

MOS INTEGRATED CIRCUIT $\mu PD30550A$

VR5500A, VR5532A

64-/32-BIT MICROPROCESSOR

DESCRIPTION

The μ PD30550AF2-300-NN1 and μ PD30550AF2-400-NN1 (V_R5500A), and μ PD30550AGD-300-WML and μ PD30550AGD-350-WML (V_R5532A) are members of the V_RTM Series of RISC (Reduced Instruction Set Computer) microprocessors. They are high-performance 64-/32-bit microprocessors that employ the RISC architecture developed by MIPSTM. The V_R5500A uses a BGA package and provides a 300 MHz product and a 400 MHz product. The V_R5532A uses a QFP package and provides a 300 MHz product and a 350 MHz product (please refer to **ORDERING INFORMATION** for details).

The V_R5500A allows selection of a 64-bit or 32-bit bus width for the system interface, and can operate using protocols compatible with the V_R5000 Series and V_R5432. The V_R5532A does not include a system interface bus width selection function (the bus is fixed to 32 bits).

Detailed function descriptions are provided in the following user's manual. Be sure to read the manual before designing.

VR5500A, VR5532A User's Manual (U16677E/U16677J)

FEATURES

- MIPS 64-bit RISC architecture
- · High-speed operation processing
 - Two-way superscalar super pipeline
 - [VR5500A]

300 MHz product: 603 MIPS 400 MHz product: 804 MIPS

[VR5532A] 300 MHz product:

603 MIPS

350 MHz product: 703 MIPS

High-speed translation lookaside buffer (TLB)(48 entries)

Address space

• Physical: 36 bits (64-bit bus selected) Note

32 bits (32-bit bus selected)

• Virtual: 40 bits (in 64-bit mode)

31 bits (in 32-bit mode)

- On-chip floating-point unit (FPU)
 - · Supports sum-of-products instructions
- On-chip primary cache memory (instruction/data: 32 KB each)
 - 2-way set associative
 - Supports line lock feature

- 64-/32-bit address/data multiplexed bus
 - Bus width selectable during reset^{Note}
 - Bus protocol compatibility with existing products retained
- Maximum operating frequency
 - [VR5500A]

300 MHz product: Internal 300 MHz, external 133 MHz 400 MHz product: Internal 400 MHz, external 133 MHz

[VR5532A]

300 MHz product: Internal 300 MHz, external 100 MHz

- 350 MHz product: Internal 350 MHz, external 100 MHz
- External/internal multiplication factor selectable from ×2 to ×5.5 by increments of 0.5
- Conforms to MIPS I, II, III, and IV instruction sets. Also supports product-sum operation instruction, rotate instruction, register scan instruction, and instruction for low power mode.
- Supports hardware debug function (N-Wire)
- · Supply voltage

Core block: 1.5 V ±5% (300 MHz product)

1.5 V \pm 5% (350 MHz product, V_R5532A) 1.6 to 1.7 V (400 MHz product, V_R5500A)

I/O block: 3.3 V ±5%, 2.5 V ±5%

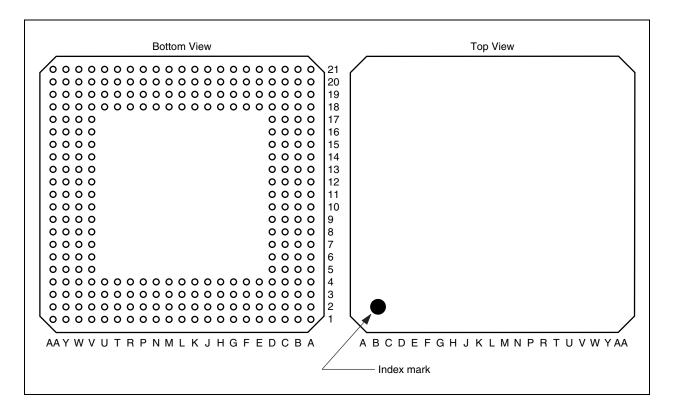
Note VR5500A only.

The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version.

Not all products and/or types are available in every country. Please check with an NEC Electronics sales representative for availability and additional information.

APPLICATIONS

- · Set-top boxes
- MFP/LBP
- RAID
- High-end embedded devices, etc.


ORDERING INFORMATION

Part Number	Package	Maximum Operating Frequency
μPD30550AF2-300-NN1	272-pin plastic BGA (C/D advanced type) (29 \times 29)	300 MHz
μ PD30550AF2-300-NN1-A $^{ ext{Note}}$	272-pin plastic BGA (C/D advanced type) (29 \times 29)	300 MHz
μPD30550AF2-400-NN1	272-pin plastic BGA (C/D advanced type) (29 \times 29)	400 MHz
μ PD30550AF2-400-NN1-A $^{ ext{Note}}$	272-pin plastic BGA (C/D advanced type) (29 \times 29)	400 MHz
★ μPD30550AGD-300-WML	208-pin plastic QFP (fine pitch) (28 \times 28)	300 MHz
$\star \mu$ PD30550AGD-300-WML-A ^{Note}	208-pin plastic QFP (fine pitch) (28 \times 28)	300 MHz
★ μPD30550AGD-350-WML	208-pin plastic QFP (fine pitch) (28 \times 28)	350 MHz
$\star\mu$ PD30550AGD-350-WML-A $^{ ext{Note}}$	208-pin plastic QFP (fine pitch) (28 \times 28)	350 MHz

Note Lead-free product

PIN CONFIGURATION

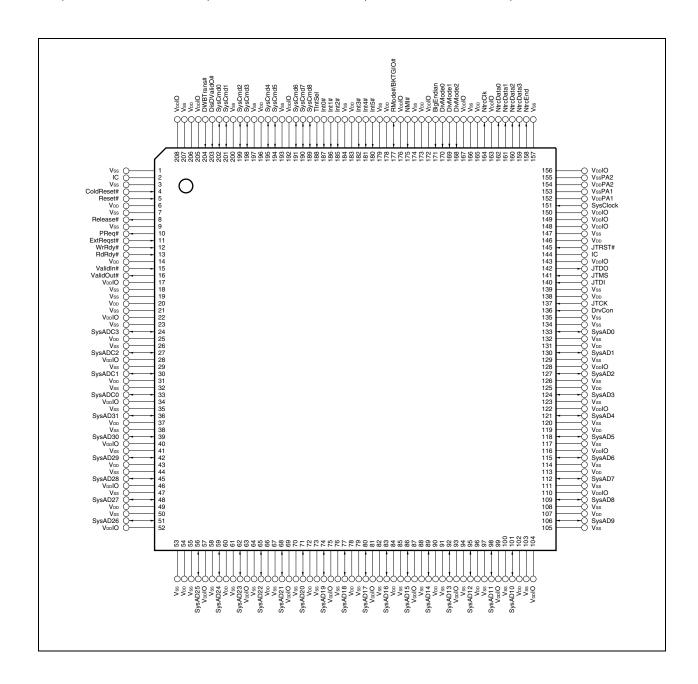
272-pin plastic BGA (C/D advanced type) (29 × 29)
 μPD30550AF2-300-NN1, μPD30550AF2-300-NN1-A, μPD30550AF2-400-NN1, μPD30550AF2-400-NN1-A

(1/2)

