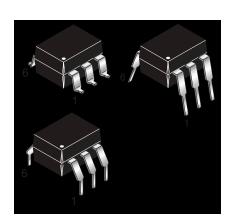


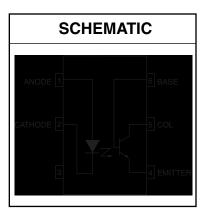
MCT5200 MCT5201 MCT5210 MCT5211

## **Description**

The MCT52XX series consists of a high-efficiency AlGaAs, infrared emitting diode, coupled with an NPN phototransistor in a six pin dual-in-line package.

The MCT52XX is well suited for CMOS to LSTT/TTL interfaces, offering 250% CTR<sub>CE(SAT)</sub> with 1 mA of LED input current. When an LED input current of 1.6 mA is supplied data rates to 20K bits/s are possible.


The MCT52XX can easily interface LSTTL to LSTTL/TTL, and with use of an external base to emitter resistor data rates of 100K bits/s can be achieved.


### **Features**

- High CTR<sub>CE(SAT)</sub> comparable to Darlingtons
- CTR guaranteed 0°C to 70°C
- High common mode transient rejection 5kV/µs
- Data rates up to 150 kbits/s (NRZ)
- Underwriters Laboratory (UL) recognized (file #E90700)
- VDE recognized (file #94766)
  - Add option 300 (e.g., MCT5211.300)

## **Applications**

- CMOS to CMOS/LSTTL logic isolation
- LSTTL to CMOS/LSTTL logic isolation
- RS-232 line receiver
- Telephone ring detector
- AC line voltage sensing
- · Switching power supply





| Parameters                                                | Symbol              | Device | Value          | Units |
|-----------------------------------------------------------|---------------------|--------|----------------|-------|
| TOTAL DEVICE                                              |                     |        |                |       |
| Storage Temperature                                       | T <sub>STG</sub>    | All    | -55 to +150    | °C    |
| Operating Temperature                                     | T <sub>OPR</sub>    | All    | -55 to +100    | °C    |
| Lead Solder Temperature                                   | T <sub>SOL</sub>    | All    | 260 for 10 sec | °C    |
| Total Device Power Dissipation @ 25°C (LED plus detector) | В                   | All    | 260            | mW    |
| Derate Linearly From 25°C                                 |                     | All    | 3.5            | mW/°C |
| EMITTER                                                   |                     |        |                |       |
| Continuous Forward Current                                | I <sub>F</sub>      | All    | 50             | mA    |
| Reverse Input Voltage                                     | V <sub>R</sub>      | All    | 6              | V     |
| Forward Current - Peak (1 µs pulse, 300 pps)              | I <sub>F</sub> (pk) | All    | 3.0            | А     |
| LED Power Dissipation                                     | В                   | All    | 75             | mW    |
| Derate Linearly From 25°C                                 | $P_{D}$             | All    | 1.0            | mW/°C |
| DETECTOR                                                  |                     |        |                |       |
| Continuous Collector Current                              | I <sub>C</sub>      | All    | 150            | mA    |
| Detector Power Dissipation                                | В                   | All    | 150            | mW    |
| Derate Linearly from 25°C                                 | $P_{D}$             | All    | 2.0            | mW/°C |



