HSMS-285Y

Zero Bias Schottky Detector Diodes In Surface Mount SOD-523 Package

AVAGO

Data Sheet

Description/Applications

The HSMS-285Y of Avago Technologies is a zero bias Schottky detector diodes that designed and optimized for use in small signal (Pin < -20 dBm) applications at frequencies below 1.5 GHz. It is ideal for RF/ID and RF Tag applications where primary (DC bias) power is not available.

The device is housed in a miniature low cost surface mount SOD-523 package. This miniature package is particularly useful in the application where board space is the major concern.

Table 1. Absolute Maximum Ratings [1] at Tc = +25°C

Symbol	Parameter	Unit	Max Rating
P_{IV}	Peak Inverse Voltage	V	2.0
T_J	Junction Temperature	°C	150
T_{STG}	Storage Temperature	°C	-65 to 150
T_{OP}	Operating Temperature	°C	-65 to 150
θјb	Thermal Resistance [2]	°C/W	175

Notes:

- 1. Operation in excess of any one of these conditions may result in permanent damage to the device.
- Thermal Resistance is measured from junction to board using IR method.

Features

- Space saving SOD-523 package
- High Detection Sensitivity:
 Up to 50mV/uW at 915 MHz
- Low Flicker Noise :
 - -162 dBV/Hz at 100 Hz
- Tape and Reel Options Available
- MSL 1 & Lead Free

Package Marking and Pin Connections

Note: Package marking provides orientation and identification

"R" = Device Code

"?" = Month code indicates the month of manufacture

Attention: Observe precautions for handling electrostatic sensitive devices. ESD Machine Model <30V

ESD Human Body Model =200 V

Refer to Avago Technologies Application Note A004R: Electrostatic Discharge, Damage and Control.

Table 2. Electrical Specifications at Tc = +25°C

	Maximum Forward Voltage VF (mV)		Maximum Reverse Leakage IR (uA)	Typical Capacitance CT (pF)	
	150	250	175	0.30	
Test Conditions	IF = 0.1 mA	IF = 1.0 mA	VR = 2V	VR = -0.5 V to -1.0 V f = 1MHz	

Table 3. RF Electrical Specifications, Tc = +25°C

	Typical Tangential Sensitivity TSS (dBm) @ f = 915 MHz	Typical Voltage Sensitivity γ (mV/ \sim W) @ f = 915 MHz	Typical Video Resistance RV (K Ω)
	-57	40	8.0
Test Conditions	Video Bandwidth = 2 MHz Zero Bias	Power in = -40 dBm RL = 100 KΩ, Zero Bias	Zero Bias

Typical Parameters

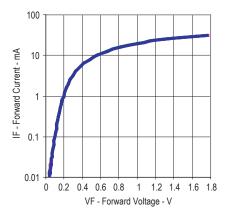


Figure 1. Typical Forward Current vs Forward Voltage.

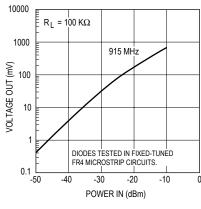


Figure 2. 25°C Output Voltage vs Input Power at Zero Bias.

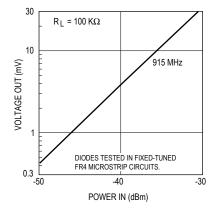



Figure 3. 25°C Expanded Output Voltage vs Input Power. See Figure 2.

Figure 4. Output Voltage vs Temperature.

Equivalent Linear Circuit Model

HSMS-285x chip

R_S = series resistance (see Table of SPICE parameters)

C_i = junction capacitance (see Table of SPICE parameters)

$$R_j = \frac{8.33 \times 10^{-5} \text{ nT}}{I_b + I_s}$$

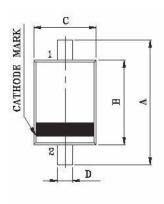
where

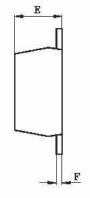
I_b = externally applied bias current in amps

I_s = saturation current (see table of SPICE parameters)

T = temperature, K

n = ideality factor (see table of SPICE parameters)

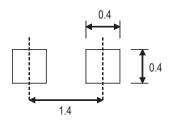

Note

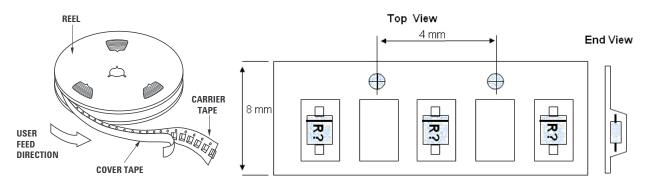

To effectively model the packaged HSMS-285x product, please refer to Application Note AN1124.

SPICE Parameters

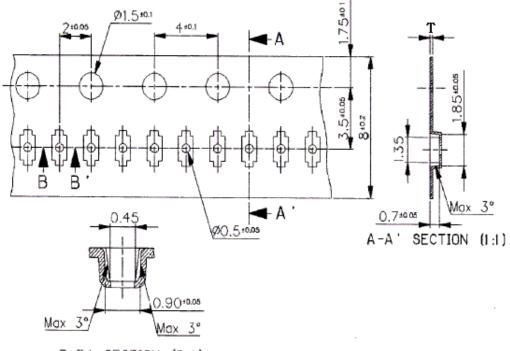
Parameter	Units	HSMS-285x
B _V	V	3.8
C _{J0}	pF	0.18
E _G	eV	0.69
I _{BV}	А	3E -4
Is	Α	3E -6
N		1.06
R _S	Ω	25
P _B (V _J)	V	0.35
P _T (XTI)		2
M		0.5

Package Outline and Dimension




DIM	MILLIMETERS
A	1.60 ± 0.10
В	1.20 ± 0.10
C	0.80 ± 0.10
D	0.30 ± 0.05
E	0.60±0.10
F	0.13±0.05

PCB Footprint



Unit: mm

Device Orientation

Tape Dimensions

B-B' SECTION (3:1)

Specification < Unit: mm >

hole pitch : 50 Pitch Tolerance : 200 ± 0.3

General Tolerance : \pm 0.1 Surface resistance : 104 ~ 108 Ω

Part Number Ordering Information

Part number	No. of Units	Container
HSMS-285Y-BLKG	100	Anti-static bag
HSMS-285Y-TR1G	3000	7" reel

For product information and a complete list of distributors, please go to our web site:

www.avagotech.com