No.	Pin Name	No.	Pin Name	No.	Pin Name	No.	Pin Name
A1	Vss	B17	SysAD27	D12	Vss	H4	V _{DD}
A2	Vss	B18	V _{DD} IO	D13	SysAD31	H18	Vss
A3	V _{DD} IO	B19	V _{DD} IO	D14	V _{DD}	H19	Vss
A4	V _{DD} IO	B20	Vss	D15	SysAD60	H20	Vss
A5	Reset#	B21	Vss	D16	Vss	H21	SysAD21
A6	PReq#	C1	V _{DD} IO	D17	SysAD26	J1	SysCmd7
A7	ValidIn#	C2	V _{DD} IO	D18	Vss	J2	SysCmd8
A8	ValidOut#	С3	Vss	D19	Vss	J3	TIntSel
A9	Vss	C4	Vss	D20	V _{DD} IO	J4	Int0#
A10	SysADC7	C5	Vss	D21	V _{DD} IO	J18	SysAD52
A11	SysADC3	C6	V _{DD}	E1	SysCmd0	J19	SysAD20
A12	SysADC1	C7	WrRdy#	E2	DisDValidO#	J20	SysAD51
A13	SysADC4	C8	Vss	E3	DWBTrans#	J21	SysAD19
A14	SysAD62	С9	SysID1	E4	O3Return#	K1	Int1#
A15	SysAD30	C10	V _{DD}	E18	SysAD57	K2	Vss
A16	SysAD28	C11	SysADC2	E19	SysAD25	КЗ	Vss
A17	SysAD59	C12	Vss	E20	SysAD56	K4	Vss
A18	V _{DD} IO	C13	SysAD63	E21	SysAD24	K18	V _{DD}
A19	VDDIO	C14	V _{DD}	F1	SysCmd1	K19	V _{DD}
A20	Vss	C15	SysAD29	F2	Vss	K20	V _{DD}
A21	Vss	C16	Vss	F3	Vss	K21	V _{DD}
B1	Vss	C17	SysAD58	F4	Vss	L1	Int2#
B2	Vss	C18	V _{DD} IO	F18	V _{DD}	L2	Int3#
B3	VDDIO	C19	Vss	F19	V _{DD}	L3	Int4#
B4	VDDIO	C20	V _{DD} IO	F20	V _{DD}	L4	Int5#
B5	ColdReset#	C21	V _{DD} IO	F21	SysAD55	L18	SysAD17
B6	Release#	D1	V _{DD} IO	G1	SysCmd2	L19	SysAD49
B7	ExtRqst#	D2	V _{DD} IO	G2	SysCmd3	L20	SysAD18
B8	BusMode	D3	Vss	G3	SysCmd4	L21	SysAD50
B9	SysID2	D4	Vss	G4	SysCmd5	M1	RMode#/BKTGIO#
B10	V _{DD}	D5	IC	G18	SysAD23	M2	V _{DD}
B11	SysADC6	D6	V _{DD}	G19	SysAD54	МЗ	V _{DD}
B12	Vss	D7	RdRdy#	G20	SysAD22	M4	V _{DD}
B13	SysADC0	D8	Vss	G21	SysAD53	M18	Vss
B14	V _{DD}	D9	SysID0	H1	SysCmd6	M19	Vss
B15	SysAD61	D10	V _{DD}	H2	V _{DD}	M20	Vss
B16	Vss	D11	SysADC5	НЗ	V _{DD}	M21	Vss

Caution Leave the IC pin open.

Remark # indicates active low.


(2/2)

No.	Pin Name	No.	Pin Name	No.	Pin Name	No.	Pin Name
N1	VDDIO	T21	SysAD12	W2	VDDIO	Y12	V _{DD}
N2	NMI#	U1	NTrcClk	W3	Vss	Y13	SysAD3
N3	VDDIO	U2	NTrcData0	W4	Vss	Y14	Vss
N4	BigEndian	U3	NTrcData1	W5	V _{DD} PA2	Y15	SysAD37
N18	SysAD15	U4	NTrcData3	W6	Vss	Y16	SysAD39
N19	SysAD47	U18	SysAD10	W7	VDDIO	Y17	SysAD40
N20	SysAD16	U19	SysAD42	W8	V _{DD}	Y18	VDDIO
N21	SysAD48	U20	SysAD11	W9	JTDI	Y19	VDDIO
P1	Vss	U21	SysAD43	W10	Vss	Y20	Vss
P2	Vss	V1	NTrcData2	W11	SysAD1	Y21	Vss
P3	Vss	V2	NTrcEnd	W12	V _{DD}	AA1	Vss
P4	Vss	V3	Vss	W13	SysAD35	AA2	Vss
P18	V _{DD}	V4	Vss	W14	Vss	AA3	VDDIO
P19	V _{DD}	V5	VssPA2	W15	SysAD38	AA4	VDDIO
P20	V _{DD}	V6	Vss	W16	V _{DD}	AA5	V _{DD} PA1
P21	SysAD46	V7	V _{DD} IO	W17	SysAD9	AA6	VDDIO
R1	DivMode0	V8	V _{DD}	W18	Vss	AA7	IC
R2	DivMode1	V9	JTMS	W19	Vss	AA8	JTDO
R3	DivMode2	V10	Vss	W20	VDDIO	AA9	DrvCon
R4	VDDIO	V11	SysAD33	W21	VDDIO	AA10	Vss
R18	SysAD44	V12	V _{DD}	Y1	Vss	AA11	SysAD0
R19	SysAD13	V13	SysAD4	Y2	Vss	AA12	SysAD2
R20	SysAD45	V14	Vss	Y3	VDDIO	AA13	SysAD34
R21	SysAD14	V15	SysAD7	Y4	VDDIO	AA14	SysAD36
T1	V _{DD}	V16	V _{DD}	Y5	VssPA1	AA15	SysAD5
T2	V _{DD}	V17	SysAD41	Y6	SysClock	AA16	SysAD6
Т3	V _{DD}	V18	Vss	Y7	JTRST#	AA17	SysAD8
T4	V _{DD}	V19	Vss	Y8	V _{DD}	AA18	VDDIO
T18	Vss	V20	V _{DD} IO	Y9	JTCK	AA19	VDDIO
T19	Vss	V21	VDDIO	Y10	Vss	AA20	Vss
T20	Vss	W1	V _{DD} IO	Y11	SysAD32	AA21	Vss

Caution Leave the IC pin open.

Remark # indicates active low.

• 208-pin plastic QFP (fine pitch) (28 \times 28) μ PD30550AGD-300-WML, μ PD30550AGD-300-WML-A, μ PD30550AGD-350-WML, μ PD30550AGD-350-WML-A

PIN NAMES

BigEndian: Big endian PReq#: Processor request

BKTGIO#: Break/trigger input/output RdRdy#: Read ready BusMode^{Note 1}: Bus mode Release#: Release ColdReset#: Cold reset Reset#: Reset Disable delay ValidOut# DisDValidO#: RMode#: Reset mode

DivMode(2:0): Divide mode SysAD(63:0)^{Note 2}: System address/data bus

DrvCon: Driver control SysADC(7:0)^{Note 3}: System address/data check

bus

DWBTrans#: Doubleword block transfer

ExtRqst#: External request SysClock: System clock

IC Internally connected SysCmd(8:0): System command/data

Int(5:0)#: identifier bus

JTCK: JTAG clock SysID(2:0)^{Note 1}: System bus identifier

JTDI: JTAG data input TIntSel: Timer interrupt selection

JTDO: JTAG data output ValidIn#: Valid input JTMS: JTAG mode select ValidOut#: Valid output