MCT5200 MCT5201 MCT5210 MCT5211

| ELECTRICAL CHARACTERISTICS (T <sub>A</sub> = 25°C Unless otherwise specified.) |                      |                                              |                                 |        |     |       |     |           |
|--------------------------------------------------------------------------------|----------------------|----------------------------------------------|---------------------------------|--------|-----|-------|-----|-----------|
| INDIVIDUAL COMPONENT CHARACTERISTICS                                           |                      |                                              |                                 |        |     |       |     |           |
| Parameters                                                                     |                      | Test Conditions                              | Symbol                          | Device | Min | Тур** | Max | Units     |
| EMITTER                                                                        |                      |                                              |                                 |        |     |       |     |           |
| Input Forward                                                                  | Voltage              | $(I_F = 5 \text{ mA})$                       | V <sub>F</sub>                  | All    |     | 1.25  | 1.5 | V         |
| Forward Voltage Temp.<br>Coefficient                                           |                      | (I <sub>F</sub> = 2 mA)                      | $\frac{\Delta V_F}{\Delta T_A}$ | All    |     | -1.75 |     | mV/<br>°C |
| Reverse Voltage                                                                |                      | (I <sub>R</sub> = 10 μA)                     | V <sub>R</sub>                  | All    | 6   |       |     | ٧         |
| Junction Capacitance $(V_F = 0 V, f$                                           |                      | (V <sub>F</sub> = 0 V, f = 1.0 MHz)          | CJ                              | All    |     | 18    |     | pF        |
| DETECTOR                                                                       |                      |                                              |                                 |        |     |       |     |           |
| Collector-Emitter Breakdown Voltage                                            |                      | $(I_C = 1.0 \text{ mA}, I_F = 0)$            | BV <sub>CEO</sub>               | All    | 30  | 100   |     | V         |
| Collector-Base                                                                 | e Breakdown Voltage  | $(I_C = 10 \mu A, I_F = 0)$                  | BV <sub>CBO</sub>               | All    | 30  | 120   |     | ٧         |
| Emitter-Base                                                                   | Breakdown Voltage    | $(I_C = 10 \mu A, I_F = 0)$                  | BV <sub>EBO</sub>               | All    | 5   | 10    |     | ٧         |
| Collector-Emitter Dark Current $(V_{CE} = 10V, I_F = 0, R_{BE} = 10V)$         |                      | $(V_{CE} = 10V, I_F = 0, R_{BE} = 1M\Omega)$ | I <sub>CER</sub>                | All    |     | 1     | 100 | nA        |
| Capacitance                                                                    | Collector to Emitter | $(V_{CE} = 0, f = 1 \text{ MHz})$            | C <sub>CE</sub>                 | All    |     | 10    |     | pF        |
|                                                                                | Collector to Base    | $(V_{CB} = 0, f = 1 \text{ MHz})$            | C <sub>CB</sub>                 | All    |     | 80    |     | pF        |
|                                                                                | Emitter to Base      | (V <sub>EB</sub> = 0, f = 1 MHz)             | C <sub>EB</sub>                 | All    |     | 15    |     | pF        |

| ISOLATION CHARACTERISTICS                         |                                                       |                   |            |                  |       |     |          |
|---------------------------------------------------|-------------------------------------------------------|-------------------|------------|------------------|-------|-----|----------|
| Characteristic                                    | Test Conditions                                       | Symbol            | Device     | Min              | Typ** | Max | Units    |
| Input-Output Isolation<br>Voltage <sup>(10)</sup> | (f = 60Hz, t = 1 min.)                                | V <sub>ISO</sub>  | All        | 5300             |       |     | Vac(rms) |
| Isolation Resistance <sup>(10)</sup>              | V <sub>I-O</sub> = 500 VDC, T <sub>A</sub> = 25°C     | R <sub>ISO</sub>  | All        | 10 <sup>11</sup> |       |     | Ω        |
| Isolation Capacitance <sup>(9)</sup>              | V <sub>I-O</sub> = 0, f = 1 MHz                       | C <sub>ISO</sub>  | All        |                  | 0.7   |     | pF       |
| Common Mode Transient                             | $V_{CM} = 50 V_{P-P1}, R_L = 750\Omega, I_F = 0$      | CM                | MCT5210/11 |                  | 5000  |     | 1///10   |
| Rejection – Output High                           | $V_{CM} = 50 V_{P-P}, R_L = 1 K\Omega, I_F = 0$       | CM <sub>H</sub>   | MCT5200/01 |                  | 5000  |     | V/µs     |
| Common Mode Transient                             | $V_{CM} = 50 V_{P-P1}, R_L = 750\Omega, I_F = 1.6 mA$ | CM                | MCT5210/11 |                  | 5000  |     | \//uo    |
| Rejection – Output Low                            | $V_{CM} = 50 V_{P-P1}, R_L = 1K\Omega, I_F = 5 mA$    | - CM <sub>L</sub> | MCT5200/01 |                  | 3000  |     | V/µs     |

