
# 1/4 WATT CARBON COMPOSITION

### Features:

- Low inductance / High Frequency Performance
- High Surge / High Pulse Capability
- Rugged Construction

Carbon Composition resistors are commonly used in high frequency, fusing, or pulse applications including

- Snubbers
- Lightening Surge Protection Circuits
- Grounding Resistors
- RFI Suppression



| Value in<br>Ohms | NTE<br>Stock<br>Number |
|------------------|------------------------|------------------|------------------------|------------------|------------------------|------------------|------------------------|------------------|------------------------|
| 10               | QWCC010                | 150              | QWCC115                | 2.2K             | QWCC222                | 33K              | QWCC333                | 470K             | QWCC447                |
| 12               | QWCC012                | 180              | QWCC118                | 2.7K             | QWCC227                | 39K              | QWCC339                | 560K             | QWCC456                |
| 15               | QWCC015                | 220              | QWCC122                | 3.3K             | QWCC233                | 47K              | QWCC347                | 680K             | QWCC468                |
| 18               | QWCC018                | 270              | QWCC127                | 3.9K             | QWCC239                | 56K              | QWCC356                | 820K             | QWCC482                |
| 22               | QWCC022                | 330              | QWCC133                | 4.7K             | QWCC247                | 68K              | QWCC368                | 1M               | QWCC510                |
| 27               | QWCC027                | 390              | QWCC139                | 5.6K             | QWCC256                | 82K              | QWCC382                |                  |                        |
| 33               | QWCC033                | 470              | QWCC147                | 6.8K             | QWCC268                | 100K             | QWCC410                |                  |                        |
| 39               | QWCC039                | 560              | QWCC156                | 8.2K             | QWCC282                | 120K             | QWCC412                |                  |                        |
| 47               | QWCC047                | 680              | QWCC168                | 10K              | QWCC310                | 150K             | QWCC415                |                  |                        |
| 56               | QWCC056                | 820              | QWCC182                | 12K              | QWCC312                | 180K             | QWCC418                |                  |                        |
| 68               | QWCC068                | 1K               | QWCC210                | 15K              | QWCC315                | 220K             | QWCC422                |                  |                        |
| 82               | QWCC082                | 1.2K             | QWCC212                | 18K              | QWCC318                | 270K             | QWCC427                |                  |                        |
| 100              | QWCC110                | 1.5K             | QWCC215                | 22K              | QWCC322                | 330K             | QWCC433                |                  |                        |
| 120              | QWCC112                | 1.8K             | QWCC218                | 27K              | QWCC327                | 390K             | QWCC439                |                  |                        |

## **SPECIFICATIONS**

## Electrical Characteristics @ 70°C

| NTE Number           | Resistance Range<br>(Ohms) | Tolerance<br>(%) | Voltage<br>(Volts) | Operating Temperature<br>(T <sub>opr</sub> ) | Temperature Coefficient<br>(PPM/°C) |
|----------------------|----------------------------|------------------|--------------------|----------------------------------------------|-------------------------------------|
| QWCC010 thru QWCC382 | 10 to 82K                  | 10               | 250                | –55° to +150°C                               | ±0.15%                              |
| QWCC410 thru QWCC510 | 100K to 1M                 | 10               | 250                | –55° to +150°C                               | ±0.15%                              |

#### Mechanical\* (Typical, inches/mm)

| NTE Number           | Body Length<br>(L) | Body Diameter<br>(D) | Lead Diameter<br>(d) | Lead Length<br>(LL) |  |
|----------------------|--------------------|----------------------|----------------------|---------------------|--|
| QWCC010 thru QWCC510 | 0.250 (6.35)       | 0.090 (2.3)          | 0.024 (0.61)         | 1.000 (25.4)        |  |
|                      |                    | ( )                  | 0.024 (0.01)         | 1.000 (20           |  |

These dimensions are for reference only, please consult the factory for actual size.



## **GENERAL INFORMATION**

#### Pros and Cons of Carbon Composition Resistors

Carbon Composition resistors offer excellent surge and high-frequency performance due to the bulk nature of the resistance element. Unlike wirewound and film resistors, there are no windings of resistance wire, nor any film depositions to open under overload pulses. Since the resistance element is a hotmolded solid core comprised of resin and a carbon slug, without helical turns of resistance wire or film, the inductance is extremely low, essentially the same as a straight piece of wire. The trade-off for the excellent surge and high-frequency capability is a rather unstable environmental performance, particularly in humid environments, a condition well known by most circuit designers. Carbon composition resistors therefore should not be utilized in precision applications, which are generally better suited by other resistor families such as NTE's standard Metal Film types.

There is no single resistor family, however, that offers the unique specialty performance levels of the composition construction, but depending on circuit requirements, other models will often provide a suitable replacement.

## 1/4 WATT CARBON COMPOSITION

## **GENERAL INFORMATION (Cont'd)**

## Moisture / Humidity Considerations

Carbon Composition resistors are not as stable as other types of resistors, especially in higher humidity conditions and therefore not suitable for precision applications. For example, carbon comps may shift up to 10% during endurance testing. Most general purpose chip resistors have a maximum shift under the same conditions of less than 3%.

Carbon comps are also highly susceptible to moisture penetration. Damp heat testing may cause carbon comps to shift up to 10%. For that reason, carbon comps are recommended to be used soon after purchase, especially once the bag is opened. However, even in a sealed poly-bag, carbon comps may shift up to 5% in a year. Resistance changes due to humidity/ moisture can be positive or negative (mostly positive) and is usually reversible by conditioning the resistors at 100°-105°C or by dry storage.

Before being considered failures, out–of–tolerance resistors should be conditioned in a dry oven at a temperature of  $100^{\circ}C + 5^{\circ}C$  for 96 ±4 hours prior to conducting resistance measurements, although some customers have had satisfactory results by baking 12–24 hrs at  $110^{\circ}-120^{\circ}C$ . Regardless of the amount of baking, some units may not return to the original value.

Typical levels of shift due to the absorption of moisture is generally less than 10% after 10 days of cycled humidity at 80–100% RH levels. Low and mediumvalue composition resistors typically exhibit less change due to humidity than high–value resistors. Parts should be stored in low humidity conditions (45% RH max). Conditioned (dry) resistors are the most sensitive to humidity.

In operation, moisture absorption is minimized by operating the resistors with as little as 1/8th rated wattage load (the self-heating effect causes parts to dehumidify).