</sub>  | Fall Time                                                                                      | 0.5 | 1.7 0.5            | 1.8        | 0.5        | 1.9        | ns |

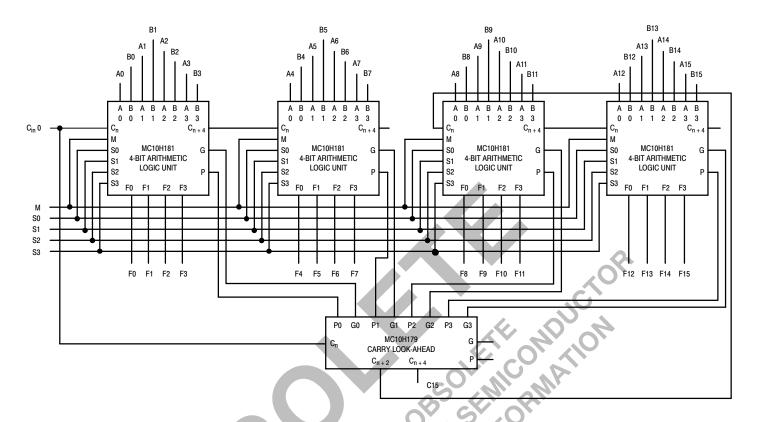
<sup>1.</sup> Each MECL 10H series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 lfpm is maintained. Outputs are terminated through a 50-ohm resistor to -2.0 volts.

#### **LOGIC DIAGRAM**




## TYPICAL APPLICATIONS

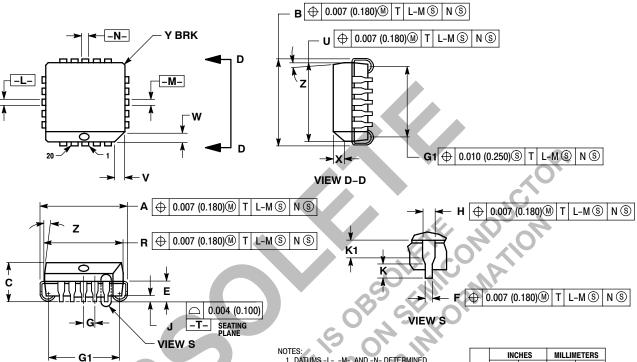
The MC10H179 is a high-speed, low-power, standard MECL complex function that is designed to perform the look-ahead carry function. This device can be used with the MC10H181 4-bit ALU directly, or with the MC10H180 dual arithmetic unit in any computer, instrumentation or digital communication application requiring high speed arithmetic operation on long words.


When used with the MC10H181, the MC10H179 performs a second order or higher look-ahead. Figure 2

shows a 16-bit look-ahead carry arithmetic unit. Second order carry is valuable for longer binary words. As an example, addition of two 32-bit words is improved from 30 nanoseconds with ripple-carry techniques. A block diagram of a 32-bit ALU is shown in Figure 1. The MC10H179 may also be used in many other applications. It can, for example, reduce system package count when used to generate functions of several variables.

FIGURE 1 - 32-BIT ALU WITH CARRY LOOK-AHEAD




### FIGURE 2 - 16-BIT FULL LOOK-AHEAD CARRY ARITHMETIC LOGIC UNIT



#### PACKAGE DIMENSIONS

### PLCC-20 **FN SUFFIX**

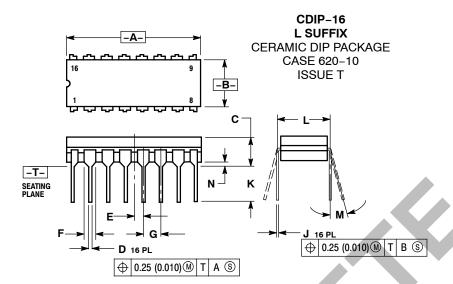
PLASTIC PLCC PACKAGE CASE 775-02 ISSUE C



0.010 (0.250) T L-M N N

- IOTES:

  1. DATUMS -L-, -M-, AND -N- DETERMINED
  WHERE TOP OF LEAD SHOULDER EXITS PLASTIC
  BODY AT MOLD PARTING LINE.

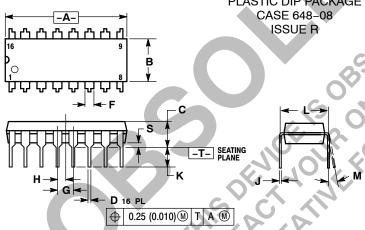

  2. DIMENSION 61, TRUE POSITION TO BE
  MEASURED AT DATUM -T-, SEATING PLANE.

  3. DIMENSIONS R AND U DO NOT INCLUDE MOLD
  FLASH: ALLOWABLE MOLD FLASH IS 0.010 (0.250)
  DED SIGN PER SIDE.
  DIMENSIONING AND TOLERANCING PER ANSI