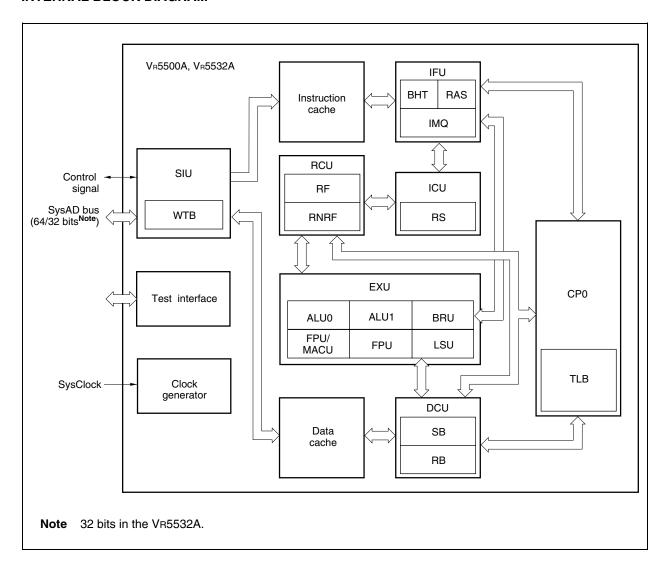
JTRST#: JTAG reset VDD: Power supply for CPU core
NMI#: Non-maskable interrupt VDDIO: Power supply for I/O

NMI#: Non-maskable interrupt VDDIO: Power supply for I/O NTrcClk: N-Trace clock VDDPA1, VDDPA2: Quiet VDD for PLL

NTrcData(3:0): N-Trace data output Vss: Ground

NTrcEnd: N-Trace end VssPA1, VssPA2: Quiet Vss for PLL O3Return# Out-of-Order Return mode WrRdy#: Write ready

Notes 1. VR5500A only.


2. In the VR5500A. SysAD(31:0) in the VR5532A.

3. In the V_R5500A . SysADC(3:0) in the V_R5532A .

Remark # indicates active low.

INTERNAL BLOCK DIAGRAM

7

CONTENTS

1.	PIN FUNCTIONS	9
	1.1 List of Pin Functions	9
	1.2 Recommended Connection of Unused Pins	13
2.	ELECTRICAL SPECIFICATIONS	15
3.	PACKAGE DRAWING	27
4	RECOMMENDED SOLDERING CONDITIONS	20

1. PIN FUNCTIONS

Remark # indicates active low.

1.1 List of Pin Functions

Caution Unless otherwise specified, the V_R5500A is treated as the representative model throughout this chapter.

(1) System interface signals

Pin Name	I/O	Function
SysAD(63:0) ^{Note1}	I/O	System address/data bus A 64-bit bus for communication between the processor and external agent. The lower 32 bits (SysAD(31:0)) are used in 32-bit bus mode.
SysADC(7:0) ^{Note1}	I/O	System address/data check bus A bus for SysAD bus parity. Valid only during a data cycle. The lower 4 bits (SysADC(3:0)) are used in 32-bit bus mode.
SysCmd(8:0)	I/O	System command/data ID bus A 9-bit bus that transfers command and data identifiers between the processor and external agent
SysID(2:0) ^{Note 2}	I/O	System bus protocol ID These signals transfer request identifiers in the out-of-order return mode. The processor drives a valid identifier in synchronization with the activation of the ValidOut# signal. The external agent must drive valid identifiers in synchronization with the activation of the ValidIn# signal.
ValidIn#	Input	Valid In A signal indicating that the external agent is driving a valid address or data onto the SysAD bus, a valid command or data identifier onto the SysCmd bus, or a valid request identifier onto the SysID bus in the out-of-order return mode.
ValidOut#	Output	Valid out A signal indicating that the processor is driving a valid address or data onto the SysAD bus, a valid command or data identifier onto the SysCmd bus, or a valid request identifier onto the SysID bus in the out-of-order return mode.
RdRdy#	Input	Read ready A signal indicating that the external agent is ready to accept a processor read request
WrRdy#	Input	Write ready A signal indicating that the external agent is ready to accept a processor write request
ExtRqst#	Input	External request A signal indicating that the external agent is requesting the right to use the system interface
Release#	Output	Releases interface A signal indicating that the processor is releasing the system interface to a slave state
PReq#	Output	Processor request A signal indicating that the processor has a request that is pending

Notes 1. In the VR5500A. SysAD(31:0), SysADC(3:0) in the VR5532A.

2. VR5500A only.

(2) Initialization interface signals

(1/2)

Pin Name	I/O	Function
DivMode(2:0)	Input	Division mode These signals set the division ratio of PClock and SysClock as follows: 111: 5.5 110: 5 101: 4.5 100: 4 011: 3.5 010: 3 001: 2.5 000: 2 Set the input levels of these signals before a power-on reset. Make sure that the levels of these signals do not change while the VR5500A is operating.
BigEndian	Input	Endian mode This signal sets the byte ordering for addressing. 1: Big endian 0: Little endian Set the input level of this signal before a power-on reset. Make sure that the level of this signal does not change while the VR5500A is operating.
BusMode ^{Note}	Input	Bus mode This signal sets the bus width of the system interface. 1: 64 bits 0: 32 bits Set the input level of this signal before a power-on reset. Make sure that the level of this signal does not change while the VR5500A is operating.
TIntSel	Input	Interrupt source select This signal sets the interrupt source to be assigned to the IP7 bit of the Cause register. 1: Timer interrupt 0: Int5# input and external write request (SysAD5) Set the input level of this signal before a power-on reset. Make sure that the level of this signal does not change while the VR5500A is operating.
DisDValidO#	Input	ValidOut# delay enable 1: ValidOut# is active even while the address cycle is stalled 0: ValidOut# is active during the address issuance cycle only Set the input level of this signal before a power-on reset. Make sure that the level of this signal does not change while the VR5500A is operating.
DWBTrans#	Input	Doubleword block transfer enable (valid in 32-bit bus mode only) 1: Disabled 0: Enabled Set the input level of this signal before a power-on reset. Make sure that the level of this signal does not change while the VR5500A is operating.

Note VR5500A only.

Remark 1: High level, 0: Low level

(2/2)

Pin Name	I/O	Function
O3Return# ^{Note}	Input	Out-of-Order Return mode This signal sets the protocol of the system interface. 1: Normal mode 0: Out-of-order return mode Set the input level of this signal before a power-on reset. Make sure that the level of this signal does not change while the VR5500A is operating.
ColdReset#	Input	Cold reset This signal completely initializes the internal status of the processor. Deassert it in synchronization with SysClock.
Reset#	Input	Reset This signal logically initializes the internal status of the processor. Deassert it in synchronization with SysClock.
DrvCon	Input	Drive control This signal sets the impedance of the external output driver. 1: Low 0: Normal (recommended) Set the input level of this signal before a power-on reset. Make sure that the level of this signal does not change while the VR5500A is operating.

Note VR5500A only.

Remark 1: High level, 0: Low level

The O3Return#Note, DWBTrans#, DisDValidO#, and BusModeNote signals are used for determining the protocol of the system interface. The protocol is selected as follows in accordance with the setting of these signals.

Note VR5500A only.

[VR5500A bus protocol]

Protocol	O3Return#	DWBTrans#	DisDValidO#	BusMode
V _R 5000 compatible	1	1	1	1
RM523x compatible	1	1	1	0
V _R 5432 native mode compatible	1	0	0	0
Out-of-order return mode	0	Arbitrary	Arbitrary	Arbitrary

[VR5532A bus protocol]

Protocol	DWBTrans#	DisDValidO#
RM523x compatible	1	1
V _R 5432 native mode compatible	0	0

Remark 1: High level, 0:Low level

RM523x is a product of PMC-Sierra, Inc.

(3) Interrupt interface signals

Pin Name	I/O	Function	
Int(5:0)#	Input	Interrupt These are general-purpose processor interrupt requests. The input states can be checked by the Cause register.	
		Whether Int5# is acknowledged or not depends on the status of the TIntSel signal during reset.	
NMI#	Input	Non-maskable interrupt	
		This is the non-maskable interrupt request.	

(4) Clock interface signals

Pin Name	I/O	Function
SysClock	Input	System clock
		Clock input to the processor
VDDPA1	-	Voo for PLL
VDDPA2		Power supply for the internal PLL
VssPA1	-	Vss for PLL
VssPA2		Ground for the internal PLL

(5) Power supply

Pin Name	I/O	Function
V _{DD}	_	Power supply pin for core
V _{DD} IO	_	Power supply pin for I/O
Vss	_	Ground potential pin

Caution

The V_R5500A uses two power supply pins. These power supply pins can be applied in any sequence. However, power must not be applied to one pin for 100 ms or longer while it is not applied to the other.

(6) Test interface signals

Pin Name	I/O	Function
NTrcData(3:0)	Output	Trace data
		Trace data output
NTrcEnd	Output	Trace end
		A signal that indicates the end of a trace data packet.
NTrcClk	Output	Trace clock
		Clock for the test interface. The same clock as SysClock is output.
RMode#/	I/O	Reset mode/break trigger I/O
BKTGIO#		A debug reset mode input signal while the JTRST# signal is active.
		It serves as a break or trigger I/O signal during normal operation.
JTDI	Input	JTAG data input
		Serial data input for JTAG
JTDO	Output	JTAG data output
		Serial data output for JTAG. Output is performed in synchronization with the fall of JTCK.
JTMS	Input	JTAG mode select
		This signal selects the JTAG test mode.
JTCK	Input	JTAG clock input
		Serial clock input for JTAG. The maximum frequency is 33 MHz. There is no need for it to be synchronized with SysClock.
JTRST#	Input	JTAG reset input
		A signal for initializing the JTAG test module.

1.2 Recommended Connection of Unused Pins

(1) System interface pins

(a) Unused pins in 32-bit bus mode (VR5500A only)

The V $_R$ 5500A allows selection of a SysAD bus width from 64 bits or 32 bits. When the 32-bit bus mode is selected, the V $_R$ 5500A operates using only the required system interface pins. Therefore, set the unused pins as follows when operating the V $_R$ 5500A in the 32-bit bus mode.

Pin Name	Recommended Connection of Unused Pins
SysAD(63:32)	Leave open
SysADC(7:4)	Leave open

(b) Unused pins in normal mode (VR5500A only)

The V $_{\rm R}$ 5500A can process read/write transactions regardless of the order in which requests are issued in the out-of-order return mode. The SysID(2:0) signals are used to identify each request during this processing. Set these signals, which are not used in the normal mode, as follows.

Pin Name	Recommended Connection
	of Unused Pins
SysID(2:0)	Leave open

8EJ3V0DS 13

(c) Parity bus

The V_R5500A and V_R5532A allow selection of whether the data is protected using parity. When parity is used, the parity data is output from the processor or external agent to the SysADC bus.

However, whether the parity is used or not is selected by software, so unless the program is started, the V_B5500A and V_B5532A cannot determine the operation of the SysADC bus. Therefore, care must be taken to prevent the SysADC bus from being left open or in a high-impedance state.

When parity is not used, it is recommended to connect each pin of the SysADC bus to VDDIO via a resistor with a high resistance value.

(2) Test interface pins

The V_R5500A and V_R5532A can be used to perform testing and debugging with the device mounted on the board. The test interface pins are used for connection with the external debug tool during such debugging. Therefore set the test interface pins as follows when the debug function is not used and in the normal operation mode.

Pin Name	Recommended Connection of Unused Pins
JTCK	Pull up
JTDI	Pull up
JTMS	Pull up
JTRST#	Pull down
JTDO	Leave open
NTrcClk	Leave open
NTrcData(3:0)	Leave open
NTrcEnd	Leave open
RMode#/BKTGIO#	Pull up

2. ELECTRICAL SPECIFICATIONS

Absolute Maximum Ratings

Parameter	Symbol	Conditions	Ratings	Unit
Supply voltage	V _{DD} IO		-0.5 to +4.6	V
	V _{DD}		-0.5 to +2.0	V
	V _{DD} P		-0.5 to +2.0	V
Input voltage ^{Note}	Vı		-0.5 to V _{DD} IO + 0.3	V
		Pulse of less than 7 ns	-1.5 to V _{DD} IO + 1.0	V
Operating case temperature	Tc		-10 to +85	°C
Storage temperature	T _{stg}		-40 to +125	°C

Note The upper limit of the input voltage ($V_{DDIO} + 0.3$) is +4.6 V.

Cautions 1. Do not short-circuit two or more outputs at the same time.

 Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

The specifications and conditions shown in the following DC Characteristics and AC Characteristics sections are the ranges within which the product can normally operate and the quality can be guaranteed.

Operating Conditions

(1) 300 MHz product (VR5500A, VR5532A), 350 MHz product (VR5532A only)

Parameter	Symbol	Conditions	MIN.	MAX.	Unit
Supply voltage	V _{DD} IO		2.375	2.625	V
			3.135	3.465	V
	V _{DD}		1.425	1.575	V
	VDDP		1.425	1.575	V

Caution In the V_R5500A, V_{DD} can also be used in the voltage range of the 400 MHz product (1.6 to 1.7 V). In this case, internal operation at 300 MHz is guaranteed. The supply current of the core block in this case is the specified value of the 400 MHz product (MAX. 1.68 A).

Data Sheet U16678EJ3V0DS 15

(2) 400 MHz product (VR5500A only)

Parameter	Symbol	Conditions	MIN.	MAX.	Unit
Supply voltage	V _{DD} IO		2.375	2.625	V
			3.135	3.465	V
	V _{DD}		1.6	1.7	V
	VDDP		1.6	1.7	V

Caution VDD can also be used with the voltage range of the 300 MHz product (1.425 to 1.575 V). In this case, internal operation at 300 MHz is guaranteed. The supply current of the core block in this case is the specified value of the 300 MHz product (MAX. 1.25 A).

Supply Current

Parameter	Symbol		Conditions	MIN.	MAX.	Unit
Supply current of core block	lod	VR5500A	300 MHz product, during normal operation, VDD = VDDP = 1.575 V		1.25	Α
			400 MHz product, during normal operation, VDD = VDDP = 1.7 V		1.68	А
		VR5532A	300 MHz product, during normal operation, VDD = VDDP = 1.575 V		1.25	A
			350 MHz product, during normal operation, VDD = VDDP = 1.575 V		1.40	Α
	lod_sb	VR5500A	300 MHz product, in standby mode, VDD = VDDP = 1.575 V		0.25	Α
			400 MHz product, in standby mode, VDD = VDDP = 1.7 V		0.31	Α
		VR5532A	300 MHz product, in standby mode, VDD = VDDP = 1.575 V		0.25	Α
			350 MHz product, in standby mode, VDD = VDDP = 1.575 V		0.28	A

Remark The supply current in the I/O block varies depending on the application used. It is normally 20% IDD or lower.

DC Characteristics

(1) When $V_{DD}IO = 2.5 \text{ V } \pm 5\%$

```
(300 MHz product: T_C = -10 to +85^{\circ}C, V_{DDIO} = 2.5 V \pm 5\%, V_{DD} = V_{DDP} = 1.5 V \pm 5\%) (VR5500A, VR5532A) (350 MHz product: T_C = -10 to +85^{\circ}C, V_{DDIO} = 2.5 V \pm 5\%, V_{DD} = V_{DDP} = 1.5 V \pm 5\%) (VR5532A only) (400 MHz product: T_C = -10 to +85^{\circ}C, V_{DDIO} = 2.5 V \pm 5\%, V_{DD} = V_{DDP} = 1.6 to 1.7 V) (VR5500A only)
```

Parameter	Symbol	Conditions	MIN.	MAX.	Unit
Output voltage, high	Vон	VDDIO = MIN., IOH = -4 mA	$0.8 \times V_{DD}IO$		V
Output voltage, low	Vol	VDDIO = MIN., IOL = 4 mA		0.4	V
Input voltage, high ^{Note 1}	Vıн		2.0	V _{DD} IO + 0.3	V
		Pulse of less than 7 ns	2.0	V _{DD} IO + 1.0	V
Input voltage, low Note 1	VIL		-0.5	0.2 × VDDIO	V
		Pulse of less than 7 ns	-1.5	0.2 × VDDIO	V
Input voltage, high Note 2	VIHC		$0.8 \times V_{DD}IO$	V _{DD} IO + 0.3	V
		Pulse of less than 7 ns	$0.8 \times V_{DD}IO$	V _{DD} IO + 1.0	V
Input voltage, low Note 2	VILC		-0.5	0.2 × VDDIO	V
		Pulse of less than 7 ns	-1.5	0.2 × VDDIO	V
Input current leakage, high	Ішн	Vı = VddlO		5.0	μΑ
Input current leakage, low	ILIL	V1 = 0 V		-5.0	μΑ
Output current leakage, high	Ісон	Vo = VDDIO		5.0	μΑ
Output current leakage, low	ILOL	Vo = 0 V		-5.0	μΑ

Notes 1. Does not apply to the SysClock pin.

2. Only applies to the SysClock pin.

17

(2) When $V_{DD}IO = 3.3 \text{ V} \pm 5\%$

(300 MHz product: Tc = -10 to $+85^{\circ}C$, VdDIO = 3.3 V $\pm 5\%$, VdD = VdDP = 1.5 V $\pm 5\%$) (VR5500A, VR5532A) (350 MHz product: Tc = -10 to $+85^{\circ}C$, VdDIO = 3.3 V $\pm 5\%$, VdD = VdDP = 1.5 V $\pm 5\%$) (VR5532A only) (400 MHz product: Tc = -10 to $+85^{\circ}C$, VdDIO = 3.3 V $\pm 5\%$, VdD = VdDP = 1.6 to 1.7 V) (VR5500A only)

Parameter	Symbol	Conditions	MIN.	MAX.	Unit
Output voltage, high	Vон	VDDIO = MIN., IOH = -4 mA	2.4		V
Output voltage, low	Vol	VDDIO = MIN., IOL = 4 mA		0.4	٧
Input voltage, high ^{Note 1}	VIH		2.0	V _{DD} IO + 0.3	٧
		Pulse of less than 7 ns	2.0	V _{DD} IO + 1.0	٧
Input voltage, low ^{Note 1}	VIL		-0.5	0.8	٧
		Pulse of less than 7 ns	-1.5	0.8	٧
Input voltage, high ^{Note 2}	VIHC		$0.8 \times V_{DD}IO$	V _{DD} IO + 0.3	٧
		Pulse of less than 7 ns	$0.8 \times V_{DD}IO$	V _{DD} IO + 1.0	٧
Input voltage, low ^{Note 2}	VILC		-0.5	0.2 × V _{DD} IO	V
		Pulse of less than 7 ns	-1.5	0.2 × V _{DD} IO	٧
Input current leakage, high	Ішн	VI = VDDIO		5.0	μΑ
Input current leakage, low	ILIL	V1 = 0 V		-5.0	μΑ
Output current leakage, high	Ісон	Vo = VDDIO		5.0	μΑ
Output current leakage, low	ILOL	Vo = 0 V		-5.0	μΑ

Notes 1. Does not apply to the SysClock pin.

2. Only applies to the SysClock pin.

Power-on Sequence

The V_R5500A and V_R5532A use two power supply pins. These power supply pins can be applied in any sequence. However, power must not be applied to one pin for 100 ms or longer while it is not applied to the other.

Parameter	Symbol	Conditions	MIN.	MAX.	Unit
Power-on delay	tof		0	100	ms

Capacitance ($T_A = 25^{\circ}C$, $V_{DDIO} = V_{DD} = V_{DD}P = 0 V$)

Parameter	Symbol	Symbol Conditions		MAX.	Unit
Input capacitance	Cin	fc = 1 MHz		5.0	pF
Output capacitance	Соит	Unmeasured pins returned to 0 V		7.0	pF

AC Characteristics

 $(300 \text{ MHz product: } Tc = -10 \text{ to } +85^{\circ}\text{C}, \ VdDIO = 2.5 \text{ V} \pm 5\%, \ 3.3 \text{ V} \pm 5\%, \ VdD = VdDP = 1.5 \text{ V} \pm 5\%) \ (VR5500A, \ VR5532A)$ $(350 \text{ MHz product: } Tc = -10 \text{ to } +85^{\circ}\text{C}, \ VdDIO = 2.5 \text{ V} \pm 5\%, \ 3.3 \text{ V} \pm 5\%, \ VdD = VdDP = 1.5 \text{ V} \pm 5\%) \ (VR5532A \text{ only})$ $(400 \text{ MHz product: } Tc = -10 \text{ to } +85^{\circ}\text{C}, \ VdDIO = 2.5 \text{ V} \pm 5\%, \ 3.3 \text{ V} \pm 5\%, \ VdD = VdDP = 1.6 \text{ to } 1.7 \text{ V}) \ (VR5500A \text{ only})$

Clock parameters (1/2)

Parameter	Symbol	Cond	ditions	MIN.	MAX.	Unit
System clock high-level width	tсн			1.8		ns
System clock low-level width	t cL			1.8		ns
Pipeline clock frequency		300 MHz product (V	r5500A, Vr5532A)	200	300	MHz
		350 MHz product (V	R5532A only)	200	350	MHz
		400 MHz product (V	R5500A only)	200	400	MHz
System clock frequency ^{Note}		300 MHz product	DivMode = 2:1	100	133	MHz
		(VR5500A)	DivMode = 2.5:1	80	120	MHz
			DivMode = 3:1	66.7	100	MHz
			DivMode = 3.5:1	57.2	85.7	MHz
			DivMode = 4:1	50	75	MHz
			DivMode = 4.5:1	44.5	66.6	MHz
			DivMode = 5:1	40	60	MHz
			DivMode = 5.5:1	36.4	54.5	MHz
		300 MHz product	DivMode = 2:1	100	100	MHz
		(VR5532A)	DivMode = 2.5:1	80	100	MHz
			DivMode = 3:1	66.7	100	MHz
			DivMode = 3.5:1	57.2	85.7	MHz
			DivMode = 4:1	50	75	MHz
			DivMode = 4.5:1	44.5	66.6	MHz
			DivMode = 5:1	40	60	MHz
			DivMode = 5.5:1	36.4	54.5	MHz
		350 MHz product	DivMode = 2:1	100	100	MHz
		(VR5532A only)	DivMode = 2.5:1	80	100	MHz
			DivMode = 3:1	66.7	100	MHz
			DivMode = 3.5:1	57.2	100	MHz
			DivMode = 4:1	50	87.5	MHz
			DivMode = 4.5:1	44.5	77.7	MHz
			DivMode = 5:1	40	70	MHz
			DivMode = 5.5:1	36.4	63.6	MHz
		400 MHz product	DivMode = 2:1	100	133	MHz
		(VR5500A only)	DivMode = 2.5:1	80	133	MHz
			DivMode = 3:1	66.7	133	MHz
			DivMode = 3.5:1	57.2	114	MHz
			DivMode = 4:1	50	100	MHz
			DivMode = 4.5:1	44.5	88.8	MHz
			DivMode = 5:1	40	80	MHz
			DivMode = 5.5:1	36.4	72.7	MHz

Note This is the frequency at which the operation of the internal PLL is guaranteed.

 \star

*

Clock parameters (2/2)

Parameter	Symbol	Cond	ditions	MIN.	MAX.	Unit
System clock cycle	tcp	300 MHz product	DivMode = 2:1	7.5	10	ns
		(VR5500A)	DivMode = 2.5:1	8.3	12.5	ns
			DivMode = 3:1	10	15	ns
			DivMode = 3.5:1	11.7	17.5	ns
			DivMode = 4:1	13.3	20	ns
			DivMode = 4.5:1	15	22.5	ns
			DivMode = 5:1	16.7	25	ns
			DivMode = 5.5:1	18.3	27.5	ns
		300 MHz product	DivMode = 2:1	10	10	ns
		(VR5532A)	DivMode = 2.5:1	10	12.5	ns
			DivMode = 3:1	10	15	ns
			DivMode = 3.5:1	11.7	17.5	ns
			DivMode = 4:1	13.3	20	ns
			DivMode = 4.5:1	15	22.5	ns
			DivMode = 5:1	16.7	25	ns
			DivMode = 5.5:1	18.3	27.5	ns
		350 MHz product	DivMode = 2:1	10	10	ns
		(VR5532A only)	DivMode = 2.5:1	10	12.5	ns
			DivMode = 3:1	10	15	ns
			DivMode = 3.5:1	10	17.5	ns
			DivMode = 4:1	11.4	20	ns
			DivMode = 4.5:1	12.8	22.5	ns
			DivMode = 5:1	14.2	25	ns
			DivMode = 5.5:1	15.7	27.5	ns
		400 MHz product	DivMode = 2:1	7.5	10	ns
		(VR5500A only)	DivMode = 2.5:1	7.5	12.5	ns
			DivMode = 3:1	7.5	15	ns
			DivMode = 3.5:1	8.8	17.5	ns
			DivMode = 4:1	10	20	ns
			DivMode = 4.5:1	11.3	22.5	ns
			DivMode = 5:1	12.5	25	ns
			DivMode = 5.5:1	13.8	27.5	ns
System clock jitter	t₁				±5	%
System clock rise time	tcn				1.2	ns
System clock fall time	tcF				1.2	ns
JTAG clock frequency					33	MHz

Remarks 1. The system clock jitter is a cycle-to-cycle jitter.

2. The JTAG clock runs asynchronously to the system clock.

System interface parameters

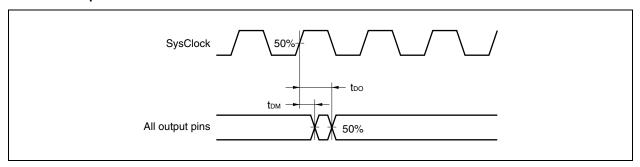
Parameter	Symbol	Conditions	MIN.	MAX.	Unit
Data output hold time ^{Note 1}	tом		1.0		ns
Data output delay time ^{Note 1}	t□o			5.0	ns
Data input setup time ^{Note 2}	tos		1.5		ns
Data input hold time ^{Note 2}	tон	300 MHz product (VR5500A, VR5532A)	1.0		ns
		350 MHz product (VR5532A only)	0.5		ns
		400 MHz product (VR5500A only)	0.5		ns

Notes 1. Applies to the Release#, ValidOut#, PReq#, SysAD(63:0), SysADC(7:0), SysCmd(8:0), and SysID(2:0) pins in the V_R5500A.

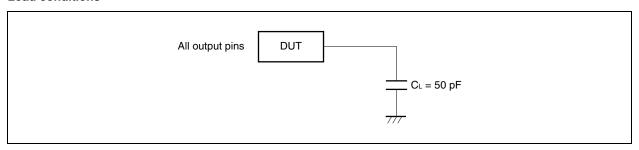
Applies to the Release#, ValidOut#, PReq#, SysAD(31:0), SysADC(3:0), and SysCmd(8:0) pins in the V_R5532A.

2. Applies to the ColdReset#, Reset#, Int(5:0)#, NMI#, ExtRqst#, RdRdy#, WrRdy#, ValidIn#, SysAD(63:0), SysADC(7:0), SysCmd(8:0), and SysID(2:0) pins in the V_R5500A.

Applies to the ColdReset#, Reset#, Int(5:0)#, NMI#, ExtRqst#, RdRdy#, WrRdy#, ValidIn#, SysAD(31:0), SysADC(3:0), and SysCmd(8:0) pins in the V_R5532A.

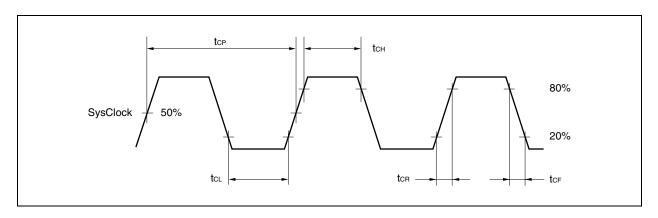

Load coefficient

Parameter	Symbol	Conditions	MIN.	MAX.	Unit
Load coefficient	CLD			1.0	ns/25 pF

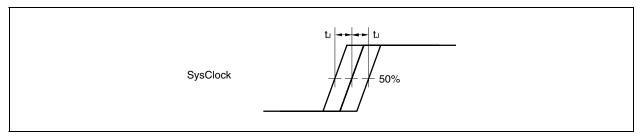


Measurement Conditions

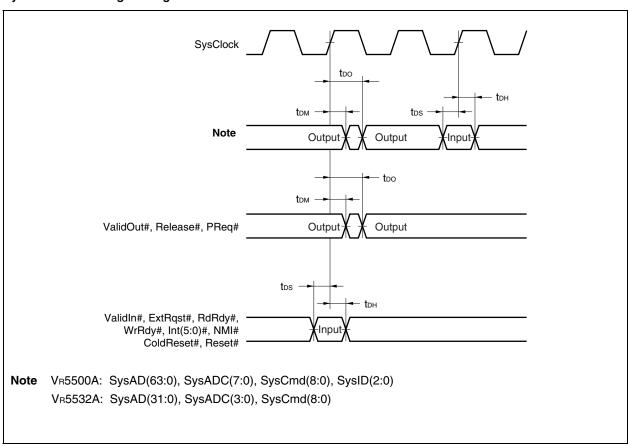
Measurement points



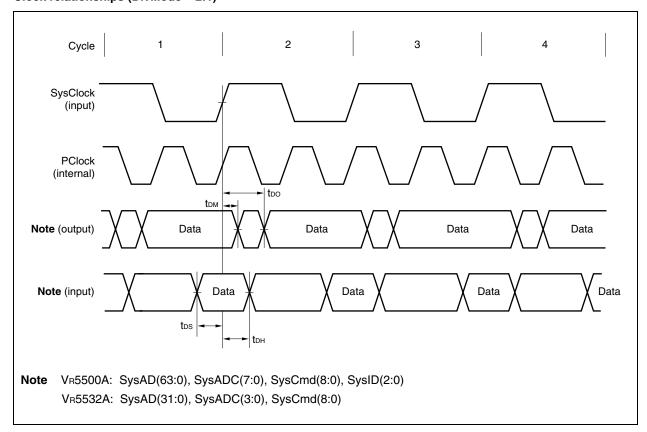
Load conditions

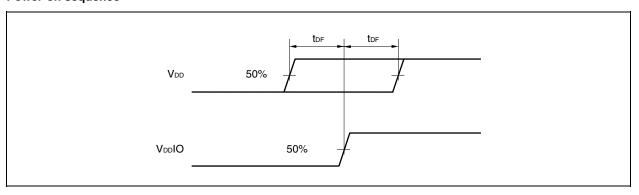

Timing Charts

Clock timing

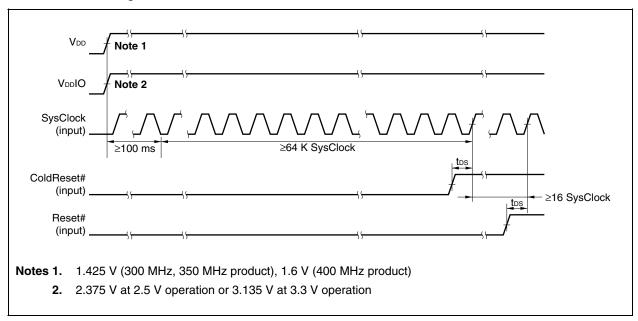


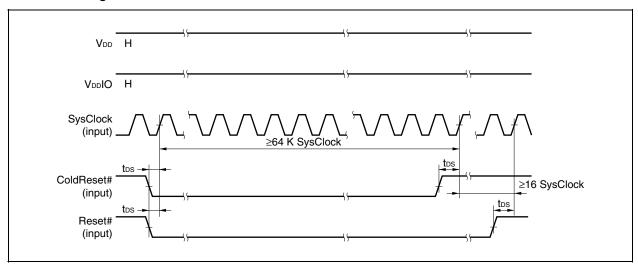
Clock jitter


System interface edge timing


23

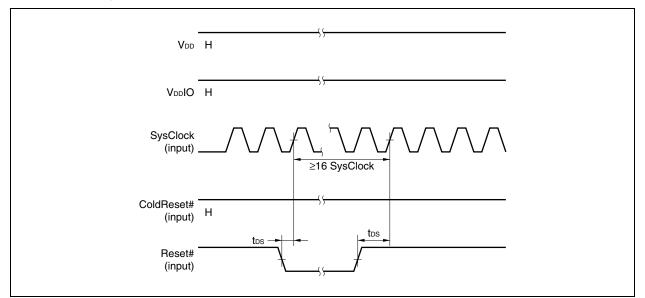
Clock relationships (DivMode = 2:1)


Power-on sequence

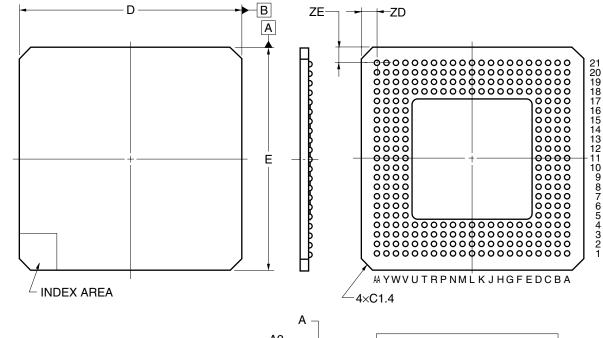


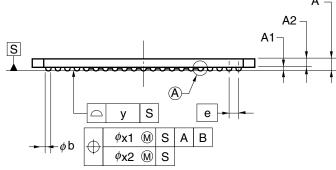
Reset timing

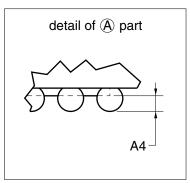
Power-on reset timing



Cold reset timing

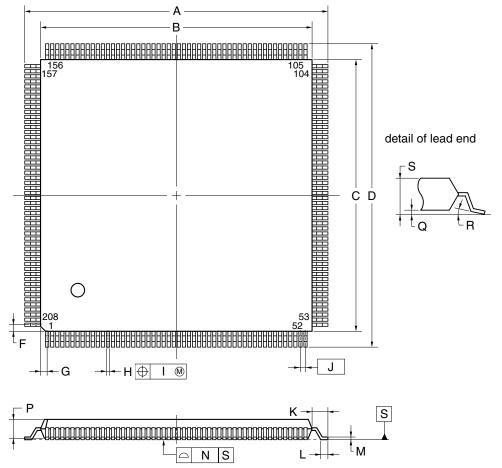

25


Warm reset timing



3. PACKAGE DRAWING

272-PIN PLASTIC BGA (CAVITY DOWN ADVANCED TYPE) (29x29)



	(unit:mm
ITEM	DIMENSIONS
D	29.00±0.20
Е	29.00±0.20
е	1.27
Α	1.75±0.30
A1	0.60±0.10
A2	1.15
A4	0.25 MIN.
b	φ0.75±0.15
x1	0.30
x2	0.15
у	0.20
ZD	1.80
ZE	1.80
	P272F2-127-NN

208-PIN PLASTIC QFP (FINE PITCH) (28x28)

NOTE

Each lead centerline is located within 0.10 mm of its true position (T.P.) at maximum material condition.

ITEM	MILLIMETERS
Α	30.6±0.2
В	28.0±0.2
С	28.0±0.2
D	30.6±0.2
F	1.25
G	1.25
Н	$0.22^{+0.05}_{-0.04}$
I	0.10
J	0.5 (T.P.)
K	1.3±0.2
L	0.5±0.2
М	$0.17^{+0.03}_{-0.07}$
N	0.10
Р	3.2±0.1
Q	0.4±0.1
R	5°±5°
S	3.8 MAX.
EO L MI	MANAL CAME WANT 7

P208GD-50-LML,MML,SML,WML-7

4. RECOMMENDED SOLDERING CONDITIONS

This product should be soldered and mounted under the following recommended conditions.

For soldering methods and conditions other than those recommended below, contact an NEC Electronics sales representative.

For technical information, see the following website.

Semiconductor Device Mount Manual (http://www.necel.com/pkg/en/mount/index.html)

Table 4-1. Surface mounting Type Soldering Conditions

(1) PD30550AF2-300-NN1 : 272-pin plastic BGA (C/D advanced type) (29 29)
PD30550AF2-300-NN1-A^{Note 1} : 272-pin plastic BGA (C/D advanced type) (29 29)
PD30550AF2-400-NN1 : 272-pin plastic BGA (C/D advanced type) (29 29)
PD30550AF2-400-NN1-A^{Note 1} : 272-pin plastic BGA (C/D advanced type) (29 29)

Soldering Method	Soldering Conditions	Recommended Condition Symbol
Infrared reflow	Package peak temperature: 250°C, Time: 60 seconds max. (at 220°C or higher), Count: Three times or less, Exposure limit: 3 days ^{Note 2} (after that, prebake at 125°C for 20 to 72 hours)	IR50-203-3 ^{Note 3}

Notes 1. Lead-free product

- 2. After opening the dry pack, store it at 25°C or less and 65% RH or less for the allowable storage period.
- **3.** The IR50-203-3 conditions include the IR35-203-3 conditions, so the PD30550AF2-300-NN1 and PD30550AF2-400-NN1 can be soldered and mounted under the conventional IR35-203-3 conditions. For details of the IR35-203-3 conditions, contact an NEC Electronics sales representative.
- ★ (2) PD30550AGD-300-WML : 208-pin plastic QFP (fine pitch) (28 28)
 PD30550AGD-300-WML-A^{Note 1} : 208-pin plastic QFP (fine pitch) (28 28)
 PD30550AGD-350-WML : 208-pin plastic QFP (fine pitch) (28 28)
 PD30550AGD-350-WML-A^{Note 1} : 208-pin plastic QFP (fine pitch) (28 28)

Soldering Method	Soldering Conditions	Recommended Condition Symbol
Infrared reflow	Package peak temperature: 260°C, Time: 60 seconds max. (at 220°C or higher), Count: Three times or less, Exposure limit: 7 days ^{Note 2} (after that, prebake at 125°C for 20 to 72 hours)	IR60-207-3

Notes 1. Lead-free product

2. After opening the dry pack, store it at 25°C or less and 65% RH or less for the allowable storage period.

Data Sheet U16678EJ3V0DS

29

NOTES FOR CMOS DEVICES —

(1) VOLTAGE APPLICATION WAVEFORM AT INPUT PIN

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between $V_{\rm IL}$ (MAX) and $V_{\rm IH}$ (MIN) due to noise, etc., the device may malfunction. Take care to prevent chattering noise from entering the device when the input level is fixed, and also in the transition period when the input level passes through the area between $V_{\rm IL}$ (MAX) and $V_{\rm IH}$ (MIN).

(2) HANDLING OF UNUSED INPUT PINS

Unconnected CMOS device inputs can be cause of malfunction. If an input pin is unconnected, it is possible that an internal input level may be generated due to noise, etc., causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND via a resistor if there is a possibility that it will be an output pin. All handling related to unused pins must be judged separately for each device and according to related specifications governing the device.

③ PRECAUTION AGAINST ESD

A strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it when it has occurred. Environmental control must be adequate. When it is dry, a humidifier should be used. It is recommended to avoid using insulators that easily build up static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work benches and floors should be grounded. The operator should be grounded using a wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with mounted semiconductor devices.

4 STATUS BEFORE INITIALIZATION

Power-on does not necessarily define the initial status of a MOS device. Immediately after the power source is turned ON, devices with reset functions have not yet been initialized. Hence, power-on does not guarantee output pin levels, I/O settings or contents of registers. A device is not initialized until the reset signal is received. A reset operation must be executed immediately after power-on for devices with reset functions.

Reference document Electrical Characteristics for Microcomputer (U15170J)^{Note} **Note** This document number is that of Japanese version.

The related documents indicated in the publication may include preliminary versions. However, preliminary versions are not marked as such.

Regional Information

Some information contained in this document may vary from country to country. Before using any NEC Electronics product in your application, please contact the NEC Electronics office in your country to obtain a list of authorized representatives and distributors. They will verify:

- · Device availability
- · Ordering information
- · Product release schedule
- · Availability of related technical literature
- Development environment specifications (for example, specifications for third-party tools and components, host computers, power plugs, AC supply voltages, and so forth)
- Network requirements

In addition, trademarks, registered trademarks, export restrictions, and other legal issues may also vary from country to country.

[GLOBAL SUPPORT]

http://www.necel.com/en/support/support.html

NEC Electronics America, Inc. (U.S.) NEC Electronics (Europe) GmbH NEC Electronics Hong Kong Ltd.

Santa Clara, California Tel: 408-588-6000 800-366-9782

Duesseldorf, Germany Tel: 0211-65030

• Sucursal en España

Madrid, Spain Tel: 091-504 27 87

• Succursale Française

Vélizy-Villacoublay, France Tel: 01-30-675800

Filiale Italiana

Milano, Italy Tel: 02-66 75 41

• Branch The Netherlands

Eindhoven. The Netherlands Tel: 040-2445845

Tyskland Filial

Taeby, Sweden Tel: 08-63 80 820

United Kingdom Branch

Milton Keynes, UK Tel: 01908-691-133

Hong Kong Tel: 2886-9318

NEC Electronics Hong Kong Ltd.

Seoul Branch Seoul, Korea Tel: 02-558-3737

NEC Electronics Shanghai Ltd.

Shanghai, P.R. China Tel: 021-5888-5400

NEC Electronics Taiwan Ltd.

Taipei, Taiwan Tel: 02-2719-2377

NEC Electronics Singapore Pte. Ltd.

Novena Square, Singapore Tel: 6253-8311

J04.1

V_R is a trademark of NEC Electronics Corporation.

MIPS is a registered trademark of MIPS Technologies, Inc. in the United States.

Exporting this product or equipment that includes this product may require a governmental license from the U.S.A. for some countries because this product utilizes technologies limited by the export control regulations of the U.S.A.

- The information in this document is current as of March, 2004. The information is subject to change
 without notice. For actual design-in, refer to the latest publications of NEC Electronics data sheets or
 data books, etc., for the most up-to-date specifications of NEC Electronics products. Not all
 products and/or types are available in every country. Please check with an NEC Electronics sales
 representative for availability and additional information.
- No part of this document may be copied or reproduced in any form or by any means without the prior
 written consent of NEC Electronics. NEC Electronics assumes no responsibility for any errors that may
 appear in this document.
- NEC Electronics does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from the use of NEC Electronics products listed in this document or any other liability arising from the use of such products. No license, express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Electronics or others.
- Descriptions of circuits, software and other related information in this document are provided for illustrative
 purposes in semiconductor product operation and application examples. The incorporation of these
 circuits, software and information in the design of a customer's equipment shall be done under the full
 responsibility of the customer. NEC Electronics assumes no responsibility for any losses incurred by
 customers or third parties arising from the use of these circuits, software and information.
- While NEC Electronics endeavors to enhance the quality, reliability and safety of NEC Electronics products, customers agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To minimize risks of damage to property or injury (including death) to persons arising from defects in NEC Electronics products, customers must incorporate sufficient safety measures in their design, such as redundancy, fire-containment and anti-failure features.
- NEC Electronics products are classified into the following three quality grades: "Standard", "Special" and "Specific".
 - The "Specific" quality grade applies only to NEC Electronics products developed based on a customer-designated "quality assurance program" for a specific application. The recommended applications of an NEC Electronics product depend on its quality grade, as indicated below. Customers must check the quality grade of each NEC Electronics product before using it in a particular application.
 - "Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots.
 - "Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support).
 - "Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems and medical equipment for life support, etc.

The quality grade of NEC Electronics products is "Standard" unless otherwise expressly specified in NEC Electronics data sheets or data books, etc. If customers wish to use NEC Electronics products in applications not intended by NEC Electronics, they must contact an NEC Electronics sales representative in advance to determine NEC Electronics' willingness to support a given application.

(Note)

- (1) "NEC Electronics" as used in this statement means NEC Electronics Corporation and also includes its majority-owned subsidiaries.
- (2) "NEC Electronics products" means any product developed or manufactured by or for NEC Electronics (as defined above).