<sup>\*\*</sup>All typical T<sub>A</sub>=25°C



MCT5200 MCT5201 MCT5210 MCT5211

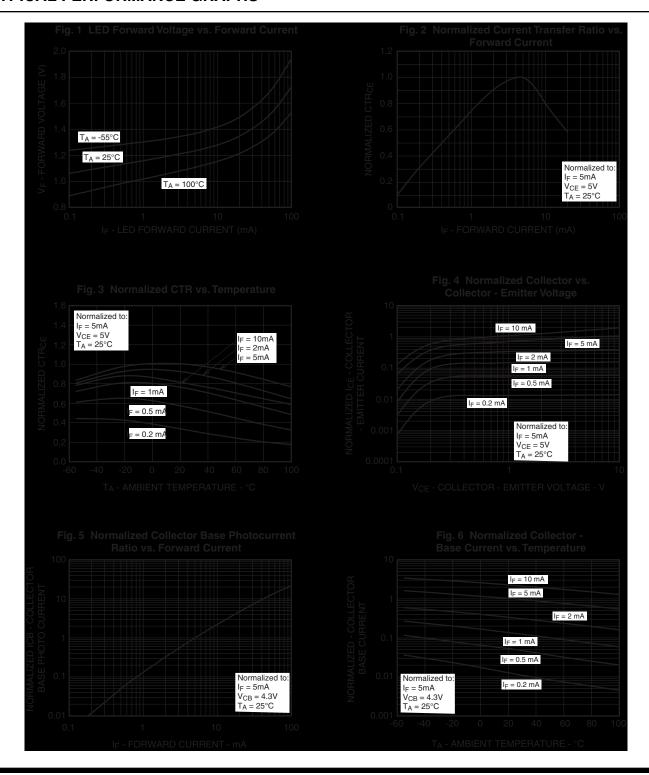
| DC Characteristics                                           | Test Condition                                                                                 | ns                       | Symbol                 | Device             | Min  | Тур** | Max     | Units  |  |
|--------------------------------------------------------------|------------------------------------------------------------------------------------------------|--------------------------|------------------------|--------------------|------|-------|---------|--------|--|
|                                                              | $I_F = 10 \text{ mA}, V_{CE} = 0.4 \text{ V}$                                                  |                          |                        | MCT5200            | 75   |       |         |        |  |
| Saturated Current                                            | $I_F = 5 \text{ mA}, V_{CE} = 0.4 \text{ V}$<br>$I_F = 3.0 \text{ mA}, V_{CE} = 0.4 \text{ V}$ |                          |                        | MCT5201            | 120  |       |         | 1      |  |
| Transfer Ratio <sup>(1)</sup>                                |                                                                                                |                          | CTR <sub>CE(SAT)</sub> | MCT5210            | 60   |       |         | %      |  |
| (Collector to Emitter)                                       | $I_F = 1.6 \text{ mA}, V_{CE} = 0.4 \text{ V}$                                                 |                          | Ì , , , , , ,          | MCT5211            | 100  |       |         |        |  |
|                                                              | $I_F = 1.0 \text{ mA}, V_{CE} = 0.4 \text{ V}$                                                 |                          |                        | IVIC 15211         | 75   |       |         | 1      |  |
| Current Transfer Datio                                       | $I_F = 3.0 \text{ mA}, V_{CE} = 5.0 \text{ V}$                                                 |                          |                        | MCT5210            | 70   |       |         |        |  |
| Current Transfer Ratio (Collector to Emitter) <sup>(1)</sup> | $I_F = 1.6 \text{ mA}, V_{CE} = 5.0 \text{ V}$                                                 |                          | CTR <sub>(CE)</sub>    | MCT5211            | 150  |       |         | %      |  |
| (Collector to Limiter)                                       | $I_F = 1.0 \text{ mA}, V_{CE} = 5.0 \text{ V}$                                                 |                          |                        | MICTOZII           | 110  |       |         |        |  |
|                                                              | $I_F = 10 \text{ mA}, V_{CB} = 4.3 \text{ V}$                                                  |                          |                        | MCT5200            | 0.2  |       |         |        |  |
| 0 IT ( D.:                                                   | I <sub>F</sub> = 5 mA, V <sub>CB</sub> = 4.3 V                                                 |                          | MCT5201                |                    | 0.28 |       |         | 1      |  |
| Current Transfer Ratio<br>Collector to Base(2)               | $I_F = 3.0 \text{ mA}, V_{CE} = 4.3 \text{ V}$                                                 |                          | CTR <sub>(CB)</sub>    | MCT5210            | 0.2  |       |         | %      |  |
| Collector to base(2)                                         | $I_F = 1.6 \text{ mA}, V_{CE} = 4.3 \text{ V}$                                                 |                          |                        | MOTEO44            | 0.3  |       |         |        |  |
|                                                              | $I_F = 1.0 \text{ mA}, V_{CE} = 4.3 \text{ V}$                                                 |                          | 1                      | MCT5211            | 0.25 |       |         |        |  |
|                                                              | I <sub>F</sub> = 10 mA, I <sub>CE</sub> = 7.5 mA                                               |                          |                        | MCT5200            |      |       | 0.4     |        |  |
| 0-4                                                          | I <sub>F</sub> = 5 mA, I <sub>CE</sub> = 6 mA                                                  |                          | <b> </b>               | MCT5201            |      |       | 0.4     | 1 ,, 1 |  |
| Saturation Voltage                                           | $I_F = 3.0 \text{ mA}, I_{CE} = 1.8 \text{ mA}$                                                |                          | V <sub>CE(SAT)</sub>   | MCT5210            |      |       | 0.4     | V      |  |
|                                                              | $I_F = 1.6 \text{ mA}, I_{CE} = 1.6 \text{ mA}$                                                |                          |                        | MCT5211            |      |       | 0.4     |        |  |
| AC Characteristics                                           | Test Condition                                                                                 | ns                       | Symbol                 | Device             | Min  | Тур   | Max     | Units  |  |
|                                                              | $R_L = 330 \Omega, R_{BE} = \infty$                                                            | $I_F = 3.0 \text{ mA}$   |                        | MCT5210            |      | 10    |         |        |  |
|                                                              | $R_L = 3.3 \text{ k}\Omega, R_{BE} = 39 \text{ k}\Omega$                                       | $V_{CC} = 5.0 \text{ V}$ |                        |                    |      | 7     |         | μs     |  |
|                                                              | $R_L = 750 \Omega, R_{BE} = \infty$                                                            | $I_F = 1.6 \text{mA}$    |                        |                    |      | 14    |         |        |  |
| Propagation Delay                                            | $R_L$ = 4.7 kΩ, $R_{BE}$ = 91 kΩ                                                               | $V_{CC} = 5.0V$          | T                      | MCT5211            |      | 15    |         |        |  |
| High to Low <sup>(3)</sup>                                   | $R_L = 1.5 \text{ k}\Omega, R_{BE} = \infty$                                                   | $I_F = 1.0 \text{mA}$    | T <sub>PHL</sub>       | I WICT 3211        |      | 17    |         |        |  |
|                                                              | $R_L = 10 \text{ k}\Omega, R_{BE} = 160 \text{ k}\Omega$                                       | $V_{CC} = 5.0V$          |                        |                    |      | 24    |         |        |  |
|                                                              | $V_{CE} = 0.4V, V_{CC} = 5V,$                                                                  | $I_F = 10mA$             |                        | MCT5200            |      | 1.6   | 12      |        |  |
|                                                              | $R_L = \text{fig. } 13, R_{BE} = 330 \text{ k}\Omega$                                          | $I_F = 5mA$              |                        | MCT5201            |      | 3     | 30      |        |  |
|                                                              | $R_L = 330 \Omega$ , $R_{BE} = \infty$                                                         | $I_F = 3.0 \text{ mA}$   |                        | MCT5210            |      | 0.4   |         |        |  |
|                                                              | $R_L = 3.3 \text{ k}\Omega, R_{BE} = 39 \text{ k}\Omega$                                       | $V_{CC} = 5.0 \text{ V}$ |                        | WIGTSETO           |      | 8     |         |        |  |
|                                                              | $R_L = 750 \Omega$ , $R_{BE} = \infty$                                                         | $I_F = 1.6 \text{mA}$    |                        |                    |      | 2.5   |         |        |  |
| Propagation Delay                                            | $R_L = 4.7 \text{ k}\Omega, R_{BE} = 91 \text{ k}\Omega$                                       | $V_{CC} = 5.0V$          | _                      | MCT5211            |      | 11    |         |        |  |
| Low to High <sup>(4)</sup>                                   | $R_L = 1.5 \text{ k}\Omega, R_{BE} = \infty$                                                   | $I_F = 1.0 \text{mA}$    | T <sub>PLH</sub>       | WICTSZTT           |      | 7     |         | μs     |  |
|                                                              | $R_L$ = 10 kΩ, $R_{BE}$ = 160 kΩ                                                               | $V_{CC} = 5.0 \text{ V}$ |                        |                    |      | 16    |         |        |  |
|                                                              | $V_{CE} = 0.4V, V_{CC} = 5V,$                                                                  | I <sub>F</sub> = 10mA    |                        | MCT5200            |      | 18    | 20      |        |  |
|                                                              | $R_L = \text{fig. } 13, R_{BE} = 330 \text{ k}\Omega$                                          | $I_F = 5mA$              |                        | MCT5201            |      | 12    | 13      |        |  |
|                                                              | 0.41/                                                                                          | I <sub>F</sub> = 10mA    |                        | MCT5200            |      | 0.5   | 7       |        |  |
| (5)                                                          | $V_{CE} = 0.4V,$                                                                               |                          |                        |                    |      |       |         | 1      |  |
| Delay Time <sup>(5)</sup>                                    | $R_{BE} = 0.4V,$ $R_{BE} = 330 \text{ k}\Omega,$ $R_{L} = 1 \text{ k}\Omega, V_{CC} = 5V$      | I <sub>F</sub> = 5mA     | t <sub>d</sub>         | MCT5201            |      | 1.1   | 15      | μs     |  |
| Delay Time <sup>(5)</sup> Rise Time <sup>(6)</sup>           | $R_{BE} = 330 \text{ k}\Omega,$                                                                |                          | t <sub>d</sub>         | MCT5201<br>MCT5200 |      | 1.1   | 15<br>6 | μδ     |  |



MCT5200 MCT5201 MCT5210 MCT5211

| TRANSFER CHARACTERISTICS (T <sub>A</sub> = 0°C to 70°C Unless otherwise specified.) (Continued) |                                                     |                       |                |         |       |     |       |    |
|-------------------------------------------------------------------------------------------------|-----------------------------------------------------|-----------------------|----------------|---------|-------|-----|-------|----|
| DC Characteristics                                                                              | Test Condition                                      | Symbol                | Device         | Min     | Typ** | Max | Units |    |
| (=)                                                                                             | $V_{CE} = 0.4V$ ,                                   | I <sub>F</sub> = 10mA |                | MCT5200 |       | 15  | 18    |    |
| Storage Time <sup>(7)</sup>                                                                     | $R_{BE}$ = 330 kΩ,<br>$R_{L}$ = 1 kΩ, $V_{CC}$ = 5V | I <sub>F</sub> = 5mA  | t <sub>s</sub> | MCT5201 |       | 10  | 13    | μs |
| (0)                                                                                             | $V_{CE} = 0.4V$ ,                                   | I <sub>F</sub> = 10mA |                | MCT5200 |       | 16  | 30    |    |
| Fall Time <sup>(8)</sup>                                                                        | $R_{BE}$ = 330 kΩ,<br>$R_{L}$ = 1 kΩ, $V_{CC}$ = 5V | I <sub>F</sub> = 5mA  | t <sub>f</sub> | MCT5201 |       | 16  | 30    | μs |

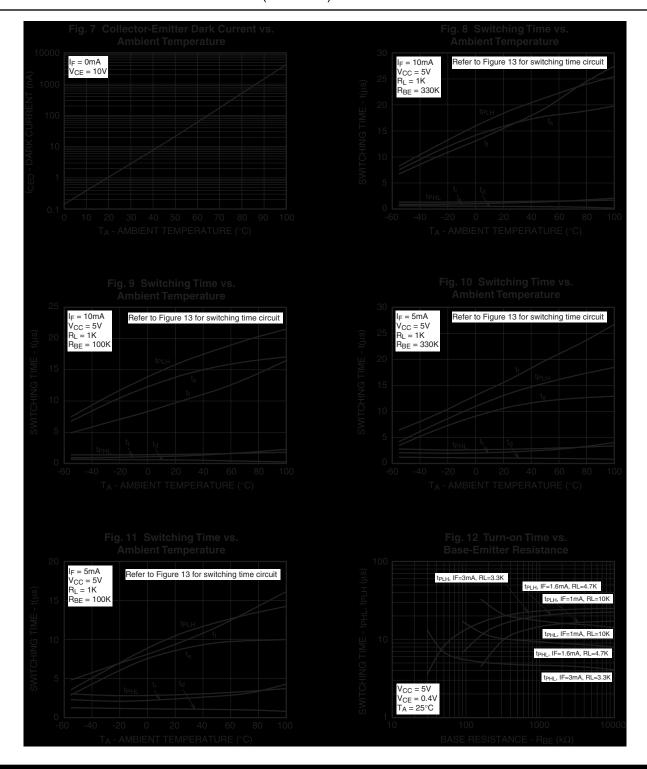
<sup>\*\*</sup>All typicals at T<sub>A</sub> = 25°C


#### Notes

- 1. DC Current Transfer Ratio (CTR<sub>CE</sub>) is defined as the transistor collector current (I<sub>CE</sub>) divided by the input LED current (I<sub>F</sub>) x 100%, at a specified voltage between the collector and emitter (V<sub>CE</sub>).
- 2. The collector base Current Transfer Ratio (CTR<sub>CB</sub>) is defined as the transistor collector base photocurrent(I<sub>CB</sub>) divided by the input LED current (I<sub>F</sub>) time 100%.
- Referring to Figure 14 the T<sub>PHL</sub> propagation delay is measured from the 50% point of the rising edge of the data input pulse to the 1.3V point on the falling edge of the output pulse.
- Referring to Figure 14 the T<sub>PLH</sub> propagation delay is measured from the 50% point of the falling edge of data input pulse to the 1.3V point on the rising edge of the output pulse.
- 5. Delay time (t<sub>d</sub>) is measured from 50% of rising edge of LED current to 90% of Vo falling edge.
- 6. Rise time (t<sub>r</sub>) is measured from 90% to 10% of Vo falling edge.
- 7. Storage time (t<sub>s</sub>) is measured from 50% of falling edge of LED current to 10% of Vo rising edge.
- 8. Fall time  $(t_f)$  is measured from 10% to 90% of Vo rising edge.
- 9. CISO is the capacitance between the input (pins 1, 2, 3 connected) and the output, (pin 4, 5, 6 connected).
- 10. Device considered a two terminal device: Pins 1, 2, and 3 shorted together, and pins 5, 6 and 7 are shorted together.



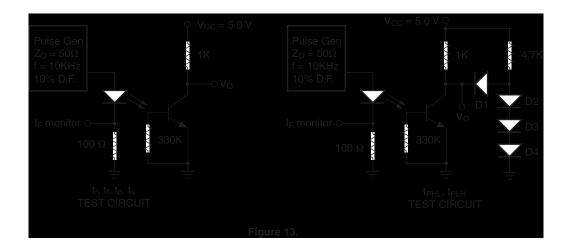
MCT5200 MCT5201 MCT5210 MCT5211

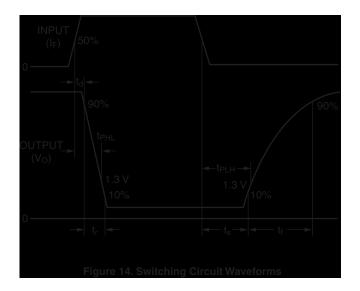

## **TYPICAL PERFORMANCE GRAPHS**





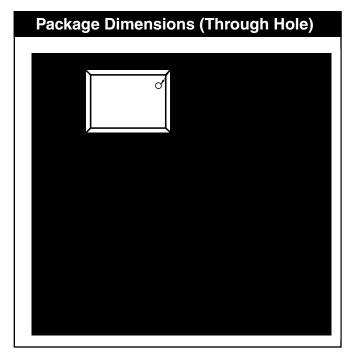
MCT5200 MCT5201 MCT5210 MCT5211

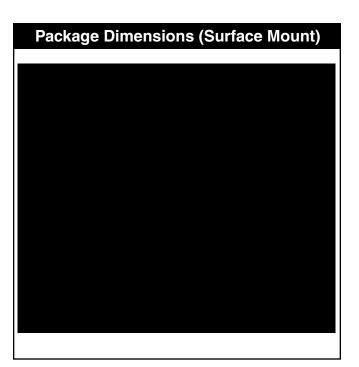

## TYPICAL PERFORMANCE GRAPHS (Continued)

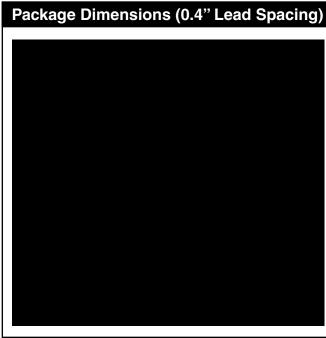





MCT5200 MCT5201 MCT5210 MCT5211


TYPICAL ELECTRO-OPTICAL CHARACTERISTICS (TA = 25°C Unless Otherwise Specified)






MCT5200 MCT5201 MCT5210 MCT5211



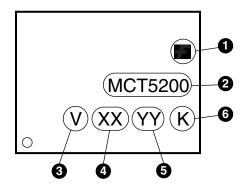






### Note

All dimensions are in inches (millimeters)




| MCT5200 MCT5201 | MCT5210 | MCT5211 |
|-----------------|---------|---------|
|-----------------|---------|---------|

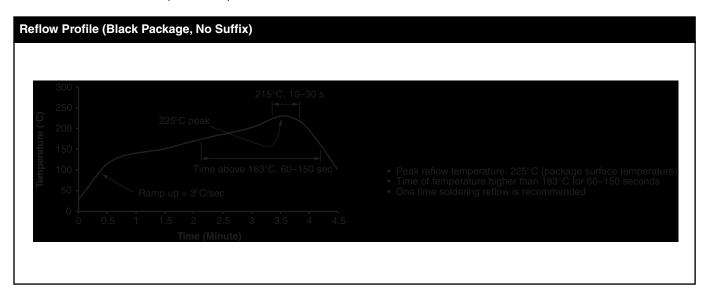
## **ORDERING INFORMATION**

| Option | Order Entry Identifier | Description                            |  |  |  |
|--------|------------------------|----------------------------------------|--|--|--|
| S      | .S                     | Surface Mount Lead Bend                |  |  |  |
| SD     | .SD                    | Surface Mount; Tape and Reel           |  |  |  |
| W      | .W                     | 0.4" Lead Spacing                      |  |  |  |
| 300    | .300                   | VDE 0884                               |  |  |  |
| 300W   | .300W                  | VDE 0884, 0.4" Lead Spacing            |  |  |  |
| 3S     | .3\$                   | VDE 0884, Surface Mount                |  |  |  |
| 3SD    | .3SD                   | VDE 0884, Surface Mount, Tape and Reel |  |  |  |

## **MARKING INFORMATION**



| Definiti | Definitions                                                                            |  |  |  |  |  |
|----------|----------------------------------------------------------------------------------------|--|--|--|--|--|
| 1        | Fairchild logo                                                                         |  |  |  |  |  |
| 2        | Device number                                                                          |  |  |  |  |  |
| 3        | VDE mark (Note: Only appears on parts ordered with VDE option – See order entry table) |  |  |  |  |  |
| 4        | Two digit year code, e.g., '03'                                                        |  |  |  |  |  |
| 5        | Two digit work week ranging from '01' to '53'                                          |  |  |  |  |  |
| 6        | Assembly package code                                                                  |  |  |  |  |  |




MCT5200 MCT5201 MCT5210 MCT5211



### NOTE

All dimensions are in inches (millimeters)





MCT5200 MCT5201 MCT5210 MCT5211

#### **DISCLAIMER**

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

#### LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

Go

DATASHEETS, SAMPLES, BUY

Search:

TECHNICAL INFORMATION APPLICATIONS DESIGN CENTER SUPPORT COMPANY INVESTORS MY F.

Home >> Find products >>

## MCT5211

6-Pin DIP Low Current Input Phototransistor Output Optocoupler

#### Contents

- General description
- Features
- Applications
- Product status/pricing/packaging
   Qualification Support
- Order Samples
- Safety agency certificates

## **General description**

The MCT52XX series consists of a high-efficiency AlGaAs, infrared emitting diode, coupled with an NPN phototransistor in a six pin dual-in-line package.

The MCT52XX is well suited for CMOS to LSTT/TTL interfaces, offering 250% CTR CE(SAT) with 1 mA of LED input current. When an LED input current of 1.6 mA is supplied data rates to 20K bits/s are possible. The MCT52XX can easily interface LSTTL to LSTTL/TTL, and with use of an external base to emitter resistor data rates of 100K bits/s can be achieved.

This page Print version

## BUY

Datasheet Download this



e-mail this datasheet [₌-1

#### **Related Links**

#### Request samples

How to order products

**Product Change Notices** (PCNs)

Support

Sales support

Quality and reliability

Design center

### back to top

#### **Features**

- High CTR<sub>CE(SAT)</sub> comparable to Darlingtons
- CTR guaranteed 0°C to 70°C
- High common mode transient rejection 5kV/µs
- Data rates up to 150 kbits/s (NRZ)
- Underwriters Laboratory (UL) recognized (file #E90700)
- VDE recognized (file #94766)
  - Add option 300 (e.g., MCT5211.300)

#### back to top

### **Applications**

- CMOS to CMOS/LSTTL logic isolationLSTTL to CMOS/LSTTL logic isolation
- RS-232 line receiver

- Telephone ring detector
  AC line voltage sensing
  Switching power supply

### back to top

### Product status/pricing/packaging

BUY

| Product     | Product status | Pb-free Status | Package type | Leads | Packing method |
|-------------|----------------|----------------|--------------|-------|----------------|
| MCT5211     | Lifetime Buy   |                | DIP-B        | 6     | BULK           |
| MCT5211300  | Lifetime Buy   | <b>Ø</b>       | DIP-B        | 6     | BULK           |
| MCT5211300W | Lifetime Buy   | <b>Ø</b>       | DIP-B        | 6     | BULK           |
| MCT52113S   | Lifetime Buy   | <b>Ø</b>       | SMDIP-B      | 6     | BULK           |
| MCT52113SD  | Lifetime Buy   | <b>Ø</b>       | SMDIP-B      | 6     | TAPE REEL      |
| MCT5211S    | Lifetime Buy   | <b>Ø</b>       | SMDIP-B      | 6     | BULK           |
| MCT5211SD   | Lifetime Buy   | <b>Ø</b>       | SMDIP-B      | 6     | TAPE REEL      |
| MCT5211W    | Lifetime Buy   | <b>Ø</b>       | DIP-B        | 6     | BULK           |



Indicates product with Pb-free second-level interconnect. For more information click here.

### back to top

## Safety agency certificates

| Certificate            |           | Agency                         |  |  |  |
|------------------------|-----------|--------------------------------|--|--|--|
| E90700, Vol. 1 (936 K) | UL (1577) | Underwriters Laboratories Inc. |  |  |  |
| E90700, Vol. 1 (936 K) | C-UL      | Underwriters Laboratories Inc. |  |  |  |
| <u>0122085</u> (677 K) | SEMKO     | SEMKO                          |  |  |  |
| P01101067 (1638 K)     | NEMKO     | NEMKO                          |  |  |  |
| FI 16812 (964 K)       | FIMKO     | FIMKO                          |  |  |  |
|                        |           |                                |  |  |  |

| 310684-02 (623 K)       | DEMKO | DEMKO Testing & Certification        |
|-------------------------|-------|--------------------------------------|
| <u>1027742</u> (2305 K) | CSA   | Canadian Standards Association       |
| <u>94766</u> (1673 K)   | VDE   | VDE Pruf-und Zertifizierungsinstitut |

### back to top

## **Qualification Support**

Click on a product for detailed qualification data

| Product     |
|-------------|
| MCT5211     |
| MCT5211300  |
| MCT5211300W |
| MCT52113S   |
| MCT52113SD  |
| MCT5211S    |
| MCT5211SD   |
| MCT5211W    |

### back to top

© 2007 Fairchild Semiconductor



Products | Design Center | Support | Company News | Investors | My Fairchild | Contact Us | Site Index | Privacy Policy | Site Terms & Conditions | Standard Terms & Conditions |