- 714.5M, 1982.
  5. CONTROLLING DIMENSION: INCH.
  6. THE PACKAGE TOP MAY BE SMALLER THAN THE PACKAGE BOTTOM BY UP TO .0.12 (0.300). DIMENSIONS R AND U ARE DETERMINED AT THE OUTERMOST EXTREMES OF THE PLASTIC BODY EXCLUSIVE OF MOLD FLASH, TIE BAR BURRS, GATE BURRS AND INTERLEAD FLASH, BUT INCLUDING ANY MISMATCH BETWEEN THE TOP
- AND BOTTOM OF THE PLASTIC BODY.
  DIMENSION H DOES NOT INCLUDE DAMBAR PROTRUSION OR INTRUSION. THE DAMBAR PROTRUSION(S) SHALL NOT CAUSE THE H DIMENSION TO BE GREATER THAN 0.037 (0.940). THE DAMBAR INTRUSION(S) SHALL NOT CAUSE THE H DIMENSION TO BE SMALLER THAN 0.025 (0.635).

|     | INC   | HES   | MILLIMETERS |       |  |
|-----|-------|-------|-------------|-------|--|
| DIM | MIN   | MAX   | MIN         | MAX   |  |
| Α   | 0.385 | 0.395 | 9.78        | 10.03 |  |
| В   | 0.385 | 0.395 | 9.78        | 10.03 |  |
| С   | 0.165 | 0.180 | 4.20        | 4.57  |  |
| Е   | 0.090 | 0.110 | 2.29        | 2.79  |  |
| F   | 0.013 | 0.019 | 0.33        | 0.48  |  |
| G   | 0.050 | BSC   | 1.27        | BSC   |  |
| Н   | 0.026 | 0.032 | 0.66        | 0.81  |  |
| J   | 0.020 |       | 0.51        |       |  |
| K   | 0.025 |       | 0.64        |       |  |
| R   | 0.350 | 0.356 | 8.89        | 9.04  |  |
| U   | 0.350 | 0.356 | 8.89        | 9.04  |  |
| ٧   | 0.042 | 0.048 | 1.07        | 1.21  |  |
| W   | 0.042 | 0.048 | 1.07        | 1.21  |  |
| Χ   | 0.042 | 0.056 | 1.07        | 1.42  |  |
| Υ   |       | 0.020 |             | 0.50  |  |
| Z   | 2°    | 10°   | 2 °         | 10 °  |  |
| G1  | 0.310 | 0.330 | 7.88        | 8.38  |  |
| K1  | 0.040 |       | 1.02        |       |  |

#### PACKAGE DIMENSIONS




#### NOTES:

- DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
- CONTROLLING DIMENSION: INCH.
  DIMENSION L TO CENTER OF LEAD WHEN FORMED PARALLEL.
- DIMENSION F MAY NARROW TO 0.76 (0.030) WHERE THE LEAD ENTERS THE CERAMIC

|     | INC       | HES   | MILLIMETERS |       |  |
|-----|-----------|-------|-------------|-------|--|
| DIM | MIN       | MAX   | MIN         | MAX   |  |
| Α   | 0.750     | 0.785 | 19.05       | 19.93 |  |
| В   | 0.240     | 0.295 | 6.10        | 7.49  |  |
| С   |           | 0.200 |             | 5.08  |  |
| D   | 0.015     | 0.020 | 0.39        | 0.50  |  |
| Е   | 0.050 BSC |       | 1.27 BSC    |       |  |
| F   | 0.055     | 0.065 | 1.40        | 1.65  |  |
| G   | 0.100 BSC |       | 2.54 BSC    |       |  |
| Н   | 0.008     | 0.015 | 0.21        | 0.38  |  |
| K   | 0.125     | 0.170 | 3.18        | 4.31  |  |
| L   | 0.300 BSC |       | 7.62 BSC    |       |  |
| M   | 0°        | 15°   | 0°          | 15°   |  |
| N   | 0.020     | 0.040 | 0.51        | 1.01  |  |





#### NOTES

- DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. CONTROLLING DIMENSION: INCH.
- DIMENSION L TO CENTER OF LEADS WHEN FORMED PARALLEL.
- 4. DIMENSION B DOES NOT INCLUDE MOLD FLASH.
  5. ROUNDED CORNERS OPTIONAL.

|     | INC         | HES     | MILLIN   | IETERS |  |
|-----|-------------|---------|----------|--------|--|
| DIM | MIN         | MIN MAX |          | MAX    |  |
| A   | 0.740       | 0.770   | 18.80    | 19.55  |  |
| В   | 0.250       | 0.270   | 6.35     | 6.85   |  |
| С   | 0.145       | 0.175   | 3.69     | 4.44   |  |
| D   | 0.015 0.021 |         | 0.39     | 0.53   |  |
| F   | 0.040       | 0.70    | 1.02     | 1.77   |  |
| G   | 0.100 BSC   |         | 2.54 BSC |        |  |
| Н   | 0.050       | BSC     | 1.27 BSC |        |  |
| J   | 0.008       | 0.015   | 0.21     | 0.38   |  |
| K   | 0.110       | 0.130   | 2.80     | 3.30   |  |
| L   | 0.295       | 0.305   | 7.50     | 7.74   |  |
| M   | 0°          | 10°     | 0°       | 10 °   |  |
| S   | 0.020       | 0.040   | 0.51     | 1.01   |  |

ON Semiconductor and un are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

### **PUBLICATION ORDERING INFORMATION**

#### LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada

Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5773-3850

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative