
© 2009 Microchip Technology Inc. DS41369A

PICDEM™ Lab

Development Board

User’s Guide

DS41369A-page ii © 2009 Microchip Technology Inc.

Information contained in this publication regarding device

applications and the like is provided only for your convenience

and may be superseded by updates. It is your responsibility to

ensure that your application meets with your specifications.

MICROCHIP MAKES NO REPRESENTATIONS OR

WARRANTIES OF ANY KIND WHETHER EXPRESS OR

IMPLIED, WRITTEN OR ORAL, STATUTORY OR

OTHERWISE, RELATED TO THE INFORMATION,

INCLUDING BUT NOT LIMITED TO ITS CONDITION,

QUALITY, PERFORMANCE, MERCHANTABILITY OR

FITNESS FOR PURPOSE. Microchip disclaims all liability

arising from this information and its use. Use of Microchip

devices in life support and/or safety applications is entirely at

the buyer�s risk, and the buyer agrees to defend, indemnify and

hold harmless Microchip from any and all damages, claims,

suits, or expenses resulting from such use. No licenses are

conveyed, implicitly or otherwise, under any Microchip

intellectual property rights.

Trademarks

The Microchip name and logo, the Microchip logo, Accuron,

dsPIC, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro,

PICSTART, rfPIC, SmartShunt and UNI/O are registered

trademarks of Microchip Technology Incorporated in the

U.S.A. and other countries.

FilterLab, Linear Active Thermistor, MXDEV, MXLAB,

SEEVAL, SmartSensor and The Embedded Control Solutions

Company are registered trademarks of Microchip Technology

Incorporated in the U.S.A.

Analog-for-the-Digital Age, Application Maestro, CodeGuard,

dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN,

ECONOMONITOR, FanSense, In-Circuit Serial

Programming, ICSP, ICEPIC, Mindi, MiWi, MPASM, MPLAB

Certified logo, MPLIB, MPLINK, mTouch, PICkit, PICDEM,

PICDEM.net, PICtail, PIC32 logo, PowerCal, PowerInfo,

PowerMate, PowerTool, REAL ICE, rfLAB, Select Mode, Total

Endurance, WiperLock and ZENA are trademarks of

Microchip Technology Incorporated in the U.S.A. and other

countries.

SQTP is a service mark of Microchip Technology Incorporated

in the U.S.A.

All other trademarks mentioned herein are property of their

respective companies.

© 2009, Microchip Technology Incorporated, Printed in the

U.S.A., All Rights Reserved.

 Printed on recycled paper.

Note the following details of the code protection feature on Microchip devices:

� Microchip products meet the specification contained in their particular Microchip Data Sheet.

� Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the

intended manner and under normal conditions.

� There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our

knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip�s Data

Sheets. Most likely, the person doing so is engaged in theft of intellectual property.

� Microchip is willing to work with the customer who is concerned about the integrity of their code.

� Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not

mean that we are guaranteeing the product as �unbreakable.�

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our

products. Attempts to break Microchip�s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts

allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Microchip received ISO/TS-16949:2002 certification for its worldwide
headquarters, design and wafer fabrication facilities in Chandler and
Tempe, Arizona; Gresham, Oregon and design centers in California
and India. The Company’s quality system processes and procedures
are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping
devices, Serial EEPROMs, microperipherals, nonvolatile memory and
analog products. In addition, Microchip’s quality system for the design
and manufacture of development systems is ISO 9001:2000 certified.

PICDEM™LAB DEVELOPMENT

BOARD USER’S GUIDE

© 2009 Microchip Technology Inc. DS41369A-page iii

Table of Contents

Chapter 1. Overview

1.1 Introduction ... 5

1.2 Highlights .. 5

1.3 PICDEM� Lab Development Kit Contents .. 5

1.4 PICDEM� Lab Development Board Construction and Layout 6

1.5 Target Power .. 7

1.6 Connecting the PICkit� 2 Programmer/Debugger .. 8

1.7 Solderless Prototyping Area Strip Configuration .. 9

Chapter 2. Getting Started

2.1 Introduction ... 11

2.2 Prerequisites .. 11

2.3 The Software Control Loop .. 11

2.4 MPLAB® IDE Download Instructions .. 12

2.5 Installing the Included Lab Files ... 16

Chapter 3. General Purpose Input/Output Labs

3.1 Introduction ... 17

3.2 General Purpose Input/Output Labs ... 17

3.3 GPIO Output Labs .. 18
3.3.1 Reference Documentation ... 18

3.3.2 Equipment Required for GPIO Output Labs .. 18

3.3.3 PICDEM Lab Development Board Setup for GPIO Output Labs 18

3.3.4 Lab 1: Light LEDs .. 19

3.3.5 Lab 2: Flash LEDs (Delay Loop) ... 25

3.3.6 Lab 3: Simple Delays Using Timer0 .. 29

3.3.7 Lab 4: Rotate LEDs ... 34

3.4 GPIO Input Labs ... 38
3.4.1 Reference Documentation ... 38

3.4.2 Equipment Required for GPIO Input Labs ... 38

3.4.3 PICDEM Lab Development Board Setup for GPIO Input Labs 38

3.4.4 Lab 5: Adding a Push Button ... 39

3.4.5 Lab 6: Push Button Interrupt ... 48

3.4.6 Lab 7: Push Button Interrupt-on-Change .. 53

3.4.7 Lab 8: Using Weak Pull-Ups ... 58

PICDEM™Lab Development Board User’s Guide

DS41369A-page iv © 2009 Microchip Technology Inc.

Chapter 4. Comparator Peripheral Labs

4.1 Introduction ... 61

4.2 Comparator Labs .. 61
4.2.1 Reference Documentation ...61

4.2.2 Comparator Labs ...61

4.2.3 Equipment Required ..61

4.2.4 Lab 1: Simple Compare ...62

4.2.5 Lab 2: Using the Comparator Voltage Reference64

4.2.6 Lab 3: Higher Resolution Sensor Readings Using a Single Comparator ...68

Chapter 5. Analog-to-Digital Converter Peripheral Labs

5.1 Introduction ... 75

5.2 ADC Labs ... 75
5.2.1 Reference Documentation ...75

5.2.2 Equipment Required ..75

5.2.3 Lab 1: Simple ADC ..76

5.2.4 Lab 2: Audible Temperature Sensor ..85

Appendix A. Schematic

A.1 PICDEM Lab Development Kit Schematic ... 91

PICDEMTM LAB DEVELOPMENT

BOARD USER’S GUIDE

© 2009 Microchip Technology Inc. DS41369A-page 1

Preface

INTRODUCTION

This chapter contains general information that will be useful to know before using the

PICDEM TMLab Development Board. Items discussed in this chapter include:

� Document Layout

� Conventions Used in this Guide

� Recommended Reading

� The Microchip Web Site

� Customer Support

� Document Revision History

DOCUMENT LAYOUT

This document describes how to use the PICDEM TMLab Development Board as a

development tool to emulate and debug firmware on a target board. The manual layout

is as follows:

� Chapter 1. “Overview”

� Chapter 2. “Getting Started”

� Chapter 3. “General Purpose Input/Output Labs”

� Chapter 4. “Comparator Peripheral Labs”

� Chapter 5. “Analog-to-Digital Converter Peripheral Labs”

� Appendix A. “Schematic”

NOTICE TO CUSTOMERS

All documentation becomes dated, and this manual is no exception. Microchip tools and

documentation are constantly evolving to meet customer needs, so some actual dialogs

and/or tool descriptions may differ from those in this document. Please refer to our web site

(www.microchip.com) to obtain the latest documentation available.

Documents are identified with a “DS” number. This number is located on the bottom of each

page, in front of the page number. The numbering convention for the DS number is

“DSXXXXXA”, where “XXXXX” is the document number and “A” is the revision level of the

document.

For the most up-to-date information on development tools, see the MPLAB® IDE on-line help.

Select the Help menu, and then Topics to open a list of available on-line help files.

PICDEMTM Lab Development Board User’s Guide

DS41369A-page 2 © 2009 Microchip Technology Inc.

CONVENTIONS USED IN THIS GUIDE

This manual uses the following documentation conventions:

DOCUMENTATION CONVENTIONS

Description Represents Examples

Arial font:

Italic characters Referenced books MPLAB® IDE User’s Guide

Emphasized text ...is the only compiler...

Initial caps A window the Output window

A dialog the Settings dialog

A menu selection select Enable Programmer

Quotes A field name in a window or

dialog

�Save project before build�

Underlined, italic text with

right angle bracket

A menu path File>Save

Bold characters A dialog button Click OK

A tab Click the Power tab

N�Rnnnn A number in verilog format,

where N is the total number of

digits, R is the radix and n is a

digit.

4�b0010, 2�hF1

Text in angle brackets < > A key on the keyboard Press <Enter>, <F1>

Courier New font:

Plain Courier New Sample source code #define START

Filenames autoexec.bat

File paths c:\mcc18\h

Keywords _asm, _endasm, static

Command-line options -Opa+, -Opa-

Bit values 0, 1

Constants 0xFF, ‘A’

Italic Courier New A variable argument file.o, where file can be

any valid filename

Square brackets [] Optional arguments mcc18 [options] file
[options]

Curly brackets and pipe

character: { | }

Choice of mutually exclusive

arguments; an OR selection

errorlevel {0|1}

Ellipses... Replaces repeated text var_name [,
var_name...]

Represents code supplied by

user

void main (void)
{ ...
}

Preface

© 2009 Microchip Technology Inc. DS41369A-page 3

RECOMMENDED READING

This user�s guide describes how to use the PICDEM� Lab Development Kit. Other

useful documents are listed below. The following Microchip documents are available

and recommended as supplemental reference resources.

Readme Files

For the latest information on using other tools, read the tool-specific Readme files in

the Readmes subdirectory of the MPLAB® IDE installation directory. The Readme files

contain update information and known issues that may not be included in this user�s

guide.

THE MICROCHIP WEB SITE

Microchip provides online support via our web site at www.microchip.com. This web

site is used as a means to make files and information easily available to customers.

Accessible by using your favorite Internet browser, the web site contains the following

information:

� Product Support � Data sheets and errata, application notes and sample

programs, design resources, user�s guides and hardware support documents,

latest software releases and archived software

� General Technical Support � Frequently Asked Questions (FAQs), technical

support requests, online discussion groups, Microchip consultant program

member listing

� Business of Microchip � Product selector and ordering guides, latest Microchip

press releases, listing of seminars and events, listings of Microchip sales offices,

distributors and factory representatives

PICDEMTM Lab Development Board User’s Guide

DS41369A-page 4 © 2009 Microchip Technology Inc.

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

� Distributor or Representative

� Local Sales Office

� Field Application Engineer (FAE)

� Technical Support

Customers should contact their distributor, representative or field application engineer

(FAE) for support. Local sales offices are also available to help customers. A listing of

sales offices and locations is included in the back of this document.

Technical support is available through the web site at: http://support.microchip.com

DOCUMENT REVISION HISTORY

Revision A (February 2009)

� Initial Release of this Document.

PICDEMTM LAB DEVELOPMENT

BOARD USER’S GUIDE

© 2009 Microchip Technology Inc. DS41369A-page 5

Chapter 1. Overview

1.1 INTRODUCTION

The PICDEM Lab Development Board supports Microchip�s 8, 14, 18 and 20-pin 8-bit

MCUs including accommodation for PIC10F products in the 8-pin PDIP package.

Dual-row expansion headers on either side of each socket provide connectivity to all

pins on the connected PIC® MCU. A solderless prototyping area allows the user to

explore a relatively large number of application examples without making permanent

modifications to the board. Components permanently mounted to the board are inter-

faced using expansion headers to the user�s application via jumper wires. A variable

supply voltage allows user�s to supply voltages between 1.2V to 5V to each of the PIC

MCU connection sockets.

1.2 HIGHLIGHTS

This chapter discusses:

� PICDEM� Lab Development Kit Contents

� PICDEM� Lab Development Board Construction and Layout

� Target Power

� Connecting the PICkit� 2 Programmer/Debugger

� Solderless Prototyping Area Strip Configuration

1.3 PICDEM™ LAB DEVELOPMENT KIT CONTENTS

The PICDEM� Development Kit contains the following items:

1. The PICDEM� Lab Development Board

2. Lab component kit including:

� (1) PIC16F616 DIP

� (1) PIC12F615 DIP

� (4) 10kΩ Resistors

� (4) 1kΩ Resistors

� (8) 470Ω Resistors

� (4) 220Ω Resistors

� (4) 100Ω Resistors

� (1) 10kΩ NTC Thermistor

� (4) Green LEDs

� (4) Red LEDs

� (4) 1N4148 Diodes

� (2) 0.1μF Capacitors

� (2) 1μF Capacitors

� (2) 10μF Capacitors

� (4) Push buttons

� (10) 5� Jumper Wires

� (10) 3� Jumper Wires

PICDEMTM Lab Development Board User’s Guide

DS41369A-page 6 © 2009 Microchip Technology Inc.

� (10) 1� Jumper Wires

� (4) IRFD9020 P-CH MOSFETs

� (4) IRFD010 N-CH MOSFETs

� (2) 100kΩ Potentiometers

3. PICkit� 2 Programmer/Debugger with USB Cable

4. CD-ROM including:

- “PICDEM™ Lab Development Board User’s Guide and Labs” (DS41369)

- “PIC16F631/677/685/687/689/690 Data Sheet” (DS41262)

- “Introduction to MPLAB® IDE and HI-TECH C® PRO for the PIC10/12/16

MCU Family Lite Mode Compiler Tutorial” (DS41322)

- Timer: Timer0 Tutorial (Part 1) (DS51682)

- Timer: Timer0 Tutorial (Part 2) (DS51702)

1.4 PICDEM™ LAB DEVELOPMENT BOARD CONSTRUCTION AND LAYOUT

The Low Pin Count USB Development Board and populated components are shown in

Figure 1-1.

FIGURE 1-1: PICDEM™ LAB DEVELOPMENT BOARD

1. PICkit™ 2 Programmer/Debugger Connection Headers (J13, J12 and J6)

a) J13 dedicated to PIC® microcontroller socket U5

b) J12 dedicated to PIC® microcontroller socket U3

c) J6 dedicated to PIC® microcontroller socket U2

2. PICkit™ Serial Analyzer Connection Header (J11) and Receptacle (J15)

To use the PICkit� Serial Analyzer, connect to appropriate PIC MCU expansion

header using jumper wires from receptacle.

1
2

3
4

5
6

7

8

9

10 11

12

13 14

15

16

Overview

© 2009 Microchip Technology Inc. DS41369A-page 7

3. 32 kHz Crystal Oscillator (Y1) and Connection Header (J7)

4. VDD Connect/Disconnect Jumpers (J3, J4, J5)

a) J3 jumper connects/disconnects VDD1 supply to PIC16F690 MCU in socket

U2

b) J4 jumper connects/disconnects VDD2 supply to PIC16F819 MCU in socket

U3

c) J5 jumper connects/disconnects VDD3 supply to PIC10F206 MCU in socket

U5

5. Battery Clip Connection (BT1) for 9V Battery and Jumpers (J14)

J14 jumpers connect/disconnect battery terminals for use in future lab on battery

chargers.

6. 9 VDC Supply Connector (J1) and Connect/Disconnect Jumper (J2)

7. Power ON Switch (SW1)

8. 8-Pin PDIP PIC10F MCU Socket (U5) and Bilateral Dual-Row Expansion

Headers (J10 and J18)

Dual-row expansion headers provide connectivity to each pin on the PIC10F206

MCU populating socket U5.

9. 5V Brushed DC Motor

10. 18-Pin PDIP PIC MCU Socket (U3) and Bilateral Dual-Row Expansion Head-

ers (J17 and J16)

Dual-row expansion headers provide connectivity to each pin on the PIC16F819

MCU populating socket U3.

11. 8, 14, 20-Pin PDIP PIC MCU Socket (U2) and Bilateral Dual-Row Expansion

Headers (J8 and J9)

Dual-row expansion headers provide connectivity to each pin on the PIC16F690

MCU populating socket U2.

12. Solderless Prototyping Area

13. Bilateral Dual-Row Supply Headers (J22 and J23)

Provide both VDD and VSS connectivity bilaterally to the solderless prototyping

area.

14. 0.2 Watt, 8-Ohm Speaker (LS1) with Connection Header (J19)

J19 connector used to connect speaker LS1 to user application using jumper

wires.

15. Battery Positive (CP+) and Negative (CP-) Connection Header (J26)

Provides connectivity of positive and negative battery terminals to the user appli-

cation using jumper wires.

16. Variable VDD Potentiometer (R1)

Potentiometer used to vary PIC MCU supply voltage from approximately 1.3V to

approximately 5V.

1.5 TARGET POWER

The PICDEM� Lab Development Board can be powered in one of three ways:

1. Using a 9-12 VDC power supply connected to connector J1

(MIcrochip part #AC162039 recommended)

Ensure that connect/disconnect jumper J2 is in place.

PICDEMTM Lab Development Board User’s Guide

DS41369A-page 8 © 2009 Microchip Technology Inc.

2. Using a 9V battery connected to connector BT1

Ensure that connect/disconnect jumpers J14 are in place.

3. A PICkit� 2 Programmer/Debugger connected to any one of the three PICkit�

Programmer/Debugger connectors J13, J12 and J6 (recommended for

low-power applications only).

When using methods 1 or 2, each PIC® microcontroller has an associated

connect/disconnect jumper that, when in place, enables the positive supply voltage to

the respective VDD pins. The VDD jumpers connect to the following PIC® microcon-

troller sockets:

1. VDD1 (J3) connects/disconnects supply voltage to the PIC® microcontroller

populating U2.

2. VDD2 (J4) connects/disconnects supply voltage to the PIC® microcontroller

populating U3.

3. VDD3 (J5) connects/disconnects supply voltage to the PIC® microcontroller

populating U5.

Using methods 1 or 2 enables the use of the variable VDD potentiometer (R1) to control

supply voltages from approximately 1.3 to 5V. Rotating the potentiometer clockwise will

raise the supply voltage while rotating the potentiometer counterclockwise will

decrease the supply voltage.

1.6 CONNECTING THE PICkit™ 2 PROGRAMMER/DEBUGGER

The three PIC® microcontrollers populating sockets U5, U3 and U2 have their own

PICkit� Programmer/Debugger (ICSP�) connectors so that each can be pro-

grammed or debugged individually. The ICSP� connect to the following PIC® micro-

controller sockets:

1. ICSP1 (J6) connects to the PIC® microcontroller populating U2.

2. ICSP2 (J12) connects to the PIC® microcontroller populating U3.

3. ICSP3 (J13) connects to the PIC® microcontroller populating U5.

The PICkit� Programmer/Debugger connects to the ICSP� connector as shown in

Figure 1-2.

Note: When using the PICkit� 2 Programmer/Debugger as the power source,

the variable VDD potentiometer (R1) will not vary the supply voltage.

Overview

© 2009 Microchip Technology Inc. DS41369A-page 9

FIGURE 1-2: CONNECTING THE PICkit™ PROGRAMMER/DEBUGGER TO

AN ICSP™ CONNECTOR

The PICkit� 2 Programmer/Debugger is then connected to an available USB port on

the PC using the included USB cable.

1.7 SOLDERLESS PROTOTYPING AREA STRIP CONFIGURATION

The solderless prototyping area contains a variety of strips under the perforated plastic

block. These strips �short� vertical rows of holes together as shown in Figure 1-3.

FIGURE 1-3: SOLDERLESS PROTOTYPING AREA STRIP

CONFIGURATION

ICSP� CONNECTOR

Power

Target

Busy
PICkit� Programmer/Debugger

Denotes Pin 1

Solderless Prototyping Area

Solderless Prototyping Area

Showing Strip Connections

PICDEMTM Lab Development Board User’s Guide

DS41369A-page 10 © 2009 Microchip Technology Inc.

NOTES:

PICDEMTM LAB DEVELOPMENT

BOARD USER’S GUIDE

© 2009 Microchip Technology Inc. SD41369A-page 11

Chapter 2. Getting Started

2.1 INTRODUCTION

This chapter is intended to prepare the reader to complete the labs in the remaining

chapters of this user�s guide.

2.2 PREREQUISITES

The labs contained within this lab manual assumes the user:

1. Has a basic understanding of the C programming language.

2. Understands basic circuit analysis.

3. Has completed or understands the concepts contained within the introductory

tutorial: “Introduction to MPLAB® IDE and HI-TECH C® PRO for the PIC10/12/16

MCU Family Lite Mode Compiler Tutorial” (DS41322B) provided on the

accompanying CD-ROM.

2.3 THE SOFTWARE CONTROL LOOP

The labs used in this user�s guide implement a software control loop in various

configurations but always in the same sequence as shown in Example 2-1.

FIGURE 2-1: MAIN() SOFTWARE CONTROL LOOP FLOWCHART FOR

USED IN LABS

Each block of the software control loop represents a function that organizes tasks into

logical, organized groupings that are called from the main function (main()). Notice

the Initialize() is called only once while the remaining functions are executed

repeatedly. This method organizes the embedded firmware application into a logic

sequence of events:

main()

Loop Forever

Timing()

Initialize()

Get_Inputs()

Decide()

Do_Outputs()

PICDEMTM Lab Development Board User’s Guide

SD41369A-page 12 © 2009 Microchip Technology Inc.

1. Initalize():

- Initializes the microcontroller, the peripherals used in the application and any

global variables used by multiple functions.

2. Get_Inputs():

- Obtains any input information either on-chip (from internal registers, etc...) or

off-chip (pin voltage levels).

3. Decide():

- Makes decisions based on the input information gathered in the previous

function to manipulate global variables.

4. Do_Outputs():

- Based on the decisions made in the previous function, this function outputs

data onto the pins of the microcontroller or to registers within the device.

5. Timing():

- This function determines how fast the software control loop executes.

Example 2-1 shows a typical main() calling the various functions that make up the

software control loop.

EXAMPLE 2-1: TYPICAL SOFTWARE CONTROL LOOP MAIN() USED IN

LABS

An infinity loop will be used by all labs in this user�s guide created using a while

loop that repeatedly call the functions within the curly braces as long as there is power

to the microcontroller.

Global variables are used wherever needed in lieu of passing variables between

functions.

2.4 MPLAB® IDE DOWNLOAD INSTRUCTIONS

The following steps outline how to download the latest version of the MPLAB IDE and

HI-TECH C® PRO for the PIC10/12/16 MCU Families compiler. It is strongly recom-

mended that all open programs and applications are closed to expedite the installation

process.

void main(void)

{

Initialize(); //Initialize the relevant registers

while(1)

{

Decide();//Make any decisions

Do_Outputs(); //Perform any outputs

Timing();//Sets execution rate of the

//Software Control Loop

}

}

Getting Started

© 2009 Microchip Technology Inc. SD41369A-page 13

1. Using a PC that is connected to the internet, navigate to the MPLAB® IDE down-

load page at the following url:

www.microchip.com/mplab

This page outlines the MPLAB IDE and also features downloadable plug-ins, User�s

Guides and other useful information.

2. Scroll down to the Downloads section of the page and select the latest full

release zip file for MPLAB IDE vx.xx. (See Figure 2-2.)

FIGURE 2-2: MPLAB ZIP FILE

3. When prompted open the .zip file and extract all contents to a new folder named

something meaningful such as �MPLAB� created in a directory such as Desktop

or another location easily accessible.

4. Once all files are extracted, navigate to the folder created and double click on the

Install_MPLAB_vxxx.exe file to start the installation process.

5. The MPLAB® Tools x.xx Installation window should now be open. Click Next> to

proceed with the installation.

6. In the next window, read through the MPLAB IDE License Agreement and ensure

that the I accept the terms of the license agreement radio button is selected.

Click Next> to continue with the installation.

7. In the Setup Type window select the setup type (complete is recommended for

new users) and click Next> to continue.

8. In the Choose Destination Location it is recommended to use the default direct

C:\Program Files\Microchip\. Click Next> to continue.

9. Accept the Application Maestro License agreement in the next window and click

Next> to continue.

10. Click Next> in the Start Copying Files window to start the installation (this may

take several minutes to complete).

11. During the installation process, the user will be prompted to install the free

HI-TECH C® PRO for the PIC10/12/16 MCU Compiler. It is recommended that

the user install the compiler at this point. Select Yes to launch the installer. In the

installer window, click Next to continue. (See Figure 2-3.)

PICDEMTM Lab Development Board User’s Guide

SD41369A-page 14 © 2009 Microchip Technology Inc.

FIGURE 2-3: HI TECH INSTALLER WINDOW

12. In the next window, accept the terms of the license agreement and click Next to

continue. (See Figure 2-4.)

FIGURE 2-4: HI TECH LICENSE AGREEMENT

13. In the next window, select any components in addition to the HI-TECH C® Pro for

the PIC10/12/16 MCU Family Compiler to install (additional components are not

required to complete the labs in this user's guide) and click Next to continue.

(See Figure 2-5.)

Getting Started

© 2009 Microchip Technology Inc. SD41369A-page 15

FIGURE 2-5: HI TECH COMPONENTS

14. In the next window, choose the language of preference, select the Add to

environment path radio button and click Next to continue. (See Figure 2-6.)

FIGURE 2-6: HI TECH LANGUAGE PREFERENCES

The installation process will now begin.

15. Once the installation is complete, a confirmation window will open. Select or

de-select the Read quick start guide now? radio button and click Finish to

proceed. (See Figure 2-7.)

PICDEMTM Lab Development Board User’s Guide

SD41369A-page 16 © 2009 Microchip Technology Inc.

FIGURE 2-7: HI TECH INSTALL CONFIRMATION

16. The MPLAB® Tools Install Shield Wizard Complete window should soon open

and prompt the user to restart the computer before using the software. To begin

using the tools, select the Yes, I want to restart my computer radio button and

click Finish to end the installation process and restart the computer.

Following restart, the user will be given the option to view a variety of documentation.

To view a document, simply highlight and click View Selected File.

The MPLAB® IDE and HI-TECH C® PRO for the PIC10/12/16 MCU Family Lite Mode

Compiler are now both installed and ready to use. The user is now ready to complete

the labs included in this user�s guide.

2.5 INSTALLING THE INCLUDED LAB FILES

The PICDEM� Lab Development Kit CD-ROM includes a .zip file called

PICDEM_Lab.zip. This file provides a location for the user to save any projects

created while completing the labs in this user's guide and contains solutions for each

lab in a folder labeled solution. To install this folder, simply extract the contents of

the .zip file to the C:\ directory.

Note: A comprehensive introduction to the �HI-TECH C® PRO for the

PIC10/12/16 MCU Family Lite Mode Compiler Tutorial” (DS41322) is

provided on the accompanying CD-ROM.

Note: Lab folders must be installed to the C:\ to be used by the MPLAB IDE.

PICDEMTM LAB DEVELOPMENT

BOARD USER’S GUIDE

© 2009 Microchip Technology Inc. DS41369A-page 17

Chapter 3. General Purpose Input/Output Labs

3.1 INTRODUCTION

The following labs cover some of the fundamental features of the General Purpose

Input/Output (GPIO) peripherals available on the PIC16F690. As the name implies,

these peripherals are used for general purpose applications that can monitor and

control other off-chip devices. Some PIC® microcontrollers have multiple GPIO

peripherals on-chip including the PIC16F690 used in the following labs. Therefore, the

PORTx naming convention is used. Available ports on the PIC16F690 are:

� PORTA

� PORTB

� PORTC

Reading through the data sheet highlights some of the unique characteristics associ-

ated with each port and the reader is encouraged to explore these in greater detail once

comfortable with the labs in this user�s guide. The labs will focus on two of the port

peripherals: PORTC and PORTA. Labs will be naturally divided into two sections since

these are General Purpose Input/Output peripherals:

� Output Labs

� Input Labs

Output labs will introduce the reader to concepts necessary to configuring these periph-

erals for output to off-chip devices using applicable registers by lighting 8 LEDs con-

nected to the PORTC pins

The Input labs will then add a push button interfacing to one of the PORTA pins to high-

light concepts necessary for configuring these peripherals to receive information from

off-chip devices. Finally, interrupts will be used to optimize the application for different

purposes.

3.2 GENERAL PURPOSE INPUT/OUTPUT LABS

• Output Labs:

- Lab 1: Light LEDs

- Lab 2: Flash LEDs (Delay Loop)

- Lab 3: Simple Delays Using Timer0

- Lab 4: Rotate LEDs

• Input Labs:

- Lab 5: Adding a Push Button

- Lab 6: Push Button Interrupt

- Lab 7: Push Button Interrupt-on-Change

- Lab 8: Using Weak Pull-ups

PICDEMTM Lab Development Board User’s Guide

DS41369A-page 18 © 2009 Microchip Technology Inc.

3.3 GPIO OUTPUT LABS

3.3.1 Reference Documentation

All documentation is available on the PICDEM� Lab Development Kit accompanying

CD-ROM.

� PIC16F690 Data Sheet (DS41262)

- Section 2.2.2.2: Option Register

- Section 2.2.2.3: Interrupt Control Register INTCON

- Section 4: I/O Ports

- Section 5: Timer0 Module

� Timers: Timer0 Tutorial (Part 1) (DS51628)

� Timers: Timer0 Tutorial (Part 2) (DS51702)

� “Introduction to MPLAB® IDE and HI-TECH C® PRO for the PIC10/12/16 MCU

Family Lite Mode Compiler Tutorial” (DS41322)

3.3.2 Equipment Required for GPIO Output Labs

To complete the labs in this section, the following components are required:

1. 8 � Light Emitting Diodes

2. 8 � 470Ω resistors

3. PIC16F690 populating socket U2

4. Assorted jumper wires

3.3.3 PICDEM Lab Development Board Setup for GPIO Output Labs

The GPIO output labs will require that the PICDEM Lab Development Board be config-

ured as shown in Figure 3-1 using the components listed in the previous section.

FIGURE 3-1: PICDEM LAB SCHEMATIC FOR GPIO OUTPUT LABS

U2
1
2
3
4
5
6
7
8
9
10

20
19
18
17
16
15
14
13
12
11

RC0

RC1
RC2RC3

RC4
RC5

RC6
RC7

J9J8

R8

470Ω
R4

470Ω
R7

470Ω
R6

470Ω
R5

470Ω
R3

470Ω
R2

470Ω
R1

470Ω

LED8 LED7 LED6 LED4 LED3 LED2 LED1LED5

VSS

General Purpose Input/Output Labs

© 2009 Microchip Technology Inc. DS41369A-page 19

Special care should be observed when connecting the LED jumper wires to the

expansion headers surrounding the PIC16F690, as the PORTC pins are not in

sequential order. The 470Ω resistors are used to limit the current across the LEDs to

manufacturer specifications. Furthermore, the PIC16F690 Data Sheet electrical

specifications (see Section 17.0) specify that each port pin should not source/sink more

than 25 mA. The maximum output current sourced/sunk by all port pins combined

should not exceed 200 mA. The 470Ω resistors keep all source current well within

these specifications.

3.3.4 Lab 1: Light LEDs

3.3.4.1 NEW REGISTERS USED IN THIS LAB

To configure the peripherals used in this lab, the following registers are used:

1. PORTC Register: PORTC (Register 4-11 in Section 4 of the PIC16F690 Data

Sheet).

- 8-bit bidirectional port.

2. PORTC Tri-State Register: TRISC (Register 4-12 in Section 4 of the PIC16F690

Data Sheet).

- Configures corresponding bits in PORTC as either input or output.

3. Analog Select Register High and Analog Select Register Low: ANSELH and

ANSEL (Registers 4-4 and 4-3 in Section 4 of the PIC16F690 Data Sheet).

- Configure associated pins for analog or digital input signals.

3.3.4.2 OVERVIEW

This first lab demonstrates how to output data from the PORTC peripheral on the

PIC16F690 to its associated pins. LEDs connected to PORTC pins will light when the

associated pin is driven high (approx. VDD) or turn the LED OFF when driven low

(approx. VSS). The port peripherals will all default to input on start-up and will therefore

need to be configured as output using the TRISC register. Also, PORTC pins RC0,

RC1, RC2, RC3, RC6 and RC7 are configurable for both analog and digital signals. On

start-up, any analog/digital functional pin is defaulted to analog. Therefore, this

application will require that these pins be configured as digital by configuring the

associated bits in the ANSEL and ANSELH analog select registers.

FIGURE 3-2: MAIN() SOFTWARE CONTROL LOOP FLOWCHART FOR

LAB 1

main()

Initialize()

Do_Outputs()

Loop Forever

PICDEMTM Lab Development Board User’s Guide

DS41369A-page 20 © 2009 Microchip Technology Inc.

Figure 3-2 shows the software control loop that will be implemented in this lab. At

device power-up, the first functional block called from the main() is Initialize().

This function will initialize the PORTC peripheral as follows:

� Clear the PORTC register data

� Configure the ANSEL and ANSELH bits so that all associated PORTC pins are

digital

� Configure the associated PORTC pins as all output using the TRISC register

The next function called from main() is Do_Outputs(). This function will assign

values to the PORTC register that will drive the associated pins high or low to light the

LEDs connected.

3.3.4.3 PROCEDURE

The following steps will demonstrate how to create a new project in MPLAB® IDE. A

more in-depth tutorial is provided in the document “Introduction to MPLAB® IDE and

HI-TECH C® PRO for the PIC10/12/16 MCU Family Lite Mode Compiler Tutorial”

(DS41322) included on the accompanying CD-ROM.

1. Open MPLAB IDE by selecting Start>Microchip>MPLAB IDE vX.XX>MPLAB

IDE.

2. In the MPLAB IDE toolbar, select Project>Project Wizard....

3. The Welcome dialog box should now be open. Select Next> to proceed.

4. In the Step One: window, select the PIC16F690 from the Device: drop-down

menu and select Next> to continue. (See Figure 3-3.)

FIGURE 3-3: STEP ONE

5. In the Step Two: window, select the HI TECH Universal ToolSuite from the Active

Toolsuite drop down menu. The window should now resemble Figure 3-4.

Note: The PORT register should always be initialized to a known value before

configuring the associated TRIS bit. This avoids unexpected voltage levels

on the associated pins since at start-up port bit values are unknown.

General Purpose Input/Output Labs

© 2009 Microchip Technology Inc. DS41369A-page 21

FIGURE 3-4: STEP TWO

6. In the Step Three: window, use the Browse button and navigate to a new folder

on the C:\ drive to store this project. Alternately, the reader may wish to use the

C:\PICDEM_Lab\GPIO_Labs\GPIO_Lab1 folder created earlier. (See

Figure 3-5.)

FIGURE 3-5: STEP THREE

7. In the Step Four: files are added to the project. A Lab_Template.c file has

been provided in the C:\PICDEM_Lab\Lab_Template.c directory that can be

used as the basis for all labs in this manual. To use the Lab_Template.c file,

select it from the right menu and click the Add>> button. Click on the large letter

�A� that appears next to the added file in the right window until it becomes a �C�.

This indicates that a copy of the Lab_Template.c will be included in the project

directory. Otherwise, changes made to the file during the course of the lab will

alter the original file.

Finally, rename the Lab_Template.c file in the right window to GPIO_Lab1.c by

clicking on it three times to enable editing the name. The Step Four: window should

now resemble Figure 3-6. Click Next> to continue.

PICDEMTM Lab Development Board User’s Guide

DS41369A-page 22 © 2009 Microchip Technology Inc.

FIGURE 3-6: STEP FOUR

8. Finally, the Summary window should appear showing the selected device, the

tool suite and the new project file name. Click Finish to exit the Project Wizard.

FIGURE 3-7: SUMMARY

9. The MPLAB® IDE Workspace should now be open. If the Project window is not

visible, it can be opened by selecting View>Project. The Project window should

resemble Figure 3-8.

General Purpose Input/Output Labs

© 2009 Microchip Technology Inc. DS41369A-page 23

FIGURE 3-8: PROJECT WINDOW

10. Double click on the GPIO_Lab1.c source file in the Project window to open.

11. Copy/paste the code in Example 3-1 into the Initialize() section labeled:

//ADD INITIALIZE CODE HERE

EXAMPLE 3-1: INITIALIZE() CODE FOR LAB 1

//Clear PORTC to a known state
PORTC = 0b00000000;

//Configure PORTC's ANALOG/DIGITAL pins as all Digital
ANS4 = 0;//Associated with RC0
ANS5 = 0;//Associated with RC1
ANS6 = 0;//Associated with RC2
ANS7 = 0;//Associated with RC3
ANS8 = 0;//Associated with RC6
ANS9 = 0;//Associated with RC7

//Configure PORTC pins as all output
//i.e. 1 = Input, 0 = Output
TRISC0 = 0;//Make RC0 (pin 16) output
TRISC1 = 0;//Make RC1 (pin 15) output
TRISC2 = 0;//Make RC2 (pin 14) output
TRISC3 = 0;//Make RC3 (pin 7) output
TRISC4 = 0;//Make RC4 (pin 6) output
TRISC5 = 0;//Make RC5 (pin 5) output
TRISC6 = 0;//Make RC6 (pin 8) output
TRISC7 = 0;//Make RC7 (pin 9) output

PICDEMTM Lab Development Board User’s Guide

DS41369A-page 24 © 2009 Microchip Technology Inc.

12. Copy/paste the code in Example 3-2 into the Do_Outputs() section labeled:

//ADD DO_OUTPUTS CODE HERE

EXAMPLE 3-2: DO_OUTPUT() CODE FOR LAB 1

13. Copy/paste the code in Example 3-3 into the main() section labeled:

//ADD MAIN CODE HERE

EXAMPLE 3-3: MAIN() CODE FOR LAB 1

The project is now ready to compile and download to the PIC16F690.

14. Compile the project ensuring no errors.

15. Connect the PICkit� 2 Programmer/Debugger to an available USB port on the

PC and then to the ICSP� connector ICSP1 (J6) on the PICDEM Lab Develop-

ment Board. The PICkit 2 should recognize if a power source is not connected to

the PIC16F690 and provide target power.

16. In the MPLAB� IDE Project Workspace, select

Programmer>Select Programmer>PICkit 2.

17. The PICkit 2 Programmer/Debugger toolbar should now be visible in the

workspace as shown in Figure 3-9.

RC0 = 1;//Make RC0 (pin 16) HIGH (approx. Vdd)
RC1 = 0;//Make RC1 (pin 15) LOW (approx. Vss)
RC2 = 1;//Make RC2 (pin 14) HIGH (approx. Vdd)
RC3 = 1;//Make RC3 (pin 7) HIGH (approx. Vdd)
RC4 = 0;//Make RC4 (pin 6) LOW (approx. Vss)
RC5 = 1;//Make RC5 (pin 5) HIGH (approx. Vdd)
RC6 = 0;//Make RC6 (pin 8) LOW (approx. Vss)
RC7 = 1;//Make RC7 (pin 9) HIGH (approx. Vdd)

Initialize(); //Initialize the relevant registers

while(1) //Code within curly braces will loop forever
{

Do_Outputs(); //Perform any outputs

}

General Purpose Input/Output Labs

© 2009 Microchip Technology Inc. DS41369A-page 25

FIGURE 3-9: PICkit 2 PROGRAMMER/DEBUGGER TOOLBAR

8. Press button1 shown in Figure 3-9 to program the PIC16F690.

3.3.4.4 TESTING THE APPLICATION

Once programmed, the LEDs connected to the individual PORTC pins should now

resemble the output shown in Figure 3-10.

FIGURE 3-10: LAB 1 LED OUTPUT

The solution for this project is located in the

C:\PICDEM_Lab\GPIO_Labs\GPIO_Lab1\solution directory.

3.3.5 Lab 2: Flash LEDs (Delay Loop)

3.3.5.1 OVERVIEW

This lab implements a software delay to flash the LEDs connected to the PORTC pins

on/off in 1 second intervals. As configured, the PIC16F690 executes 1 million instruc-

tions per second. At this rate, the software loop execution needs to be slowed down so

that the LED flashing is visible to the eye. This is done using a delay routine within the

Timing() functional block called from the main() software control loop as shown in

Figure 3-11.

Legend:

1. Program the target device

2. Read target device memories

3. Read the target EEDATA memory

4. Verify the contents of the target device

5. Erase the target device memories

6. Verify that target memories are erased

7. Bring target MCLR to VDD

8. Bring target MCLR to VIL

9. Re-establish PICkit 2 connection

1 2 3 4 5 6 7 8 9

R8

470Ω
R4

470Ω
R7

470Ω
R6

470Ω
R5

470Ω
R3

470Ω
R2

470Ω
R1

470Ω

LED8 LED7 LED6 LED4 LED3 LED2 LED1LED5

VSSLED ON LED OFF

PICDEMTM Lab Development Board User’s Guide

DS41369A-page 26 © 2009 Microchip Technology Inc.

FIGURE 3-11: MAIN() SOFTWARE CONTROL LOOP FLOWCHART FOR

LAB 2

The Timing() delay routine is shown in Figure 3-12.

FIGURE 3-12: TIMING() DELAY ROUTINE FLOWCHART FOR LAB 2

Two variables are used delay_var1 and delay_var2. The delay_var2 is decre-

mented by 1 each time delay_var1 is decremented from 45571 to 0. These values

have been determined through trial and error using a test procedure detailed in the

�Timers: Timer0 Tutorial (Part 1)� (DS51682.pdf) included on the PICDEM� Lab

Development Kit CD. This delay ties the up the processor for 1 second when using the

4 MHz internal oscillator.

The Initialize() configures the PORTC as follows:

� PORTC

- Set all bits in the PORTC register HIGH

- Configure all PORTC pins as digital outputs

main()

Initialize()

Do_Outputs()

Loop Forever

Timing()

TIMING()

Create two 8-bit variables:

• delay_var1 = 45571

• delay_var2 = 3

delay_var2 - 1 = 0

?

delay_var1 - 1 = 0

?

END

delay_var1 = 45571

YES

YES

NO

NO

General Purpose Input/Output Labs

© 2009 Microchip Technology Inc. DS41369A-page 27

The Do_Outputs() changes somewhat from the previous lab by implementing the

XOR operator to toggle the value in each PORTC bit location each time through the

software loop. The XOR operator is implemented in code as follows:

RCx ^= 1;

This translates to: “Make RCx equal to the current value in RCx XOR’d with 1”

When a value is XOR�d with itself, the result is �0� (i.e., 1 XOR�d with 1 = 0, 0 XOR�d

with 0 = 0). When a value is XOR�d with a value different than itself, the result is �1� (i.e.,

1 XOR�d with 0 = 1). Therefore, each time through the loop PORTC bits will toggle from

1-to-0 or 0-to-1 depending on its current value.

3.3.5.2 PROCEDURE

Using the code developed in the previous lab, make the following changes:

1. Copy/paste the code in Example 3-4 over the Initialize() code from the

previous lab.

EXAMPLE 3-4: INITIALIZE() CODE FOR LAB 2

The only change from the previous lab is that the PORTC bits are all set high to 1.

2. Copy/paste the code in Example 3-5 over the Do_Outputs() code from the

previous lab to accommodate the XOR bit toggle.

Note: The reader may wish to create a new project as per the previous lab called

GPIO_Lab2.mcp

//Set all PORTC bits HIGH (to a known state)
PORTC = 0b11111111;

//Configure PORTC's ANALOG/DIGITAL pins as all Digital
ANS4 = 0;//Associated with RC0
ANS5 = 0;//Associated with RC1
ANS6 = 0;//Associated with RC2
ANS7 = 0;//Associated with RC3
ANS8 = 0;//Associated with RC6
ANS9 = 0;//Associated with RC7

//Configure PORTC pins as all output
//i.e. 1 = Input, 0 = Output
TRISC0 = 0;//Make RC0 (pin 16) output
TRISC1 = 0;//Make RC1 (pin 15) output
TRISC2 = 0;//Make RC2 (pin 14) output
TRISC3 = 0;//Make RC3 (pin 7) output
TRISC4 = 0;//Make RC4 (pin 6) output
TRISC5 = 0;//Make RC5 (pin 5) output
TRISC6 = 0;//Make RC6 (pin 8) output
TRISC7 = 0;//Make RC7 (pin 9) output

PICDEMTM Lab Development Board User’s Guide

DS41369A-page 28 © 2009 Microchip Technology Inc.

EXAMPLE 3-5: DO_OUTPUT() CODE FOR LAB 2

3. Copy/paste the code in Example 3-6 into the Timing() section labeled:

//ADD TIMING CODE HERE

EXAMPLE 3-6: TIMING() FOR LAB 2

4. Copy/paste the code in Example 3-7 over the main() code from the previous lab

to incorporate the Timing().

EXAMPLE 3-7: MAIN() CODE FOR LAB 2

Compile the project. There should be no errors.

3.3.5.3 TESTING THE APPLICATION

Program the PIC16F690. The LEDs connected to the individual PORTC pins should

now all flash on/off in 1 second intervals.

The solution for this project is located in the

C:\PICDEM_Lab\GPIO_Labs\GPIO_Lab2\solution directory.

RC0 ^= 1;//XOR current RC0 value with 1
RC1 ^= 1;//XOR current RC1 value with 1
RC2 ^= 1;//XOR current RC2 value with 1
RC3 ^= 1;//XOR current RC3 value with 1
RC4 ^= 1;//XOR current RC4 value with 1
RC5 ^= 1;//XOR current RC5 value with 1
RC6 ^= 1;//XOR current RC6 value with 1
RC7 ^= 1;//XOR current RC7 value with 1

//--------DELAY 1second-------------------------
//Variable used in delay loop
unsigned int delay_var1 = 45571;
unsigned char delay_var2 = 3;
//Nested while loops to implement a 1 second delay
//Decrement delay_var2, if 0 jump out of loop
while(--delay_var2)
{

//Decrement delay_var1, if 0 jump out of loop
while(--delay_var1);

}

Initialize(); //Initialize the relevant registers

while(1)
{

Do_Outputs(); //Perform any outputs

Timing();//Sets execution rate of the
//Software Control Loop

}

General Purpose Input/Output Labs

© 2009 Microchip Technology Inc. DS41369A-page 29

3.3.6 Lab 3: Simple Delays Using Timer0

3.3.6.1 NEW REGISTERS USED IN THIS LAB

To configure the peripherals used in this lab, the following registers are used:

1. Timer0 Module Register: TMR0

- Holds a count value of the number of selected edge transition of a clock

source.

2. OPTION Register: OPTION_REG (Register 5-1 in Section 5 of the PIC16F690

Data Sheet).

- Selects clock source used to increment TMR0 result register.

- Selects clock source edge transition to increment TMR0.

3. Software configurable prescaler to determine the number of clock source edge

transitions before incrementing TMR0 register value.

4. Interrupt Control Register: INTCON (Register 2-3 in Section 2 of the PIC16F690

Data Sheet).

- Contains a flag that when 1, indicates a TMR0 register overflow has occurred.

3.3.6.2 OVERVIEW

To implement a more accurate delay, the Timer0 peripheral can be used. Timer0 is an

8-bit timer/counter that uses a clock source to increment an 8-bit register called TMR0.

Since this register is 8 bits, it can increment up 28 = 256 times or 010 - 25510

(000000002 - 111111112) inclusive then rollover or overflow back to �0�. Whenever

TMR0 overflows, a Timer0 Overflow Flag (T0IF) in the OPTION register is set to �1�.

This register also features a prescaler that determines how many clock source cycles

it takes to increment TMR0 by �1�. In this way, simply by tracking the T0IF, very accurate

delays can be implemented. In this lab, the TMR0 register is configured to increment

on the low-to-high transition of an available internal instruction clock on the PIC16F690.

This internal instruction clock runs at the rate of the internal oscillator frequency FOSC

divided by 4. Therefore, when the PIC16F690 is configured to operate using the inter-

nal 4 MHz oscillator, this internal instruction clock runs at a rate of

FOSC/4 = 4MHz/4 = 1MHz. This is a period of 1/1MHz = 1 µS. If it is known that TMR0

increments every 1 µS, and it takes 256 internal instruction clock cycles to cause a

TMR0 overflow (i.e., 0-255 inclusive), then Equation 3-1 can be derived:

EQUATION 3-1: TMR0 OVERFLOW PERIOD USING FOSC/4

As mentioned, Timer0 also features a prescaler that can be configured to increment the

value in TMR0 every 2, 4, 8, 16, 32, 64, 128, or 256 clock source transitions. Therefore,

this feature can be added to Equation 3-1 to create Equation 3-2.

EQUATION 3-2: TMR0 OVERFLOW PERIOD WHEN INCLUDING THE

PRESCALER

TMR0 Overflow Period = (4/FOSC) x 256 = 1 µSecond x 256 = 256 µSeconds

TMR0 Overflow Period = (4/FOSC) x 256 x prescaler

Using a 1:32 prescaler setting as an example and a 4 MHz internal oscillator

TMR0 Overflow Period = 1 µS x 256 x 32 = 8.192mS

PICDEMTM Lab Development Board User’s Guide

DS41369A-page 30 © 2009 Microchip Technology Inc.

Finally, TMR0 is a writable register. Meaning that a value can be added to the register

to offset the number of counts it takes for the overflow to occur. Equation 3-3 demon-

strates how to calculate the value to preload the TMR0 register with to create a 10mS

overflow period.

EQUATION 3-3: CALCULATING A TMR0 PRELOAD VALUE TO GENERATE A

10MS OVERFLOW PERIOD

The software flowchart to implement a 10mS delay is shown in Figure 3-13.

FIGURE 3-13: DELAY_10MS() USING TIMER0

 The maximum overflow period that can be achieved using Timer0 only utilizes a 1:256

prescaler is as shown in Equation 3-4.

Desired TMR0 Overflow Period = (4/FOSC) x (256 - Preload Value) x prescaler

Using a 1:64 prescaler setting, a 4 MHz internal oscillator and requiring a 10 mS

overflow period:

10mS = 1 µSecond x (256 - Preload Value) x 64

10mS/(1 µSecond x 64) = 256 - Preload Value

Preload Value = 256 - [10mS/(1 µSecond x 64)]

Preload Value = 99.75 rounded up becomes 100

Therefore, to produce a 10 mS overflow period, using the internal instruction

clock with a 4 MHz internal oscillator and a TMR0 prescaler value of 1:64

requires that TMR0 be preloaded with a value of 100.

Delay_10mS()

END

YES

NO

Preload TMR0 register with 100

Clear the TMR0 overflow flag

(T0IF)

T0IF = 0?

General Purpose Input/Output Labs

© 2009 Microchip Technology Inc. DS41369A-page 31

EQUATION 3-4: MAXIMUM TMR0 OVERFLOW PERIOD

Therefore, to implement delays greater than 65.5mS, a counter variable is

implemented as shown in the flowchart of Figure 3-14 for a 1 second delay.

FIGURE 3-14: DELAY_1S() USING TIMER0

TMR0 Overflow Period = (4/FOSC) x 256 x prescaler

using a maximum prescaler setting of 1:256 and the 4MHz internal oscillator

TMR0 Overflow Period = 1 µS x 256 x 256 = 65.5mS

Delay_1S()

END

YES

NO

counter variable value determined as follows:

1 second/65.5mS = 15.25 or rounded down to 15

Create an 8-bit variable counter and
initialize to 0

Clear the TMR0 register

Clear the TMR0 overflow flag

(T0IF)

T0IF = 0?

counter < or = 15?

Increment counter value by 1

NO

YES

PICDEMTM Lab Development Board User’s Guide

DS41369A-page 32 © 2009 Microchip Technology Inc.

 The Initialize() now configures the PIC16F690 peripherals as follows:

� PORTC

- Set all bits in PORTC high

- Make all PORTC pins digital output

� Timer0

- Use the internal instruction clock (FOSC/4) as the TMR0 register clock source

- Increment TMR0 register on low-to-high transition of FOSC/4

- Assign the prescaler to Timer0 and configure to increment on every 256th

transition of FOSC/4

3.3.6.3 PROCEDURE

Using the firmware developed in the previous lab, make the following changes:

1. Copy/paste the code in Example 3-8 at the top of the main firmware source file

under the heading labeled:

/**SUPPORT ROUTINES**********************************/

EXAMPLE 3-8: DELAY_1S() CODE FOR LAB 3

2. Copy/paste the code in Example 3-9 into the Initialize() over the code from

the previous lab.

/*---
Subroutine: Delay_1S
Parameters: none
Returns:nothing
Synopsis:Creates a 1S delay when called

---*/
void Delay_1S(void)
{

//Create an 8-bit variable called counter
//and initialize it to 0
unsigned char counter = 0;

while(counter <= 15)
{
//Make sure the T0IF is cleared
T0IF = 0;

//Clear the TMR0 register
TMR0 = 0;
//Sit here and wait for Timer0 to overflow

while (T0IF == 0);
++counter;

}

}

General Purpose Input/Output Labs

© 2009 Microchip Technology Inc. DS41369A-page 33

EXAMPLE 3-9: INITIALIZE() CODE FOR LAB 3

3. Finally, copy/paste the code in Example 3-10 into the Timing() over the code

from the previous lab

EXAMPLE 3-10: TIMING() CODE FOR LAB 3

4. The remaining code from the previous lab remains the same. Compile the proj-

ect. There should be no errors.

3.3.6.4 TESTING THE APPLICATION

Program the PIC16F690. The application should behave exactly as it did in the

previous lab. Using an oscilloscope to test individual PORTC pin level transitions would

be useful to analyze the accuracy of the delay.

The solution for this project is located in the

C:\PICDEM_Lab\GPIO_Labs\GPIO_Lab3\solution directory.

//Set all PORTC bits HIGH (to a known state)
PORTC = 0b11111111;

//Configure PORTC's ANALOG/DIGITAL pins as all Digital
ANS4 = 0;//Associated with RC0
ANS5 = 0;//Associated with RC1
ANS6 = 0;//Associated with RC2
ANS7 = 0;//Associated with RC3
ANS8 = 0;//Associated with RC6
ANS9 = 0;//Associated with RC7

//Configure PORTC pins as all output
//i.e. 1 = Input, 0 = Output
TRISC0 = 0;//Make RC0 (pin 16) output
TRISC1 = 0;//Make RC1 (pin 15) output
TRISC2 = 0;//Make RC2 (pin 14) output
TRISC3 = 0;//Make RC3 (pin 7) output
TRISC4 = 0;//Make RC4 (pin 6) output
TRISC5 = 0;//Make RC5 (pin 5) output
TRISC6 = 0;//Make RC6 (pin 8) output
TRISC7 = 0;//Make RC7 (pin 9) output

//Configure Timer0 as follows:
T0CS = 0; //Use the internal instruction clock

//FOSC/4 as the clock source
T0SE = 0;//Increment TMR0 on low-to-high

//FOSC/4 transition
PSA = 0;//Assign the prescaler to

//Timer0

//Configure Timer0 prescaler to increment
//TMR0 every 256 FOSC/4 clock transitions
PS0 = 1;
PS1 = 1;
PS2 = 1;

Delay_1S(); //Call the 1 second delay

Note: More in-depth tutorials on the Timer0 peripheral are covered in �Timers:

Timer0 Tutorial (Part 1)� (5162a.pdf) and �Timers: Timer0 Tutorial (Part 2)�

(51702a.pdf) files included on the PICDEM� Lab Development Kit CD.

PICDEMTM Lab Development Board User’s Guide

DS41369A-page 34 © 2009 Microchip Technology Inc.

3.3.7 Lab 4: Rotate LEDs

3.3.7.1 OVERVIEW

This lab shifts a high bit in the PORTC register from right-to-left each time through the

software loop sequentially lighting the LEDs connected to the PORTC pins in 1 second

intervals as dictated by the Timing(). This lab adds some new functional blocks to

the main() software control loop as shown in Figure 3-15.

FIGURE 3-15: MAIN() SOFTWARE CONTROL LOOP FLOWCHART FOR

LAB 4

The addition of an 8-bit global variable (can be manipulated by any function) called

LED_Output is used. This variable will be acted upon by the new Decide() by shift-

ing a high bit in LED_Output from right-to-left each time this function is called. The

flowchart for the Decide() is shown in Figure 3-16.

FIGURE 3-16: DECIDE() FLOWCHART FOR LAB 4

main()

Initialize()

Do_Outputs()

Loop Forever

Timing()

Decide()

Global Variables:

• 8-bit LED_Output

Decide()

LED_Output = 0b10000000

or

LED_Output = 0b00000000

?

END

Shift contents of LED_Output
variable left by 1 bit position

YES

NO

LED_Output = 0b00000001

LED_Output variable initialize to 0b00000001
in Initialize()

General Purpose Input/Output Labs

© 2009 Microchip Technology Inc. DS41369A-page 35

The Decide() first checks the current value in LED_Output for two specific condi-

tions:

� Is the Most Significant bit �1�? This means that on the next shift, the contents will

be all �0�s.

� Is the value currently a �0�?

If either condition exists, the function re-initializes LED_Output to set the Least Signif-

icant bit. Otherwise, there will be a period when none of the LEDs are lit.

The shift is implemented in code as follows:

LED_Output <<= 1;

This translates to: “LED_Output is equal to the current contents of LED_Output

shifted to the left by 1 bit position”

Conversely, to shift the bit to the right the code would be as follows:

LED_Output >>= 1;

The Do_Outputs() will then assign the contents of the LED_Output variable to the

PORTC register and whichever bit is high will light the connected LED. (See

Figure 3-17.)

FIGURE 3-17: RESULTS OF DO_OUTPUT()

The Initialize() now configures the PIC16F690 peripherals as follows:

� PORTC

- Initialize PORTC so that the 7 Most Significant bits are �0� and the Least

Significant bit is �1�

- Make all PORTC pins digital output

� Timer0

- Use the internal instruction clock (FOSC/4) as the TMR0 register clock source

- Increment TMR0 register on low-to-high transition of FOSC/4

- Assign the prescaler to Timer0 and configure to increment on every 256th

transition of FOSC/4

� Initialize the LED_Output variable to �0�

Do_Outputs()
assigns

LED_Output to
PORTC

LED_Output variable

1000000 0 1000000 0

PORTC

Do_Outputs()
assigns

LED_Output to
PORTC

0100000 0 0100000 0

LED_Output variable PORTC

Decide() shifts contents of

LED_Output Left by 1 bit position

Corresponding LED lights

Corresponding LED lights

First time through main():

Next time through main():

Initialize() determines initial

contents of LED_Output

PICDEMTM Lab Development Board User’s Guide

DS41369A-page 36 © 2009 Microchip Technology Inc.

3.3.7.2 PROCEDURE

 Using the code developed in the previous lab, make the following changes:

1. The LED_Output variable will need to be declared before it can be used.

Copy/paste the code in Example 3-11 to the beginning of the source file under

the section marked:

//-----------------DATA MEMORY------------------------

EXAMPLE 3-11: LED_OUTPUT VARIABLE DECLARATION FOR LAB 4

2. Copy/paste the code in Example 3-12 over the Initialize() code from the

previous lab.

EXAMPLE 3-12: INITIALIZE() CODE FOR LAB 4

unsigned char LED_Output;//Variable used to set/clear PORTC bits

//Clear PORTC to a known state
PORTC = 0b00000001;

//Configure PORTC's ANALOG/DIGITAL pins as all Digital
ANS4 = 0;//Associated with RC0
ANS5 = 0;//Associated with RC1
ANS6 = 0;//Associated with RC2
ANS7 = 0;//Associated with RC3
ANS8 = 0;//Associated with RC6
ANS9 = 0;//Associated with RC7

//Configure PORTC pins as all output
//i.e. 1 = Input, 0 = Output
TRISC0 = 0;//Associated with RC0
TRISC1 = 0;//Associated with RC1
TRISC2 = 0;//Associated with RC2
TRISC3 = 0;//Associated with RC3
TRISC4 = 0;//Associated with RC4
TRISC5 = 0;//Associated with RC5
TRISC6 = 0;//Associated with RC6
TRISC7 = 0;//Associated with RC7

//Configure Timer0 as follows:
T0CS = 0; //Use the internal instruction clock

//FOSC/4 as the clock source
T0SE = 0;//Increment TMR0 on low-to-high

//FOSC/4 transition
PSA = 0;//Assign the prescaler to

//Timer0

//Configure Timer0 prescaler to increment
//TMR0 every 256 FOSC/4 clock transitions
PS0 = 1;
PS1 = 1;
PS2 = 1;
//Initialize LED_Output to all zeros
LED_Output = 0b00000000;

General Purpose Input/Output Labs

© 2009 Microchip Technology Inc. DS41369A-page 37

Changes from the previous lab include PORTC initialization so that all bits are �0�

except for the Least Significant bit (LSb) and the initialization of the LED_Output
variable.

3. Copy/paste the code in Example 3-13 into the Decide() section labeled:

//ADD DECISION CODE HERE

EXAMPLE 3-13: DECIDE()CODE FOR LAB 4

4. Copy/paste the code in Example 3-14 over the Do_Outputs() code from the

previous lab.

EXAMPLE 3-14: DO_OUTPUTS() CODE FOR LAB 4

This code simply assigns the contents of the LED_Output variable to the PORTC

register.

5. Copy/paste the code in Example 3-15 over the main() code from the previous

lab to incorporate the Decide().

EXAMPLE 3-15: MAIN() CODE FOR LAB 4

Compile the project. There should be no errors.

//First check if LED_Output variable has most significant bit
//set to 1 or if LED_Output variable is all 0's.
//If so, re initialize the LED_Output variable so that the
//least significant bit is set to 1 and all other bits are
//cleared to 0

if((LED_Output == 0b10000000) || (LED_Output == 0b00000000))
LED_Output = 0b00000001;

//If neither of these conditions are true, simply shift
//the LED_Output variable's contents to the Left by 1 bit
//position

else LED_Output <<=1;

//Assign the manipulated contents of the
//LED_Output variable to the PORTC register

PORTC = LED_Output;

Initialize(); //Initialize the relevant registers

while(1)
{

Decide(); //Make any decisions

Do_Outputs(); //Perform any outputs

Timing();//Sets execution rate of the
//Software Control Loop

}

PICDEMTM Lab Development Board User’s Guide

DS41369A-page 38 © 2009 Microchip Technology Inc.

3.3.7.3 TESTING THE APPLICATION

Program the PIC16F690. The LEDs connected to the individual PORTC pins should

now all flash on/off sequentially from right-to-left in 1 second intervals.

The solution for this project is located in the

C:\PICDEM_Lab\GPIO_Labs\GPIO_Lab4\solution directory.

3.4 GPIO INPUT LABS

3.4.1 Reference Documentation

PIC16F690 Data Sheet

� Section 2: Memory Organization

� Section 4: I/O Ports

� Section 5: Timer0 Module

3.4.2 Equipment Required for GPIO Input Labs

To complete the labs in this section, the following components are required:

1. 1 � push button

2. 8 � Light Emitting Diodes

3. 1 � 10 KΩ

4. 8 � 470Ω resistors

5. PIC16F690 populating socket U2

6. Assorted jumper wires

3.4.3 PICDEM Lab Development Board Setup for GPIO Input Labs

The GPIO input labs will require that the PICDEM Lab Development Board be

configured as shown in Figure 3-12 using the components listed in the previous

section.

General Purpose Input/Output Labs

© 2009 Microchip Technology Inc. DS41369A-page 39

FIGURE 3-18: PICDEM LAB SCHEMATIC FOR GPIO INPUT LABS

The only change from the previous section is the inclusion of a push button connected

to RA2 with associated pull-up resistor.

3.4.4 Lab 5: Adding a Push Button

3.4.4.1 NEW REGISTERS USED IN THIS LAB

To configure the peripherals used in this lab, the following registers are used:

1. PORTA Register: PORTA (Register 4-1 in Section 4 of the PIC16F690 Data

Sheet)

- 8-bit bidirectional port

2. PORTA Tri-State Register: TRISA (Register 4-2 in Section 4 of the PIC16F690

Data Sheet)

- Configures corresponding bits in PORTA as either input or output

3.4.4.2 OVERVIEW

This lab expands upon Lab 4 by adding a push button interface to change the direction

of the sequential shift in the PORTC register.

Mechanical switches play an important and extensive role in practically every

computer, microprocessor and microcontroller application. Mechanical switches are

inexpensive, simple and reliable. However, switches can be very noisy electrically. The

apparent noise is caused by the closing and opening action that seldom results in a

clean electrical transition. The connection makes and breaks several, perhaps even

hundreds, of times before the final switch state settles. The problem is known as switch

bounce. Some of the intermittent activity is due to the switch contacts actually bouncing

off each other. Also, switch contacts are not perfectly smooth. As the contacts move

against each other, the imperfections and impurities on the surfaces cause the

electrical connection to be interrupted. The result is switch bounce. The consequences

U2

1
2
3
4
5
6
7
8
9
10

20
19
18
17
16
15
14
13
12
11

RC0

RC1
RC2RC3

RC4
RC5

RC6
RC7

J9J8

R8

470Ω
R4

470Ω
R7

470Ω
R6

470Ω
R5

470Ω
R3

470Ω
R2

470Ω
R1

470Ω

LED8 LED7 LED6 LED4 LED3 LED2 LED1LED5

VSS

VSS

VDD

R9

10KΩ

SW1
RA2

PICDEMTM Lab Development Board User’s Guide

DS41369A-page 40 © 2009 Microchip Technology Inc.

of uncorrected switch bounce can range from being just annoying to catastrophic. The

classic solution involves filtering, such as through a resistor-capacitor circuit, or through

resettable shift registers. These methods are still effective but they involve additional

cost in material, installation and board real estate. Debouncing in software eliminates

these additional costs.

One of the simplest ways to switch debounce is to sample the switch until the signal is

stable or continue to sample the signal until no more bounces are detected. How long

to continue sampling requires some investigation. However, 5 mS is usually adequate,

while still reacting fast enough that the user won't notice it.

The software flowchart for this application is shown in Figure 3-19.

FIGURE 3-19: MAIN() SOFTWARE CONTROL LOOP FLOWCHART FOR

LAB 5

The Initialize() now configures the following:

� PORTC

- Configure PORTC pins as per the previous labs

� PORTA

- Clear PORTA register.

- Configure RA2 as a digital input pin

(see Registers 4-1 and 4-2 in Section 4.1 of the PIC16F690 Data Sheet).

� Timer0 will be configured to implement the 5mS delay as follows:

- Use the internal instruction clock FOSC/4 as the TMR0 clock source.

- Increment TMR0 on the low-to-high transition of FOSC/4.

- Assign the prescaler to TMR0 and configure 1:64.

� Initialize the LED_Output variable to �0�

� Initialize the direction bit variable to �0�

- This is a global variable that will be manipulated by the new Get_Inputs()

and used to determine PORTC shift direction by the Decide().

main()

Initialize()

Do_Outputs()

Loop Forever

Timing()

Decide()

Global Variables:

• 8-bit variable LED_Output will be used to

light the LEDs connected to PORTC

• 1-bit variable direction used to deter-

mine the direction of the sequential LED

flashing

0 = shift PORTC bits right-to-left

1 = shift PORTC bits left-to-right

Get_Inputs()

General Purpose Input/Output Labs

© 2009 Microchip Technology Inc. DS41369A-page 41

A new function called Get_Inputs() is used to check the RA2 pin voltage. Referring

to Figure 3-12, the RA2 pin connected to the push button (SW1) is pulled to VDD using

a 10 KΩ resistor. This pull-up resistor eliminates noise on the pin that could trigger

�false� push button presses. The second terminal of the push button is connected to

VSS. In this way, when a user presses the push button the voltage present on RA2 will

transition from VDD (high or �1�) to VSS (low or �0�). The software flowchart for the

Get_Inputs() is shown in Figure 3-20.

FIGURE 3-20: GET_INPUTS() SOFTWARE FLOWCHART FOR LAB 5

Referring to the flowchart in Figure 3-20, the Get_Inputs() first checks the voltage

level on the RA2 pin. If the voltage is logic low (= 0 or VSS), a 5mS delay is implemented

using a new support routine called Delay_5mS() to allow any switch bouncing to set-

tle. The Delay_5mS() is based off of the Timer0 peripheral as discussed in Lab 3. The

software flowchart for Delay_5mS() is shown in Figure 3-21.

Get_Inputs()

RA0 = 0

?

END

Contents of direction
remain unchanged

YES

NO

Delay_5mS()

RA0 = 0

?

Toggle contents of
direction

YES

NO

Debounces signal
on RA2

PICDEMTM Lab Development Board User’s Guide

DS41369A-page 42 © 2009 Microchip Technology Inc.

FIGURE 3-21: DELAY_5MS() SOFTWARE FLOWCHART FOR LAB 5

The RA2 pin voltage is then checked again. If still low, a push button press is indicated

and the direction bit variable is toggled. Otherwise, the direction value stays the

same.

The Decide() then uses the current direction value to determine which direction

to shift the contents of the LED_Output global variable. The Decide() software

flowchart is shown in Figure 3-22.

Delay_5mS()

T0IF = 1

(i.e., TMR0 overflow)

?

END

Clear the Timer0 overflow
flag (T0IF)

YES

NO

Preload the Timer0 result
register (TMR0) with 100

Timer0 configured in the Initialize() as fol-
lows:

� Using the internal FOSC/4 (4MHz/4) clock
source

� TMR0 increments on low-to-high transition
of FOSC/4

� Prescaler configured for 1:32

Desired Timer0 Overflow Rate = (4/FOSC) x number of counts to overflow x prescaler

5mS = 1µSeconds x (256 – TMR0 preload value) x 32

TMR0 preload value = 256 – 5mS = 99.75 rounded to 100

1µSeconds x 32

TMR0 preload value determined as follows:

General Purpose Input/Output Labs

© 2009 Microchip Technology Inc. DS41369A-page 43

FIGURE 3-22: DECIDE() SOFTWARE FLOWCHART FOR LAB 5

Similar to the previous lab, Decide() checks the LED_Output variable value before

executing the shift to ensure that the variable is not all 0�s or that the Most Significant

bit, for a left shift, or Least Significant bit, for a right shift, are not �1�, indicating that the

shift that follows will fill the LED_Output variable with 0�s.

The Do_Outputs() simply assigns the contents of the LED_Output variable to the

PORTC register lighting the connected LEDs accordingly.

3.4.4.3 PROCEDURE

Using the firmware developed in the previous lab, make the following changes:

Copy/paste the code in Example 3-16 into the top of the firmware source template under the

section marked:

//--------------------DATA MEMORY----------------------

EXAMPLE 3-16: VARIABLE DECLARATIONS FOR LAB 5

Decide()

direction = 0

?

END

LED_Output =
0b00000001

YES

NO

Shift contents of
LED_Output left
by 1 bit position

NO

YES
LED_Output = 0b10000000

or

LED_Output = 0b00000000

?

YES

NO

LED_Output = 0b10000000

Shift contents of
LED_Output right

by 1 bit position

LED_Output = 0b00000001

or

LED_Output = 0b00000000

?

unsigned char LED_Output;//Variable used to set/clear PORTC bits

bit direction;//Variable to select direction of shifting LEDs

PICDEMTM Lab Development Board User’s Guide

DS41369A-page 44 © 2009 Microchip Technology Inc.

1. Copy/paste the function code in Example 3-17 into the top of the firmware source

template under the section marked:

/**SUPPORT ROUTINES*************************************

EXAMPLE 3-17: DELAY_5MS() CODE FOR LAB 5

2. Copy/paste the code in Example 3-18 into the Initialize() over the code

from the previous lab.

/*---
Subroutine: Delay_5mS
Parameters: none
Returns:nothing
Synopsis:Creates a 5mS delay when called

---*/
void Delay_5mS(void)
{

//Make sure the T0IF is cleared
T0IF = 0;

//preload the TMR0 register
TMR0 = 100;

//Sit here and wait for Timer0 to overflow
while (T0IF == 0);

}

General Purpose Input/Output Labs

© 2009 Microchip Technology Inc. DS41369A-page 45

EXAMPLE 3-18: INITIALIZE() FOR GPIO LAB 5

//Clear PORTC to a known state
//Set the least significant bit to 1 so that it can be
//shifted through
PORTC = 0b00000001;

//Clear the PORTA register to a known state
PORTA = 0b00000000;

//Configure PORTC's ANALOG/DIGITAL pins as all Digital
ANS4 = 0;//Associated with RC0
ANS5 = 0;//Associated with RC1
ANS6 = 0;//Associated with RC2
ANS7 = 0;//Associated with RC3
ANS8 = 0;//Associated with RC6
ANS9 = 0;//Associated with RC7

//Configure PORTC pins as all output
//i.e. 1 = Input, 0 = Output
TRISC0 = 0;//Associated with RC0
TRISC1 = 0;//Associated with RC1
TRISC2 = 0;//Associated with RC2
TRISC3 = 0;//Associated with RC3
TRISC4 = 0;//Associated with RC4
TRISC5 = 0;//Associated with RC5
TRISC6 = 0;//Associated with RC6
TRISC7 = 0;//Associated with RC7

//Configure PORTA bit RA0 as Digital input
ANS2 = 0;
TRISA2 = 1;

//Configure Timer0 to overflow every 5mS
T0CS = 0; //Select FOSC/4 as Timer0 clock source
T0SE = 0; //Increment TMR0 on rising clock edge
PSA = 0; //Assign prescaler to Timer0
//Select a 1:32 prescaler
PS0 = 0;
PS1 = 0;
PS2 = 1;

//Initialize the direction flag to shift bits from
//right-to-left
//(i.e. 0 = Shift PORTC bits from right-to-left
// 1 = Shift PORTC bits from left-to-right
direction = 0;

//Initialize LED_Output to all zeros
LED_Output = 0b00000000;

PICDEMTM Lab Development Board User’s Guide

DS41369A-page 46 © 2009 Microchip Technology Inc.

3. Copy/paste the code in Example 3-19 into the Get_Inputs() at the section

labeled:

//ADD GET_INPUTS CODE HERE

EXAMPLE 3-19: GET_INPUTS() CODE FOR GPIO LAB 5

4. Copy/paste the code in Example 3-20 into the Decide() over the code from the

previous lab.

EXAMPLE 3-20: DECIDE() CODE FOR GPIO LAB 5

//Check for a push button press (i.e. RA2 = 0)
if (RA2 == 0)
{

Delay_5mS(); //Delay to debounce

//Check if push button is still pressed
if(RA2 == 0) direction ^= 1; //If so, toggle the

//direction bit
}
//Otherwise keep direction the same as it was
else direction = direction;

if(direction == 0)
{
//First check if LED_Output variable has most
//significant bit set to 1 or if LED_Output variable is
//all 0's.
//If so, re initialize the LED_Output variable so that
//the most significant bit is set to 1 and all other
//bits are 0

if((LED_Output == 0b00000001) || (LED_Output ==
0b00000000)) LED_Output = 0b10000000;

//If neither of these conditions are true, simply shift
//the LED_Output variable's contents to the Left by 1
//bit position

else LED_Output >>=1;
}

else
{
//First check if LED_Output variable has the least
//significant bit set
//to 1 or if LED_Output variable is all 0's.
//If so, re initialize the LED_Output variable so that
//the least significant bit is set to 1 and all other
//bits are 0

if((LED_Output == 0b10000000) || (LED_Output ==
0b00000000)) LED_Output = 0b00000001;

//If neither of these conditions are true, simply shift
//the LED_Output variable's contents to the Right by 1
//bit position

else LED_Output <<=1;
}

General Purpose Input/Output Labs

© 2009 Microchip Technology Inc. DS41369A-page 47

5. The Do_Outputs() code from the previous lab stays the same.

6. Copy/paste the code in Example 3-21 into the Timing() over the code from the

previous lab.

EXAMPLE 3-21: TIMING() CODE FOR GPIO LAB 5

7. Copy/paste the code in Example 3-22 over the main() code from the previous

lab.

EXAMPLE 3-22: MAIN() CODE FOR LAB 5

8. Compile the project, there should be no errors.

3.4.4.4 TESTING THE APPLICATION

Program the PIC16F690. Once programmed, the LEDs connected to PORTC should

sequentially light from left-to-right in 10 mS intervals. When the push button is pressed,

the LEDs should change directions and sequentially light from right-to-left.

Continuously pressing the push button will change the direction each time.

It should be noted that the push button press inconsistently changes the direction of

sequential flashing. The problem here is that the firmware performs a technique called

"Polling" to check the state of the RA0 pin that connects to the push button. Therefore,

the state of RA0 is checked only once each time through the software control loop when

the Get_Inputs() is called. This polling is subject to the timing of the software con-

trol loop and will lead to push button presses being missed. If the Timing() remained

at the 1 second delay as implemented in the previous lab, this would have made

matters worse. The next labs will remedy these issues through the use of interrupts.

The solution for this project is located in the

C:\PICDEM_Lab\GPIO_Labs\GPIO_Lab5\solution directory.

unsigned int delay_var = 9997;

//Keep looping until the delay_var is
// equal to zero (should take 10mS)
while(--delay_var);

Note: This lab now utilizes a 10 mS delay to time the software control loop.

Initialize(); //Initialize the relevant registers

while(1)
{

Get_Inputs();//Evaluate inputs
Decide();//Make any decisions
Do_Outputs(); //Perform any outputs
Timing();//Sets execution rate of the

//Software Control Loop
}

PICDEMTM Lab Development Board User’s Guide

DS41369A-page 48 © 2009 Microchip Technology Inc.

3.4.5 Lab 6: Push Button Interrupt

3.4.5.1 NEW REGISTERS USED IN THIS LAB

To configure the peripherals used in this lab, the following registers are used:

1. OPTION Register: OPTION (Register 2-2 in Section 2 of the PIC16F690 Data

Sheet)

- Selects the edge transition on RA2/INT that will trigger an interrupt.

2. Interrupt Control Register: INTCON (Register 2-3 in Section 2 of the PIC16F690

Data Sheet)

- Enable interrupt functionality on the PIC16F690.

- Enables the RA2/INT external interrupt.

- Contains a flag that indicates the external interrupt has occurred.

3.4.5.2 OVERVIEW

This lab expands upon Lab 5 by adding an interrupt that will occur each time the push

button connected to the RA2 pin is pressed.

As mentioned, polling a bit is heavily reliant on a number of factors such as the size of

the firmware and the timing of the software control loop. Polling does have its uses.

However, there may be times when an event, such as pressing a push button, requires

immediate attention. This is where the interrupt comes in. As the name implies, an

interrupt acts as a sort of alarm. When the Central Processing Unit receives an inter-

rupt, it immediately stops what it is doing, saves where in the code it was before the

interrupt, performs code or firmware defined by the user in the event of an interrupt

called an Interrupt Service Routine (ISR), and then returns to the previous task it was

performing prior to the interrupt.

So, why not use interrupts all the time? The answer is mainly cost. In order to

implement an interrupt for a specific function, the user may need to purchase a micro-

controller with a peripheral that accommodates the interrupt. This increases the cost of

the application. In some cases, polling a bit may be the way to go. Other cases may

require the interrupt thereby justifying the added cost of a particular peripheral.

The RA2 pin associated with the PORTA register features an external edge-triggered

interrupt capability (note the INT designation on the PIC16F690 Pin Diagram in Table

5 of the data sheet). The interrupt is configurable to occur on either the rising-edge (i.e.,

signal on RA2 pin transitions from low-to-high) or the falling-edge (i.e., signal on RA2

pin transitions from high-to-low) of the voltage on the RA2 pin. If the selected edge tran-

sition is detected on RA2, the CPU then services the interrupt before returning to the

code it was executing prior to the interrupt. Referring again to Figure 3-12, the push

button connected to the RA2 pin is pulled high when not pressed. Therefore, the inter-

rupt will be configured to trigger on the high-to-low transition indicating a push button

press.

The INTCON register contains the enable (INTE) and flag (INTF) bits for the RA2

external interrupt. These bits indicate to firmware the condition that caused an interrupt

to occur. The other bits and accompanying registers are used for other peripheral

features on the microcontroller. The Global Interrupt Enable bit (GIE) is a sort of master

switch that allows interrupts, if individually enabled, to be used by the microcontroller.

The OPTION register features the Interrupt Edge Select (INTEDG) bit that will be used

to indicate the edge transition that will trigger an interrupt.

The software flowchart for this lab is shown in Figure 3-23.

General Purpose Input/Output Labs

© 2009 Microchip Technology Inc. DS41369A-page 49

FIGURE 3-23: MAIN() SOFTWARE CONTROL LOOP FLOWCHART FOR

GPIO LAB 6

Note the removal of the Get_Inputs() from the previous lab. This code will now be

handled by an Interrupt Service Routine (ISR) whenever the push button is pressed.

The PB_PressISR() flowchart is shown in Figure 3-24.

FIGURE 3-24: PB_PRESSISR() FOR LAB 6 SHOWING SWITCH DEBOUNCE

main()

Initialize()

Do_Outputs()

Loop Forever

Timing()

Decide()

Global Variables:

• 8-bit variable LED_Output will be used to light
the LEDs connected to PORTC

• 1-bit variable direction used to determine the
direction of the sequential LED flashing
0 = shift PORTC bits right-to-left
1 = shift PORTC bits left-to-right

PB_PressISR()

INTE and INTF

bits set

?

RETURN

NO

Clear INTF flag

YES

RA2 pin = 0

?

direction = direction

Delay for 5mS
YES

RA2 pin = 0

?

Toggle direction

YES

NO

NO

PICDEMTM Lab Development Board User’s Guide

DS41369A-page 50 © 2009 Microchip Technology Inc.

Referring to the flowchart in Figure 3-24, the PB_PressISR() replaces the

Get_Inputs() used in Lab 4 with a few additions. At the beginning of the ISR, the

INTE and INTF bits are first checked to ensure that the RA2/INT external interrupt is

indeed enabled and that the flag is set indicating that an RA2/INT external interrupt has

occurred. Determining the source of an interrupt becomes especially important if

multiple peripherals are configured to cause an interrupt. The ISR then clears the

RA2/INT external interrupt flag so that subsequent interrupts will be registered. The

ISR then performs the RA2 check along with the debounce routine that was discussed

in the previous lab.

3.4.5.3 PROCEDURE

Using the firmware developed in the previous lab, make the following changes:

1. Copy/paste the Interrupt Service Routine in Figure 3-23 at the top of the firmware

source file under the section labeled:

/**INTERRUPT CODE***************************************/

EXAMPLE 3-23: PB_PRESSISR() CODE FOR GPIO LAB 6

/*---
-

Subroutine: Interrupt Service Routine
Parameters: none
Returns:nothing
Synopsis:Execute this code on any interrupt

---*/

void interrupt PB_PressISR(void)
{

//Check to see if the interrupt was caused by
//the external interrupt on RA2
//If so, clear the external interrupt flag
//to allow subsequent interrupts to be detected
if(INTE && INTF) INTF = 0;

//Check to see if the RA2 pin is 0
//(i.e. push button pressed)
if(RA2 == 0)
{

//If RA2 is 0 delay for 5mS to filter
//any switch bounce
Delay_5mS();

//Check to see if RA2 is still 0
//If so, toggle the direction bit
if(RA2 == 0) direction ^= 1;

}

//If RA2 is not 0, keep direction value
//the same as it was
else direction = direction;

}

General Purpose Input/Output Labs

© 2009 Microchip Technology Inc. DS41369A-page 51

2. Copy/paste the code in Example 3-24 into the Initialize() over the code

from the previous lab.

Note: To indicate a function that should be used whenever an interrupt occurs, the

interrupt function qualifier is needed. This qualifier is specific to the

HI-TECH C® Compiler.

PICDEMTM Lab Development Board User’s Guide

DS41369A-page 52 © 2009 Microchip Technology Inc.

EXAMPLE 3-24: INITIALIZE() CODE FOR GPIO LAB 6

It should be noted that the Global Interrupt Enable bit (GIE) is set last in the

Example 3-24. This ensures that interrupts will not occur during the Initialize(),
having adverse consequences on code operation.

//Clear PORTC to a known state
//Set the least significant bit to 1 so that it can be
//shifted through

PORTC = 0b00000001;
//Clear the PORTA register to a known state

PORTA = 0b00000000;
//Configure PORTC's ANALOG/DIGITAL pins as all Digital

ANS4 = 0;//Associated with RC0
ANS5 = 0;//Associated with RC1
ANS6 = 0;//Associated with RC2
ANS7 = 0;//Associated with RC3
ANS8 = 0;//Associated with RC6
ANS9 = 0;//Associated with RC7

//Configure PORTC pins as all output
//i.e. 1 = Input, 0 = Output

TRISC0 = 0;//Associated with RC0
TRISC1 = 0;//Associated with RC1
TRISC2 = 0;//Associated with RC2
TRISC3 = 0;//Associated with RC3
TRISC4 = 0;//Associated with RC4
TRISC5 = 0;//Associated with RC5
TRISC6 = 0;//Associated with RC6
TRISC7 = 0;//Associated with RC7

//Configure PORTA bit RA0 as Digital input
ANS2 = 0;
TRISA2 = 1;

//Configure Timer0 to overflow every 5mS
T0CS = 0; //Select FOSC/4 as Timer0 clock source
T0SE = 0; //Increment TMR0 on rising clock edge
PSA = 0; //Assign prescaler to Timer0

//Select a 1:32 prescaler
PS0 = 0;
PS1 = 0;
PS2 = 1;

//Initialize the direction flag to shift bits from
//right-to-left
//(i.e. 0 = Shift PORTC bits from right-to-left
// 1 = Shift PORTC bits from left-to-right

direction = 0;
//Initialize LED_Output to all zeros

LED_Output = 0b00000000;

//Configure for external interrupts on RA2
INTEDG = 0; //Interrupt to occur on High-to-LOW

//transition of RA2 voltage
INTE = 1; //Enable the external interrupt
INTF = 0; //Clear the external interrupt flag
GIE = 1;//Enable interrupt capability on the

//PIC16F690 ***ALWAYS DONE LAST*****

General Purpose Input/Output Labs

© 2009 Microchip Technology Inc. DS41369A-page 53

3. Copy/paste the code in Example 3-25 into the main() over the code from the

previous lab to remove the Get_Inputs().

EXAMPLE 3-25: MAIN() CODE FOR GPIO LAB 6

4. The remaining code remains unchanged from the previous lab. Compile the

project. There should be no errors.

3.4.5.4 TESTING THE APPLICATION

Program the PIC16F690. The application should behave as it did in the previous lab.

Only this time, the change in LED flashing direction should now be more responsive to

push button presses due to the interrupt added.

The solution for this project is located in the

C:\PICDEM_Lab\GPIO_Labs\GPIO_Lab6\solution directory.

3.4.6 Lab 7: Push Button Interrupt-on-Change

3.4.6.1 NEW REGISTERS USED IN THIS LAB

To configure the peripherals used in this lab, the following registers are used:

1. Interrupt-on-Change PORTA Register: IOCA (Register 4-6 in Section 4 of the

PIC16F690 Data Sheet).

- Configures PORTA associated pins that will generate an interrupt when a

change in voltage level is detected.

2. Interrupt Control Register: INTCON (Register 2-3 in Section 2 of the PIC16F690

Data Sheet)

- Enable interrupt functionality on the PIC16F690.

- Enables PORTA/PORTB change interrupts.

- Contains a flag that indicates that a PORTA or PORTB change interrupt has

occurred.

3.4.6.2 OVERVIEW

This lab adds a different kind of interrupt associated with the General Purpose

Input/Output peripheral called interrupt-on-change. Rather than simply interrupting the

CPU on a single edge transition on the RA2 pin, an interrupt will now occur on any edge

transition. Therefore, when the push button is pressed and/or released, an interrupt will

occur. This lab will use these concepts to shift the flashing LEDs from left-to-right while

the push button is pressed and from right-to-left when the push button is released.

Each PORTA and PORTB pin is individually configurable as an interrupt-on-change

pin. Control bits in the Interrupt-on-Change PORTA register (IOCA) enable or disable

the interrupt function for each pin.

Initialize(); //Initialize the relevant registers

while(1)
{

Decide();//Make any decisions
Do_Outputs(); //Perform any outputs
Timing();//Sets execution rate of the

//Software Control Loop
}

PICDEMTM Lab Development Board User’s Guide

DS41369A-page 54 © 2009 Microchip Technology Inc.

The INTCON register is needed as well to implement the interrupt-on-change feature.

Again the GIE bit needs to be set to enable any interrupts used on the microcontroller.

To configure for an interrupt-on-change, the PORTA/PORTB Change Interrupt Enable

bit (RABIE) must be set along with the individual enable bits in the IOCA register. On

an interrupt-on-change for configured pins, the PORTA/PORTB Change Interrupt Flag

bit (RABIF) will be set. To detect a logic change on a port pin, the firmware needs to

know what has changed. Therefore, PORTA must be read before an

interrupt-on-change can occur. Reading PORTA retains, or latches, the current value

on the RA2 pin for later reference. In the event that the signal on the RA2 pin changes

and a mismatch with the reference value occurs, an interrupt will result.

The main() software flowchart for this lab remains the same as that in Figure 3-24 of

the previous lab. The Interrupt Service Routine changes since it now must determine

whether the interrupt occurred due to a high-to-low or low-to-high transition on pin RA2.

The ISR flowchart is shown in Figure 3-25.

FIGURE 3-25: PB_PRESSISR FLOWCHART FOR LAB 7

pb_pressISR()

RABIE and RABIF

bits set

?

RETURN

Clear RABIF flag
YES RA2 pin = 0

?

direction = 1

Delay for 5mS

NORA2 pin = 0

?

RA2 pin = 1

?

Delay for 5mS

RA2 pin = 1

?

direction = 1

Read PORTA

YES

YES

NO

NO

NO

General Purpose Input/Output Labs

© 2009 Microchip Technology Inc. DS41369A-page 55

The PB_PressISR() now checks to see if the voltage level on RA2 has changed

state from a 1-to-0 or from 0-to-1. Each condition will change the direction that the

LEDs flash sequentially. Note that the direction bit toggle used in previous labs has

been replaced by assigning either a �1� for the left-to-right direction or �0� for the

right-to-left direction. As discussed earlier, the PORTA register must be read before the

first interrupt can occur and at the end of each subsequent ISR execution to ensure that

the microcontroller has an up-to-date reference to measure the current state of the RA2

pin.

The Initialize() for this lab configures the peripherals and interrupts as follows:

� PORTC

- Clears PORTC

- Configures all pins as digital output

� PORTA

- Clears PORTA

- Configures RA2 as a digital input

� Timer0

- Uses the FOSC/4 as clock source

- Increment TMR0 on rising FOSC/4 clock edge

- Use Prescaler at 1:32

� Global Variables

- Initialize direction to �0�

- Initialize LED_Output to �0�

� Interrupt

- Enable RA2 Interrupt-on-Change

- Enable change interrupts in INTCON by setting the RABIE bit

- Clear the RABIF change interrupt flag in INTCON

- Enable Global Interrupts by setting GIE

- Read PORTA to latch current value on RA2 for reference

3.4.6.3 PROCEDURE

Using the firmware developed in the previous lab, make the following changes:

1. Copy/paste the code in Example 3-26 into the PB_PressISR() over the code

from the previous lab.

PICDEMTM Lab Development Board User’s Guide

DS41369A-page 56 © 2009 Microchip Technology Inc.

EXAMPLE 3-26: PB_PRESSISR() CODE FOR GPIO LAB 7

2. Copy/paste the code in Example 3-27 into the Initialize() over the code

from the previous lab.

//First, check if the interrupt occurred as a result of an
//RA2 change interrupt. If so, clear the RABIF flag so
//that subsequent interrupts can occur
if(RABIE && RABIF) RABIF = 0;
//Check the push button connected to RA0 pin. If 0, then a
//push button press is indicated

if(RA2 == 0)
{

//Delay for 5mS to filter switch bounce
Delay_5mS();

//if RA2 is still 0 then change the direction flag
if (RA2 == 0) direction = 1;

}

//Check the push button connected to RA0 pin. If 1, then a
//push button release is indicated

if(RA2 == 1)
{

//Delay for 5mS to filter switch bounce
Delay_5mS();

//if RA2 is still 1 then change the direction flag
if (RA2 == 1) direction = 0;

}
//Otherwise, keep the direction bit the same as it was

else direction = direction;

//Read PORTA to latch RA2 value for the next interrupt
PORTA = PORTA;

General Purpose Input/Output Labs

© 2009 Microchip Technology Inc. DS41369A-page 57

EXAMPLE 3-27: INITIALIZE() CODE FOR GPIO LAB 7

//Clear PORTC to a known state
//Set the least significant bit to 1 so that it can be
//shifted through

PORTC = 0b00000001;

//Clear the PORTA register to a known state
PORTA = 0b00000000;

//Configure PORTC's ANALOG/DIGITAL pins as all Digital
ANS4 = 0;//Associated with RC0
ANS5 = 0;//Associated with RC1
ANS6 = 0;//Associated with RC2
ANS7 = 0;//Associated with RC3
ANS8 = 0;//Associated with RC6
ANS9 = 0;//Associated with RC7

//Configure PORTC pins as all output
//i.e. 1 = Input, 0 = Output

TRISC0 = 0;//Associated with RC0
TRISC1 = 0;//Associated with RC1
TRISC2 = 0;//Associated with RC2
TRISC3 = 0;//Associated with RC3
TRISC4 = 0;//Associated with RC4
TRISC5 = 0;//Associated with RC5
TRISC6 = 0;//Associated with RC6
TRISC7 = 0;//Associated with RC7

//Configure PORTA bit RA0 as Digital input
ANS2 = 0;
TRISA2 = 1;

//Configure Timer0 to overflow every 5mS
T0CS = 0; //Select FOSC/4 as Timer0 clock source
T0SE = 0; //Increment TMR0 on rising clock edge
PSA = 0; //Assign prescaler to Timer0

//Select a 1:32 prescaler
PS0 = 0;
PS1 = 0;
PS2 = 1;

//Initialize the direction flag to shift bits from right-to-left
//(i.e. 0 = Shift PORTC bits from right-to-left
// 1 = Shift PORTC bits from left-to-right

direction = 0;

//Initialize LED_Output to all zeros
LED_Output = 0b00000000;

//Configure for RA2 Interrupt-On-Change
IOCA2 = 1; //Enable RA2 interrupt-on-change
RABIE = 1; //Enable change interrupts
RABIF = 0; //Clear the change interrupt flag
GIE = 1;//Enable interrupt capability on the

//PIC16F690 ***ALWAYS DONE LAST*****

//Read PORTA to latch the current RA2 voltage level
PORTA = PORTA;

PICDEMTM Lab Development Board User’s Guide

DS41369A-page 58 © 2009 Microchip Technology Inc.

3. All remaining code from the previous lab is unchanged. Compile the project.

There should be no errors.

3.4.6.4 TESTING THE APPLICATION

Program the PIC16F690. The LEDs connected to PORTC should now flash sequen-

tially from left-to-right when the push button is released and flash from right-to-left when

the push button is pressed.

The solution for this project is located in the

C:\PICDEM_Lab\GPIO_Labs\GPIO_Lab7\solution directory.

3.4.7 Lab 8: Using Weak Pull-Ups

3.4.7.1 NEW REGISTERS USED IN THIS LAB

To configure the peripherals used in this lab, the following registers are used:

1. OPTION Register: OPTION (Register 2-2 in Section 2 of the PIC16F690 Data

Sheet)

- Enables PORTA/PORTB weak pull-ups to be used on the PIC16F690.

2. PORTA Weak Pull-Up Register: WPUA (Register 4-5 in Section 4 of the

PIC16F690 Data Sheet)

- Selects which PORTA pins will have weak pull-ups enabled.

3.4.7.2 OVERVIEW

This lab expands on the previous lab by adding weak pull-ups to remove the 10 KΩ
used previously to tie RA2 pin to VDD. Each of the PORTA pins (except RA3) and

PORTB pins, has an individually configurable internal weak pull-up. Essentially, these

weak pull-ups perform the same task as the resistor connected to the RA2 pin and push

button as shown in Figure 3-12 only internal to the microcontroller. This feature can be

used to decrease component counts in the circuit.

Clearing the PORTA/PORTB Pull-up Enable bit, RABPU, in the OPTION register will

enable weak pull-ups on any PORTA pin selected using the Weak Pull-Up PORTA

register (WPUA).

The only change needed to the PICDEM Lab Development Board Schematic shown in

Figure 3-18 is to remove the 10 KΩ resistor connected to both the push button and pin

RA2.

The Initialize() is all that needs to be changed in firmware by adding the following

configurations:

� Select RA2 to have a weak pull-up by setting the Weak Pull-Up Register bit

WPUA2 in the WPUA: PORTA Register.

� Enable the PORTA/PORTB Pull-up Enable bit (RABPU) in the OPTION register

by clearing it.

3.4.7.3 PROCEDURE

Using the firmware developed in the previous lab, make the following changes:

1. Copy/paste the code in Example 3-28 into the Initialize() over the code

from the previous lab.

General Purpose Input/Output Labs

© 2009 Microchip Technology Inc. DS41369A-page 59

EXAMPLE 3-28: INITIALIZE() CODE FOR GPIO LAB 8

//Clear PORTC to a known state
//Set the least significant bit to 1 so that it can be
//shifted through

PORTC = 0b00000001;

//Clear the PORTA register to a known state
PORTA = 0b00000000;

//Configure PORTC's ANALOG/DIGITAL pins as all Digital
ANS4 = 0;//Associated with RC0
ANS5 = 0;//Associated with RC1
ANS6 = 0;//Associated with RC2
ANS7 = 0;//Associated with RC3
ANS8 = 0;//Associated with RC6
ANS9 = 0;//Associated with RC7

//Configure PORTC pins as all output
//i.e. 1 = Input, 0 = Output

TRISC0 = 0;//Associated with RC0
TRISC1 = 0;//Associated with RC1
TRISC2 = 0;//Associated with RC2
TRISC3 = 0;//Associated with RC3
TRISC4 = 0;//Associated with RC4
TRISC5 = 0;//Associated with RC5
TRISC6 = 0;//Associated with RC6
TRISC7 = 0;//Associated with RC7

//Configure PORTA bit RA0 as Digital input
ANS2 = 0;
TRISA2 = 1;

//Enable Weak Pull-ups on RA2
WPUA2 = 1;
RABPU = 0; //Enable PORTA/PORTB Pull-ups

//Configure Timer0 to overflow every 5mS
T0CS = 0; //Select FOSC/4 as Timer0 clock source
T0SE = 0; //Increment TMR0 on rising clock edge
PSA = 0; //Assign prescaler to Timer0
//Select a 1:32 prescaler
PS0 = 0;
PS1 = 0;
PS2 = 1;

//Initialize the direction flag to shift bits from right-to-left
//(i.e. 0 = Shift PORTC bits from right-to-left
// 1 = Shift PORTC bits from left-to-right

direction = 0;
//Initialize LED_Output to all zeros

LED_Output = 0b00000000;

//Configure for RA2 Interrupt-On-Change
IOCA2 = 1; //Enable RA2 interrupt-on-change
RABIE = 1; //Enable change interrupts
RABIF = 0; //Clear the change interrupt flag
GIE = 1;//Enable interrupt capability on the

//PIC16F690 ***ALWAYS DONE LAST*****
//Read PORTA to latch the current RA2 voltage level

PORTA = PORTA;

PICDEMTM Lab Development Board User’s Guide

DS41369A-page 60 © 2009 Microchip Technology Inc.

3.4.7.4 TESTING THE APPLICATION

Program the PIC16F690. The application should operate exactly as it did in the previ-

ous lab. Only this time with the absence of the 10 KΩ pull-up resistor.

The solution for this project is located in the

C:\PICDEM_Lab\GPIO_Labs\GPIO_Lab8\solution directory.

PICDEMTM LAB DEVELOPMENT

BOARD USER’S GUIDE

© 2009 Microchip Technology Inc. DS41369A-page 61

Chapter 4. Comparator Peripheral Labs

4.1 INTRODUCTION

The following labs cover some of the fundamental features of the Comparator 1

peripheral found on the PIC16F690 including some unique applications. These

peripherals are very useful mixed signal building blocks as they provide analog

functionality independent of program execution. The labs in this section will

demonstrate this functionality, then introduce intelligence to implement a relatively high

resolution temperature sensor measurement application.

4.2 COMPARATOR LABS

4.2.1 Reference Documentation

All documentation is available on the PICDEM� Lab Development Kit accompanying

CD-ROM:

� PIC16F690 Data Sheet (DS41262)

- Section 4.0: I/O Ports

- Section 5.0: Timer0 Module

- Section 6.0: Timer1 Module

- Section 8.0: Comparator Module

� “Introduction to MPLAB® IDE and HI-TECH C® PRO for the PIC10/12/16 MCU

Family Lite Mode Compiler Tutorial” (DS41322)

4.2.2 Comparator Labs

The labs that will be implemented in this chapter are:

� Lab 1: Simple Comparator

� Lab 2: Using the Internal Comparator Voltage Reference

� Lab 3: Higher Resolution Sensor Readings Using a Single Comparator

4.2.3 Equipment Required

To complete the labs in this section, the following components are required:

1. 2 � 10 KΩ resistors

2. 4 � 470Ω resistor

3. 1 � 100 KΩ potentiometer

4. 4 � Light Emitting Diodes

5. 1 � 1N4148 diodes

6. 1 � 1 µF capacitor

7. PIC16F690 populating socket U2

8. Assorted jumper wires

PICDEMTM Lab Development Board User’s Guide

DS41369A-page 62 © 2009 Microchip Technology Inc.

4.2.4 Lab 1: Simple Compare

4.2.4.1 NEW REGISTERS USED IN THIS LAB

To configure the peripherals used in this lab, the following registers are used:

1. Comparator C1 Control Register 0: CM1CON0 (Register 8-1 in Section 8 of the

PIC16F690 Data Sheet)

- Enables Comparator C1.

- Configures Comparator output polarity.

- Enables the Comparator result to be available internal only or on the C1OUT

pin (pin 17).

- Select inverting and non-inverting Comparator 1 reference input sources.

4.2.4.2 OVERVIEW

In this lab, Comparator 1 on the PIC16F690 is configured to perform a simple compare.

A potentiometer connected to the inverting input (C12IN0-) of the comparator will be

compared against the 2.5V connected to the non-inverting input (C1IN+) from a simple

voltage divider circuit. An LED connected to the output of Comparator 1 (C1OUT) will

light or turn off as follows:

� inverting reference > non-inverting reference = C1OUT is low = LED OFF

� inverting reference < non-inverting reference = C1OUT is high = LED ON

The PICDEM� Development Board configuration schematic is shown in Figure 4-1.

FIGURE 4-1: SCHEMATIC FOR COMPARATOR LAB 1

The software flowchart for this lab is shown in Figure 4-2.

U2
1
2
3
4
5
6
7
8
9
10

20
19
18
17
16
15
14
13
12
11

C1IN+

J9J8

R4

470Ω

LED1

VSS

VDD

C12IN0-
C1OUT

R1

10KΩ

R2

10KΩ VDD

R3

100KΩ

VSS

VSS

Comparator Peripheral Labs

© 2009 Microchip Technology Inc. DS41369A-page 63

FIGURE 4-2: MAIN() SOFTWARE CONTROL LOOP FLOWCHART FOR

COMPARATOR LAB 1

As mentioned in the introduction, comparators on the PIC16F690 are able to function

independent of software logic. Therefore, all that is needed is to call the

Initialize() from main() to activate the peripheral. The Initialize()

configures Comparator 1 as follows:

� Turn on Comparator 1

� Make the Comparator 1 output available on the C1OUT pin

� Select pin C1IN+ as the non-inverting reference

� Select pin C12IN0- as the inverting reference

� Configure the C1OUT pin as an output

4.2.4.3 PROCEDURE

Using the Project Wizard, create a new project using the PIC16F690 entitled

Comparator_Lab1.mcp as was done in previous labs. Once completed, open the

Comparator_Lab2.c source file in MPLAB and do the following:

1. Copy/paste the code in Example 4-1 into the Initialize() section labeled:

//ADD INITIALIZE CODE HERE

EXAMPLE 4-1: INITIALIZE CODE FOR COMPARATOR LAB 1

main()

Initialize()

Loop Forever

Wait

//Initialize Comparator 1 as follows:

//Turn comparator 1 on
C1ON = 1;

//Make the comparator output available on the
//C1OUT pin
C1OE = 1;

//Select the non-inverting pin (C1IN+) as the
//non-inverting reference input for the comparator 1
C1R = 0;

//Select the C12IN0- pin as the inverting reference
C1CH0 = 0;
C1CH1 = 0;

//Since the comparator 1 output shares the same pin
//as PORTA bit 2, configure the corresponding TRISA2 bit
//as an output
TRISA2 = 0;

PICDEMTM Lab Development Board User’s Guide

DS41369A-page 64 © 2009 Microchip Technology Inc.

2. Copy/paste the code in Example 4-2 into the main() section labeled:

//ADD MAIN CODE HERE

EXAMPLE 4-2: MAIN() CODE FOR COMPARATOR LAB 1

3. Compile the project. There should be no errors.

4.2.4.4 TESTING THE APPLICATION

Program the PIC16F690. The LED connected to the C1OUT pin should light when the

voltage present on the C12IN0- pin is less than the 2.5V present on the C1IN+ pin and

turn off when the 2.5V is exceeded.

The solution for this project is located in the

C:\PICDEM_Lab\Comparator_Labs\Comparator_Lab1\solution directory.

4.2.5 Lab 2: Using the Comparator Voltage Reference

4.2.5.1 NEW REGISTERS USED IN THIS LAB

To configure the peripherals used in this lab, the following registers are used:

1. Voltage Reference Control Register: VRCON (Register 8-5 in Section 8 of the

PIC16F690 Data Sheet).

- Enables either the Comparator Voltage Reference or the 0.6V constant

reference as the non-inverting reference input to Comparator C1 or

Comparator C2.

- Selects either a High or Low resolution 16-level voltage range.

- Enable a 0.6V reference.

- Uses three bits to configure the reference voltage level.

4.2.5.2 OVERVIEW

This lab expands on Lab 1 by utilizing the internal Comparator Voltage Reference

(CVREF) feature on the PIC16F690. The CVREF provides an internally generated

voltage reference that can be used by the Comparator 1 non-inverting reference input

so that external components are not needed such as the resistor voltage divider used

in the previous lab. The CVREF features:

� Independent comparator operation

� Two 16-level voltage ranges

� Ratiometric with VDD

Initialize(); //Initialize the relevant registers
while(1);

Note: The inclusion of the while loop forces the microcontroller to sit and wait at

a �known� instruction. At start-up, the contents of the program memory are

unknown. Without the while loop, the microcontroller will continue to run

through each address in program memory executing whatever resides at a

particular address. This could have adverse effects on the application.

Note: This application uses two pins that are used during the programming pro-

cess (ICSPDATA and ICSPCLK). The jumper wires connecting these pins

to the application circuit may need to be disconnected while programming

if there are problems with the MPLAB IDE connecting to the PIC16F690.

Comparator Peripheral Labs

© 2009 Microchip Technology Inc. DS41369A-page 65

� Fixed 0.6 reference option

� Output clamped to VSS

The CVREF has 2 ranges with 16 voltage levels in each range. Range selection is

controlled by the CVREF Range Selection (VRR) bit in the VRCON (Voltage Reference

Control Register) along with the CVREF Value Selection bits (VR<3:0>). The Value

Selection bits hold a value based upon some simple calculations to set the internal

reference voltage. The CVREF voltage is determined using Equation 4-1:

EQUATION 4-1: CVREF OUTPUT VOLTAGE

This lab will implement the low-range calculation by setting the VRR bit in VRCON

equal to 1. Equation 4-2 demonstrates how to calculate the VR<3:0> values, using the

low-range method, to obtain a 2.5V internal reference. If higher resolutions are

required, the high-range method should be used (see Section 8.10.2 in the PIC16F690

Data Sheet (DS-41262).

EQUATION 4-2: CALCULATING A 2.5V INTERNAL REFERENCE

(LOW-RANGE METHOD)

The Initialize() from the previous lab now must configure both the Comparator 1

peripheral and the CVREF as follows:

� Turn on Comparator 1

� Select CVREF the non-inverting reference for Comparator 1

� Continue to use the C12IN0- pin as the inverting reference

� Turn on CVREF

� Select the low-range feature

� Set the CVREF Value Selection bits as per the calculation in Equation 4-2.

Changes to the PICDEM� Development Board configuration schematic for this lab are

shown in Figure 4-3.

VRR = 1 (Low-Range):

CVREF = (VR<3:0>/24) x VDD

VRR = 0 (High-Range):

CVREF = (VDD/4) + (VR<3:0> x VDD/32)

VRR = 1 (Low-Range):

CVREF = (VR<3:0>/24) x VDD

Known: desired CVREF = 2.5V, VDD approximately 5V

Therefore:

2.5V = (VR<3:0>/24 x 5V

2.5V/5V = (VR<3:0>/24)

(2.5V/5V) x 24 = VR<3:0>

VR<3:0> = 1210 or 11002

VR0 = 0

VR1 = 0

VR2 = 1

VR3 = 1

PICDEMTM Lab Development Board User’s Guide

DS41369A-page 66 © 2009 Microchip Technology Inc.

FIGURE 4-3: SCHEMATIC FOR COMPARATOR LAB 2

4.2.5.3 PROCEDURE

Using the firmware developed in the previous lab, make the following changes:

1. Copy/paste the code in Example 4-3 into the Initialize() over the code

from the previous lab.

U2
1
2
3
4
5
6
7
8
9
10

20
19
18
17
16
15
14
13
12
11

J9J8

R4

470Ω

LED1

C12IN0-
C1OUT

VDD

R3

100KΩ

VSS

VSS

Comparator Peripheral Labs

© 2009 Microchip Technology Inc. DS41369A-page 67

EXAMPLE 4-3: INITIALIZE CODE FOR COMPARATOR LAB 2

2. The main() stays the same as the previous lab.

3. Compile the project. There should be no errors.

4.2.5.4 TESTING THE APPLICATION

Program the PIC16F690. The application should behave exactly as it did in the

previous lab with the exception of less components used.

The solution for this project is located in the

C:\PICDEM_Lab\Comparator_Labs\Comparator_Lab2\solution directory.

//Intialize Comparator 1 as follows:

//Turn comparator 1 on
C1ON = 1;

//Make the comparator output available on the
//C1OUT pin
C1OE = 1;

//Select the internal voltage reference
//as the non-inverting reference voltage
C1R = 1;

//Select the C12IN0- pin as the inverting reference
C1CH0 = 0;
C1CH1 = 0;

//Initialize the internal voltage reference as follows:

//Turn on the CVref output and route to the C1Vref input
//of comparator 1
C1VREN = 1;

//Use the comparator voltage low range feature
VRR = 1;

//Set the comparator voltage reference value selection
//to 2.5V by making the VR<3:0> bits equal to 12 or
//binary 1100 (see lab manual for equations)
VR0 = 0;
VR1 = 0;
VR2 = 1;
VR3 = 1;

//Since the comparator 1 output shares the same pin
//as PORTA bit 2, configure the corresponding TRISA2 bit
//as an output
TRISA2 = 0;

PICDEMTM Lab Development Board User’s Guide

DS41369A-page 68 © 2009 Microchip Technology Inc.

4.2.6 Lab 3: Higher Resolution Sensor Readings Using a Single
Comparator

4.2.6.1 NEW REGISTERS USED IN THIS LAB

To configure the peripherals used in this lab, the following registers are used:

1. Timer1 Control Register: T1CON (Register 6-1 in Section 6 of the PIC16F690

data sheet)

- This register is used to control Timer1 and select various features of the

module. In this lab the register will be used to enable Timer1 and select the

clock source.

4.2.6.2 OVERVIEW

This lab expands on concepts discussed in the previous comparator lab by

implementing intelligence to create a higher resolution temperature sensor

measurement application. The comparator will be configured to operate as a simple

relaxation oscillator with the addition of a few external components. The internal

voltage reference will still be used to provide the non-inverting reference only this time

the 0.6V fixed voltage reference feature will be implemented.

The basic oscillator circuit is shown in Figure 4-4.

FIGURE 4-4: BASIC RELAXATION OSCILLATOR CIRCUIT

Referring to Figure 4-4, at start-up, the capacitor connected to the inverting reference

of Comparator 1 is completely discharged. Therefore, the voltage present on the invert-

ing reference is 0V which is less than the 0.6V fixed voltage reference on the

non-inverting reference and Comparator 1�s output goes high. This rapidly charges the

capacitor through the diode (D1) to a level approximately equal to VDD. Once the Com-

parator detects that the inverting reference input is greater than the 0.6V fixed voltage

reference, the output transitions low. The charge across the capacitor then discharges

slowly across the resistor R1. Once the capacitor charge drops below the 0.6V fixed

+
_

0.6V

VSS

C1

VSS

PIC16F690
V

t

V

t

C1OUT
C12IN0-

D1

R1

Comparator Peripheral Labs

© 2009 Microchip Technology Inc. DS41369A-page 69

reference, the cycle repeats and the system oscillates. The frequency of this oscillation

is dependant on the RC time constant (τ = R x C), or the time it takes to discharge the

capacitor to 37% of its initial voltage. As either the resistance or capacitance

decreases, so will τ effectively increasing the frequency of the oscillator. If the resistor

is replaced with a Negative Temperature Coefficient (NTC) thermistor where resistance

decreases as temperature increases, any temperature change would cause a shift in

resistance with a subsequent shift in the frequency of the oscillator.

This oscillator can be created quite easily by simply initializing the comparator and

nothing more. However, with the addition of some intelligence and some additional

peripherals, a high resolution sensor measurement application can be achieved.

The PIC16F690 features a 16-bit timer/counter peripheral Timer1. This timer can either

use the internal instruction clock (FOSC/4) as its time base or an external clock source

on the Timer1 Clock Input (T1CKI) pin to increment two 8-bit registers, TMR1H and

TMR1L, to obtain a combined 16-bit result. In this application, the oscillator described

will be used as the Timer1 clock source. Therefore, the TMR1H:TMR1L will increment

with each low-to-high transition effectively counting the number of pulses. The Timer0

peripheral features an interrupt-on-overflow (255-0) that will be used to provide a fixed

time frame in which the TMR1H:TMR1L registers will count. On a Timer0 overflow inter-

rupt, the Timer1 peripheral stops counting and the current value in the upper 4-bits of

TMR1H will be output to four LEDs connected to PORTC pins RC3, RC2, RC1 and

RC0. In order to obtain a usable result, it is important that Timer0 triggers an interrupt

before the TMR1H:TMR1L result overflows. If the temperature to the thermistor

changes, the oscillator frequency will shift resulting in a change in the number of counts

the Timer1 peripheral was able to implement before the fixed Timer0 interrupt with a

different result displayed on the LEDs.

The schematic for this lab is shown in Figure 4-5.

FIGURE 4-5: SCHEMATIC FOR COMPARATOR LAB 3

U2
1
2
3
4
5
6
7
8
9
10

20
19
18
17
16
15
14
13
12
11

J9J8

C12IN0-
C1OUT

R1

100KΩ

D1

1N4148

VSS

C1

1µF

VSS

R3

10KΩ
NTC thermistor

R7

470Ω

LED4

VSS

RC0

RC1
RC2

T1CKI

RC3

R6

470Ω

LED3

VSS

R5

470Ω

LED2

VSS

R4

470Ω

LED1

VSS

R2

10KΩ

VSS

PICDEMTM Lab Development Board User’s Guide

DS41369A-page 70 © 2009 Microchip Technology Inc.

The software flowchart for this lab is shown in Figure 4-6.

FIGURE 4-6: MAIN() SOFTWARE CONTROL LOOP FLOWCHART FOR

COMPARATOR LAB 3

The Initialize() configures the PIC16F690 as follows:

� Configure PORTC pins RC0, RC1, RC2 and RC3 and digital outputs

� Comparator 1

- Enable Comparator 1.

- Make the Comparator 1 output available on the C1OUT pin configuring

TRISA2 as an output.

- Route the CVREF output to the non-inverting reference input.

- Select pin C12IN0- as the inverting reference configuring TRISA1 as an input.

- Configure the C1OUT pin as an output.

� CVREF Configuration:

- Configure CVREF to route the 0.6V fixed voltage reference to the non-inverting

reference of Comparator 1.

� Timer1 Configuration:

- Select the T1CKI pin as the Timer1 clock source making TRISA5 an input.

- Clear both Timer1 result registers TMR1H:TMR1L.

- Turn on Timer1.

� Timer0

- Select FOSC/4 as the Timer0 clock source.

- Assign the prescaler to Timer0 and configure so that the TMR0 register

increments every 256th clock pulse.

- Enable Timer0 interrupt-on-overflow

- Clear the Timer0 interrupt flag

- Preload TMR0 with 10 (this ensures that a Timer0 interrupt will occur before

the Timer1 registers overflow).

- Enable Global Interrupts on the PIC16F690.

The Interrupt Service Routine, TMR0_ISR(), is shown in Figure 4-7.

main()

 Initialize()

Loop Forever

Wait

Comparator Peripheral Labs

© 2009 Microchip Technology Inc. DS41369A-page 71

FIGURE 4-7: TMR0_ISR FLOWCHART FOR COMPARATOR LAB 3

The TMR0_ISR() first checks if a Timer0 interrupt has occurred (good programming

practice). If so, then the Timer0 interrupt flag is cleared and Timer1 is turned off to stop

counting the oscillator clock pulses on the T1CKI pin. Next, the 4 MSbs of the Timer1

16-bit result is assigned to the RC0, RC1, RC2 and RC3 pins to light the associated

LEDs. Finally, the Timer1 result register pair are cleared and Timer1 is turned on to

begin a new count.

4.2.6.3 PROCEDURE

Using the firmware developed in the previous lab, make the following changes:

1. Copy/paste the code in Example 4-4 into the top of the main firmware source file

under the heading labeled:

//----------------INTERRUPT CODE---------------

END

TMR0_ISR()

T0IF = 1

?

Clear T0IF Flag

Turn off Timer1

Assign PORTC the T1MRH value
shifted 4 bits to the right

Clear the Timer1 result register
pair TMR1H:TMR1L

Turn on Timer1

YES

NO

Keep PORTC the same

PICDEMTM Lab Development Board User’s Guide

DS41369A-page 72 © 2009 Microchip Technology Inc.

EXAMPLE 4-4: TMR0_ISR CODE FOR LAB 3

2. Copy/paste the code in Example 4-5 into the Initialize() over the code

from the previous lab:

void interrupt TMR0_ISR(void)
{

//Check if Timer0 interrupt has occurred

if(T0IE&&T0IF)
{

//if so, clear the interrupt flag
T0IF = 0;
//Turn off Timer1 (stop counting)
TMR1ON = 0;
//Assign the upper 4-bits of the 16-bit
//result to PORTC to light the LEDs connected
//RC0,R1,RC2 and RC3
PORTC = TMR1H>>4;
TMR0 = 10;
//Clear the Timer1 register pair
TMR1L = 0;
TMR1H = 0;
//Turn Timer1 back to start counting again
TMR1ON = 1;

}
else PORTC = PORTC;

}

Comparator Peripheral Labs

© 2009 Microchip Technology Inc. DS41369A-page 73

EXAMPLE 4-5: INITIALIZE CODE FOR COMPARATOR LAB 3

//Configure RC0,RC1,RC2 and RC3 as digital outputs
ANSEL = 0b00001111;
PORTC = 0;
TRISC0 = 0;
TRISC1 = 0;
TRISC2 = 0;
TRISC3 = 0;

//Initialize PORTA pin connected to C12IN0-
TRISA1 = 1;

//Make C1OUT pin an output
TRISA2 = 0;

//Configure the Comparator 1 as follows:
//Turn on comparator 1

C1ON = 1;
//Make C1OUT available externally

C1OE = 1;
//Connect the non-inverting reference to CVREF

C1R = 1;
//Connect the inverting reference to C12IN0-

C1CH0 = 0;
C1CH1 = 0;

//Configure the CVREF as follows:
//Route CVREF output to Comparator 1 non-inverting reference

VRCON = 0;
//Enable the 0.6V fixed reference voltage

VP6EN = 1;
//Configure Timer1 as follows
//Make T1CKI and input

TRISA5 = 1;
T1CON = 0;

//Select T1CKI as Timer1's clock source
TMR1CS = 1;

//Initialize the 16-bit Timer1 register pair to 0
TMR1H = 0;
TMR1L = 0;

//Turn on Timer1
TMR1ON = 1;

//Set up Timer0 as follows:
//Use FOSC/4 for Timer0 Clock Source

OPTION = 0;
T0CS = 0;

//assign the prescaler to TMR0
PSA = 0;

//set up prescaler for 1:256
PS0 = 1;
PS1 = 1;
PS2 = 1;

//Enable Timer0 Interrupts
T0IE = 1;

//Clear the Timer0 overflow interrupt flag
T0IF = 0;

//Preload TMR0 with 10 to keep overflow period
//less than Timer1 overflow period

TMR0 = 10;
//Enable global interrupts

GIE = 1;

PICDEMTM Lab Development Board User’s Guide

DS41369A-page 74 © 2009 Microchip Technology Inc.

3. Copy/paste the code in Example 4-6 into the main() over the code from the

previous lab:

EXAMPLE 4-6: MAIN() CODE FOR COMPARATOR LAB 3

4. Compile the project. There should be no errors.

4.2.6.4 TESTING THE APPLICATION

Program the PIC16F690. Adjust the R1 potentiometer until the LEDs begin to light

displaying a binary value. Touching the thermistor should introduce heat, reduce the

frequency of oscillation and increase the binary count on the LED display. Introducing

cold to the thermistor should have the opposite effect thereby decreasing the binary

count.

The solution for this project is located in the

C:\PICDEM_Lab\Comparator_Lab\Comparator_Lab3\solution directory.

Initialize(); //Initialize the relevant registers
while(1);

PICDEMTM LAB DEVELOPMENT

BOARD USER’S GUIDE

© 2009 Microchip Technology Inc. DS41369A-page 75

Chapter 5. Analog-to-Digital Converter Peripheral Labs

5.1 INTRODUCTION

The Analog-to-Digital Converter (ADC) peripheral allows conversion of an analog input

signal to a 10-bit binary value representing that signal so that it can be used in firmware.

The following labs cover some of the fundamental features of the Analog-to-Digital

Converter (ADC) peripheral found on the PIC16F690 including some unique

applications.

5.2 ADC LABS

The labs that will be implemented in this chapter are:

� Lab 1: Simple ADC

� Lab 2: Audible Temperature Sensor

5.2.1 Reference Documentation

All documentation is available on the PICDEM� Lab Development Kit accompanying

CD-ROM

� PIC16F690 Data Sheet (DS41262)

- Section 4: I/O Ports

- Section 5: Timer0 Module

- Section 9: Analog-to-Digital Converter (ADC) Module

� Timers: Timer0 Tutorial (Part 1) (DS51628)

� Timers: Timer0 Tutorial (Part 2) (DS51702)

� “Introduction to MPLAB® IDE and HI-TECH C® PRO for the PIC10/12/16 MCU

Family Lite Mode Compiler Tutorial” (DS41322)

5.2.2 Equipment Required

To complete the labs in this section, the following components are required:

1. 1 � 100Ω resistor

2. 4 � 470Ω resistors

3. 1 � 1KΩ resistor

4. 1 � 10 KΩ resistor

5. 1 � 100 KΩ potentiometer

6. 1 � 10 KΩ NTC Thermistor

7. 4 � Light Emitting Diodes

8. 1 � IRFD010 N-Channel MOSFET

9. PIC16F690 populating socket U2

10. Assorted jumper wires

PICDEMTM Lab Development Board User’s Guide

DS41369A-page 76 © 2009 Microchip Technology Inc.

5.2.3 Lab 1: Simple ADC

5.2.3.1 NEW REGISTERS USED IN THIS LAB

To configure the peripherals used in this lab, the following registers are used:

1. ADC Control Register 0: ADCON0 (Register 9-1 in Section 9 of the PIC16F690

Data Sheet)

- Configures ADC conversion result justification.

- Select ADC reference voltage.

- Selects ADC input channel (i.e., pin with analog voltage to be converted).

- Starts ADC conversion and determines when ADC conversion is complete.

- Enables the ADC peripheral.

2. ADC Control Register 1: ADCON1 (Register 9-2 in Section 9 of the PIC16F690

Data Sheet)

- Determines ADC conversion clock.

3. ADC Result Register high: ADRESH (see Register 9-3 in Section 9 of the

PIC16F690 Data Sheet)

- Holds upper 8-bits or upper 2-bits (depending on justification selected) of

10-bit ADC conversion result.

4. ADC Result Register low: ADRESL (see Register 9-4 in Section 9 of the

PIC16F690 Data Sheet)

- Holds lower 8-bits or lower 2-bit (depending on justification selected) of 10-bit

ADC conversion result.

5.2.3.2 OVERVIEW

In this lab, the ADC peripheral on the PIC16F690 is used to perform a simple

conversion of an analog voltage present on pin 13. The voltage is varied using a

100KΩ potentiometer. This voltage is compared against a reference voltage to

generate a 10-bit binary result via successive approximation stored into two 8-bit ADC

result registers ADRESH and ADRESL. The ADC result is software selectable as either

left or right justified as shown in Section 9.1.6 of the PIC16F690 Data Sheet. This

application will configure the ADC result as left justified with the four Most Significant

bits of the 10-bit result output to the RC0, RC1,RC2 and RC3 PORTC pins used to light

connected LEDs accordingly.The PICDEM� Development Board configuration

schematic is shown in Figure 5-1.

Analog-to-Digital Converter Peripheral Labs

© 2009 Microchip Technology Inc. DS41369A-page 77

FIGURE 5-1: SCHEMATIC FOR ADC LAB 1

The voltage reference is software selectable as either VDD or an external voltage

applied to the external reference pin 18 (VREF). To minimize circuit complexity, this

application makes use of VDD as the reference.

The software flowchart for this lab is shown in Figure 5-2.

FIGURE 5-2: MAIN() SOFTWARE CONTROL LOOP FLOWCHART FOR

COMPARATOR LAB 1

1
2
3
4
5
6
7
8
9
10

20
19
18
17
16
15
14
13
12
11

J9J8

R3

470Ω

LED3

VDD

R5

100KΩ

VSS

VSS

RB4/AN10

U2

RC0
RC1
RC2RC3

R2

470Ω

LED2

VSS

R1

470Ω

LED1

VSS

R4

470Ω

LED4

VSS

main()

Initialize()

Loop Forever

Get_Inputs()

Decide()

Do_Outputs()

Global variables initialized:

• 8-bit variable LED_output will be used to
light the three LEDs connected to PORTC

PICDEMTM Lab Development Board User’s Guide

DS41369A-page 78 © 2009 Microchip Technology Inc.

The Initialize() configures the peripherals as follows:

� Ports

- Configure pin 13 as an analog input (using TRISB4).

- Clear the PORTC register.

- Configure RC0, RC1, RC2 and RC3 pins as digital output.

� ADC

- Select ADC conversion clock FRC.

- Configure voltage reference using VDD.

- Select channel 10 as the ADC input channel (Pin 13: RB4/AN10).

- Select result format left justified (10-bit result in ADRESH<7:0> and

ADRESL<7:6>).

- Turn on ADC module.

Next, the Get_Inputs() performs an ADC on the voltage present on pin 13. The

internal capacitor connected to the input of the ADC peripheral needs time to charge to

the voltage present on the pin. Therefore, software will need to implement a short delay

to allow for this charging time. The ADC Module section �A/D Acquisition Require-

ments� of the data sheet goes into great detail and includes an equation for selecting

an appropriate acquisition time. For the purposes of this lab, a simple 1mS delay

should be more than sufficient. These parameters become important in high-speed

applications where every µS counts.

The GO/DONE bit in ADCON0 is used to start the ADC process when set to �1�. This

bit also serves as a flag that indicates when the ADC is completed (GO/DONE = 0).

Therefore, the Get_Inputs() initiates an ADC by setting GO/DONE then sits and

waits for the bit to clear indicating a completed conversion.

The software flowchart for the Get_Inputs() is shown in Figure 5-3.

Note: The ADC conversion clock is the time that will be used to convert the analog

voltage present on pin 13 to a 10-bit value in the ADRESH:ADRESL regis-

ters. It takes 11 of these conversion clock cycles to perform a complete

ADC. If the conversion clock period is insufficient, an incomplete ADC result

will occur. The electrical specifications for the PIC16F690 state that the

conversion clock must have a period of at least 1.5 µSeconds or a fre-

quency of approximately 667 kHz. The ADC Module section of the data

sheet specifies acceptable conversion clock frequencies depending on the

main oscillator used to drive the microcontroller and should be referenced.

In this application, a dedicated internal oscillator for the ADC module is

used ensuring a conversion clock frequency of between 2-6 µSeconds.

(see Table 17-16 in Section 17 of the PIC16F690 Data Sheet).

Analog-to-Digital Converter Peripheral Labs

© 2009 Microchip Technology Inc. DS41369A-page 79

FIGURE 5-3: MAIN() SOFTWARE CONTROL LOOP FLOWCHART FOR

COMPARATOR LAB 1

Following the Get_Inputs(), the 10-bit ADC result is now in the ADRESH:ADRESL

registers. The Decide() assigns the ADC result value, shifted four bit positions to the

right, to the LED_Output variable.

Finally, the Do_Outputs() assigns the contents of LED_Output to the PORTC

register that will light the LEDs connected to RC0, RC1, RC2 and RC3 accordingly.

5.2.3.3 PROCEDURE

Using the Project Wizard, create a new project called ADC_Lab1.mcp. Once com-

pleted, open the ADC_Lab1.c source file in MPLAB and make the following changes:

1. Copy/paste the code in Example 5-1 into the top of the main firmware source file

under the heading labeled:

//----------------DATA MEMORY---------------

EXAMPLE 5-1: GLOBAL VARIABLES USED IN LAB 1

2. Copy/paste the code in Example 5-2 into the top of the main firmware source file

under the heading labeled:

//----------------SUPPORT ROUTINES---------------

Get_Inputs()

Delay_1mS()

Start conversion by setting
GO/DONE bit

Gives ADC capacitor time to charge

NO

GO/DONE = 1

?

YES

END

Wait for ADC to complete

unsigned char LED_Output = 0;//assigned to PORTC to light
//connected LEDs

PICDEMTM Lab Development Board User’s Guide

DS41369A-page 80 © 2009 Microchip Technology Inc.

EXAMPLE 5-2: DELAY_1MS() CODE FOR ADC LAB 1

3. Copy/paste the code in Example 5-3 into the Initialize() section labeled:

//ADD INITIALIZE CODE HERE

/*---
Subroutine: Delay_1mS
Parameters: none
Returns:nothing
Synopsys:Creates a 1mS delay when called

---*/
void Delay_1mS(void)
{

unsigned int delay_var = 98;
//Keep looping until the delay_var is
// equal to zero (should take 1mS)
while(--delay_var);

}

Analog-to-Digital Converter Peripheral Labs

© 2009 Microchip Technology Inc. DS41369A-page 81

EXAMPLE 5-3: INITIALIZE CODE FOR COMPARATOR LAB 1

4. Copy/paste the code in Example 5-4 into the Get_Inputs() section labeled:

//ADD GET INPUTS CODE HERE

//Configure Port:
//Disable pin output driver (See TRIS register)
TRISB4 = 1;

// Configure pin as analog
ANS10 = 1;

//Configure RC0, RC1, RC2 and RC3 as digital output
PORTC = 0;
TRISC0 = 0;
TRISC1 = 0;
TRISC2 = 0;
TRISC3 = 0;

ANS4 = 0;
ANS5 = 0;
ANS6 = 0;
ANS7 = 0;

//Configure the ADC module:
//Select ADC conversion clock Frc
ADCS0 = 1;
ADCS1 = 1;
ADCS2 = 1;

//Configure voltage reference using VDD
VCFG = 0;

//Select ADC input channel Pin 13 (RB4/AN10)
CHS0 = 0;
CHS1 = 1;
CHS2 = 0;
CHS3 = 1;

//Select result format left justified
ADFM = 0;

//Turn on ADC module
ADON = 1;

PICDEMTM Lab Development Board User’s Guide

DS41369A-page 82 © 2009 Microchip Technology Inc.

EXAMPLE 5-4: GET_INPUTS() CODE FOR ADC LAB 1

5. Copy/paste the code in Example 5-5 into the Decide() section labeled:

//ADD DECIDE CODE HERE

EXAMPLE 5-5: DECIDE() CODE FOR ADC LAB 1

6. Copy/paste the code in Example 5-6 into the Do_Outputs() section labeled:

//ADD DO OUTPUTS CODE HERE

EXAMPLE 5-6: D0_OUTPUTS() CODE FOR ADC LAB 1

7. Copy/paste the code in Example 5-7 into the main() section labeled:

//ADD MAIN CODE HERE

EXAMPLE 5-7: MAIN() CODE FOR ADC LAB 1

8. Compile the project. There should be no errors.

//Perform an ADC of potentiometer connected to pin 13

//Wait the required acquisition time
Delay_1mS();

//Start conversion by setting the GO/DONE bit.
GODONE = 1;

//Wait for ADC conversion to complete
//Polling the GO/DONE bit
// 0 = ADC completed
// 1 = ADC in progress
while(GODONE == 1);

//Assign the upper 4 bits of ADRESH to the lower 4 bits
//of LED_Output
LED_Output = ADRESH >> 4; //Shifts the bits in ADRESL 4 bits

//to the right

//Assign contents of LED_Output to PORTC to light the connected
//LEDs
PORTC = LED_Output;

Initialize(); //Initialize the relevant registers
while(1)
{

Get_Inputs();
Decide();
Do_Outputs();

}

Analog-to-Digital Converter Peripheral Labs

© 2009 Microchip Technology Inc. DS41369A-page 83

5.2.3.4 TESTING THE APPLICATION

Program the PIC16F690. Turning the potentiometer connected to pin 13 should light

the LEDs sequentially in a binary fashion. Note that these are the 4 Most Significant

bits of the ADC result. Adding 6 more LEDs and I/O pins would allow the complete

10-bit value to be displayed. To determine the significance of each bit in the

ADRESH:ADRESL 10-bit result, see Figure 5-4.

FIGURE 5-4: ADC RESULT BIT SIGNIFICANCE

VDD
1

2
VDD

1
4

VDD
1
8

VDD
1

16
VDD

1

32
VDD

1
64

VDD
1

128
VDD

1

256
VDD

1

512
VDD

1

1024

10-BIT ADC RESULT (ADRESH: ADRESL)

Example:

If following an ADC, the ADRESH:ADRESL contains the following 10-bit

value:

10-BIT ADC RESULT (ADRESH: ADRESL)

1 1 0 0 1 0 0 0 0 1

VDD
2

1
+ VDD

4

1
+ VDD

32

1
+ VDD

1024

1

=
5V

2

1
+ 5V

4

1
+ 5V

32

1
+ 5V

1024

1

= 2.5V + 1.25V + 0.15625V + 0.000488V = 3.911V
(rounded to the nearest mV)

Note: Assumes that VDD is used as the ADC reference. If an external

reference is used, the voltage present on VREF pin is substituted

for VDD.

Bit positions set to ‘1�

are added together

Note: Using a 5V reference voltage with a 10-bit provides a resolution of

0.000488V or 4.88mV (5V/1024).

PICDEMTM Lab Development Board User’s Guide

DS41369A-page 84 © 2009 Microchip Technology Inc.

Since this lab outputs the 4 Most Significant bits of the ADC result and VDD is used as

the reference voltage, the LED display should correspond with the following voltage

levels shown in Table 5-1.

The solution for this project is located in the

C:\PICDEM_Lab\ADC_Labs\ADC_Lab1\solution directory.

TABLE 5-1: CORRESPONDING VOLTAGE ON PIN 13 RELATED TO LIT LEDS

(1 = LED ON, 0 = LED OFF)

LED4 LED3 LED2 LED1 pin 13 Voltage

0 0 0 0 < 0.3125V

0 0 0 1 > 0.3125V

0 0 1 0 > 0.625V

0 0 1 1 > 0.9375V

0 1 0 0 > 1.25V

0 1 0 1 > 1.5625V

0 1 1 0 > 1.875V

0 1 1 1 > 2.1875V

1 0 0 0 > 2.5V

1 0 0 1 > 2.8125V

1 0 1 0 > 3.125V

1 0 1 1 > 3.4375V

1 1 0 0 > 3.75V

1 1 0 1 > 4.0625V

1 1 1 0 > 4.375V

1 1 1 1 > 4.6875V or greater

Note: The greater than symbol (>) is required since the lower 6 bits of the ADC

result are not shown using LEDs.

Analog-to-Digital Converter Peripheral Labs

© 2009 Microchip Technology Inc. DS41369A-page 85

5.2.4 Lab 2: Audible Temperature Sensor

5.2.4.1 OVERVIEW

In this lab, the ADC peripheral on the PIC16F690 is used to alter the frequency of

Pulse-Width Modulated Waveform (PWM) in relation to the temperature sensed by a

thermistor connected to the input of the ADC peripheral. The PWM waveform is gener-

ated by simply toggling the RC0 voltage level high and low. The thermistor is used to

create a voltage divider in conjunction with a 1KΩ resistor to vary the voltage into the

ADC input. This thermistor is a Negative Temperature Coefficient type (NTC) meaning

that as the temperature of the device increases, the resistance effectively decreases.

The voltage drop across the thermistor is converted by the ADC and the ADRESH

result then used to manipulate a TMR0 preload value (see GPIO Lab 3) that will be

used in the Timing() to vary the execution speed of the software control loop and ulti-

mately the frequency of the PWM waveform. The PWM will be connected to an

N-Channel MOSFET used to drive the 8Ω speaker on the PICDEM Lab Development

Board. The schematic for this lab is shown in Figure 5-5.

FIGURE 5-5: SCHEMATIC FOR ADC LAB 2

Referring to the schematic in Figure 5-5, the RC0 connects to the gate of the IRFD010

N-Channel MOSFET Q1. Resistor R4 pulls the gate input low ensuring the transistor

will remain OFF until a high voltage level is present on the RC0 output. When the PWM

transitions high, Q1 is ON and current flows through the 8Ω speaker. The 100Ω R3

resistor is used to limit the current through the speaker to maintain manufacturer spec-

ified power ratings. In this way, any change in temperature around the thermistor will

alter the frequency of the PWM, thereby changing the audible frequency emitted from

the speaker.

1
2
3
4
5
6
7
8
9
10

20
19
18
17
16
15
14
13
12
11

J9J8

VDD

R1

1KΩ

VSS

RB4/AN10

U2

RC0

VSS

VDD

R3

100Ω

8Ω

R2

10KΩ

J19

SP+

SP-

LS1

Thermistor

Q1

IRFD010 N-Channel
MOSFET

VSS

R4

10KΩ

PICDEMTM Lab Development Board User’s Guide

DS41369A-page 86 © 2009 Microchip Technology Inc.

The audible frequency range is between 20-20000Hz. Therefore, the Timing()

delays from a maximum of 4.096 mS (244.1Hz) to a minimum of 1.536 mS (651Hz).

These values are determined using the internal instruction clock (FOSC/4) as the TMR0

clock source with a prescaler of 1:16. Other values could easily be used as long as the

frequency of the PWM remains within the audible range.

The software flowchart for this lab is shown in Figure 5-6.

FIGURE 5-6: MAIN() SOFTWARE CONTROL LOOP FLOWCHART FOR

ADC LAB 2

The Initialize() configures the peripherals as follows:

� Ports

- Clear PORTB.

- Configure pin 13 as an analog input (using TRISB4).

- Clear the PORTC register.

- Configure RC0 pin as digital output.

� Timer0

- Select the FOSC/4 internal instruction clock as the Timer0 clock source.

- Increment TMR0 on the low-to-high transition of FOSC/4.

- Assign the prescaler to Timer0 and configure at a rate of 1:16.

� ADC

- Select ADC conversion clock FRC.

- Configure voltage reference using VDD.

- Select channel 10 as the ADC input channel (Pin 13: RB4/AN10).

- Select result format left justified (10-bit result in ADRESH<7:0> and

ADRESL<7:6>).

- Turn on ADC module.

main()

Initialize()

Loop Forever

Get_Inputs()

Decide()

Do_Outputs()

Global variables initialized:

• 8-bit variable TMR0_preload will be used to vary the
delay in Timing() to alter the frequency of the
PWM output on RC0

Timing()

Analog-to-Digital Converter Peripheral Labs

© 2009 Microchip Technology Inc. DS41369A-page 87

Next, the Get_Inputs() performs an ADC on the voltage present on pin 13 using the

same code as Lab 1 with one minor change. This application is very dependant on the

timing of the software control loop. The 1mS delay used in Lab 1 to allow the hold

capacitor on the input of ADC to fully charge to the pin voltage is excessive. Using the

example given in Equation 9-1, Section 9 in the PIC16F690 Data Sheet as a reference,

the acquisition delay time is shortened to 8µS which should be sufficient.

The Decide() assigns the ADC result value, shifted three bit positions to the left, to

the TMR0_preload variable.

The Do_Outputs() assigns the current toggle bit value to RC0 that will transition

the output accordingly.

Finally, the Timing() clears the TMR0 overflow flag (T0IF), preloads the TMR0

register with the TMR0_preload value subtracted from 255. The function then waits

until the T0IF is set high before returning to the main(). In this way, as the temperature

at the thermistor increases, as will the frequency of the PWM.

5.2.4.2 PROCEDURE

Using the firmware developed in the previous lab, make the following changes:

1. Copy/paste the code in Example 5-8 into the top of the main firmware source file

under the heading labeled:

//----------------DATA MEMORY---------------

EXAMPLE 5-8: GLOBAL VARIABLES USE IN ADC LAB 2

2. Copy/paste the code in Example 5-9 over the Initialize() code from the

previous lab:

Note: Be sure to paste over the code from the previous lab.

unsigned char LED_Output = 0; //assigned to PORTC to light
 //connected LEDs

bit toggle = 0;//Used to generate waveform on RC0

unsigned char TMR0_preload = 0; //Varied by ADRESH to change
//frequency of

//waveform on RC0

PICDEMTM Lab Development Board User’s Guide

DS41369A-page 88 © 2009 Microchip Technology Inc.

EXAMPLE 5-9: INITIALIZE CODE FOR ADC LAB 2

3. Copy/paste the code in Example 5-10 over the Get_Inputs() code from the

previous lab:

//Configure Port:
PORTB = 0;
//Disable pin output driver (See TRIS register)
TRISB4 = 1;

// Configure RB4 as analog pin as analog
ANS10 = 1;

//Configure RC0, RC1, RC2 and RC3 as digital output
PORTC = 0;
TRISC0 = 0;
ANS4 = 0;

//Configure Timer0 as follows:

//Select the FOSC/4 internal instruction clock
//as the clock source for TMR0
T0CS = 0;
//Increment TMR0 value on low-to-high transition
//of the FOSC/4
T0SE = 0;
//Assign the prescaler to TMR0
PSA = 1;
//Configure the prescaler to increment TMR0
//at a rate of 1:16
PS0 = 1;
PS1 = 1;
PS2 = 0;

//Configure the ADC module:
//Select ADC conversion clock Frc
ADCS0 = 1;
ADCS1 = 1;
ADCS2 = 1;

//Configure voltage reference using VDD
VCFG = 0;

//Select ADC input channel Pin 13 (RB4/AN10)
CHS0 = 0;
CHS1 = 1;
CHS2 = 0;
CHS3 = 1;

//Select result format left justified
ADFM = 0;

//Turn on ADC module
ADON = 1;

Analog-to-Digital Converter Peripheral Labs

© 2009 Microchip Technology Inc. DS41369A-page 89

EXAMPLE 5-10: GET_INPUTS() CODE FOR ADC LAB 2

4. Copy/paste the code in Example 5-11 over the Decide() code from the previ-

ous lab:

EXAMPLE 5-11: DECIDE() CODE FOR ADC LAB 2

5. Copy/paste the code in Example 5-12 over the Do_Outputs() code from the

previous lab:

EXAMPLE 5-12: D0_OUTPUTS() CODE FOR ADC LAB 2

6. Copy/paste the code in Example 5-13 into the Timing() section labeled:

//ADD TIMING CODE HERE

EXAMPLE 5-13: TIMING() CODE FOR ADC LAB 2

unsigned char counter = 2;

//Give ADC hold capacitor time to charge
//This works out to approximately 8uS

while(--counter > 0);

//Start conversion by setting the GO/DONE bit.
GODONE = 1;

//Wait for ADC conversion to complete
//Polling the GO/DONE bit
// 0 = ADC completed
// 1 = ADC in progress
while(GODONE == 1);

//Shift the ADRESH result to the left
//by three bit positions and assign to
//TMR0_preload
TMR0_preload = ADRESH<<3;

//XOR the toggle value with 1
toggle ^= 1;

//Assign the toggle value to RC0 pin
RC0 = toggle;

//Clear the T0IF
T0IF = 0;

//Subtract the TMR0_preload value from 255 and
//then use to preload TMR0
TMR0 = 255 – TMR0_preload;

//Sit here and wait for TMR0 to overflow while (T0IF == 0);

PICDEMTM Lab Development Board User’s Guide

DS41369A-page 90 © 2009 Microchip Technology Inc.

7. Copy/paste the code in Example 5-14 over the main() code from the previous

lab:

EXAMPLE 5-14: MAIN() CODE FOR ADC LAB 2

8. Compile the project. There should be no errors.

5.2.4.3 TESTING THE APPLICATION

Program the PIC16F690. An audible tone should emit from the speaker. Pinching the

thermistor should introduce body heat to the component thereby increasing the fre-

quency of the speaker output. Colder temperature sources applied to the thermistor

should reduce the speaker output frequency.

The solution for this project is located in the

C:\PICDEM_Lab\ADC_Labs\ADC_Lab2\solution directory.

Initialize(); //Initialize the relevant registers
while(1)
{

Get_Inputs();
Decide();
Do_Outputs();
Timing();

}

PICDEMTM LAB DEVELOPMENT

BOARD USER’S GUIDE

© 2009 Microchip Technology Inc. DS41369A-page 91

Appendix A. Schematic

A.1 PICDEM LAB DEVELOPMENT KIT SCHEMATIC

J1
1

J2

D
J0

05
B2

D
3

S
1

V
C

C

S
1G

S1G

V
B

A
T

D5

3

270Ω
PWR ON

R5

0.1 UF

D1

C1

3

1N
41

48
W

S

D
2

U
1

LM
31

7M
S

T
T

3G

IN
O

U
T

O
U

T

ADJ
1

2 4

D4

R
2

33
0Ω

1N4148WS

C
7

22
 U

F
J3

J4
J5

V
D

D
1

V
D

D
2

V
D

D
3

P
IC

ki
t™

 S
er

ia
l H

ea
de

r

P
in

I2 C
™

S
P

I
U

S
A

R
T

1 2 3 4 5 6

_
_

_

+
5V

G
N

D

S
D

A

S
C

L
_

_
_

C
S

+
5V

G
N

D

S
D

I

S
C

K

S
D

O

T
X

+
5V

G
N

D

R
X

_
_

_

_
_

_

P
IC

ki
t™

 S
er

ia
l

J1
1

R
ec

ep
tic

al
J1

5

1 2 3 4 5 6

V
D

D

V
D

D

V
P

P

G
N

D

IC
S

P
D

A
T

IC
S

P
C

LK

1 2 3 4 5 6

IC
S

P
1

J6

1 2 3 4 5 6

J9
U

2

1 2 3 4 5 6 7 8 9

10

20 19 18 17 16 15 14 13 12 11

8/
14

/2
0p

 M
C

UV
S

S
V

D
D

R
A

5

R
A

4

R
A

3

R
C

5

R
C

4

R
C

3

R
C

6

R
C

7

R
B

7

R
A

0

R
A

1

R
A

2

R
C

0

R
C

1

R
C

2

R
B

4

R
B

5

R
B

6

1 2 3 4 5 6 7 8 9 10

0.
1u

F

C
2

J8

1 2 3 4 5 6 7 8 9 10

C
W

C6

10uF

R
1

C
C

W

33
52

T-
1-

10
2

3
2

1

J7

2PHDR

Y
1

C
10

15
pF

C
11

15
pF

32
 k

H
z

B
T

1

9V

J26

2P
H

D
R

V
B

A
T

J1
4

C
D

M
G

13
00

8L
-0

2-
N

D
J1

9

1 2 3 4

1 2
LS

1

J1
0

0.
1u

F

C
4

1 2 3 4

U
5

1 2 3 4

N
C

V
D

D

G
P

2/
T

0C
K

I/C
O

U
T

/F
O

S
C

4

G
P

1/
IC

S
P

C
LK

/C
IN

-

B
P

3/
M

C
LR

/V
P

P

V
S

S

N
C

G
P

0/
IC

S
P

D
A

T
/C

IN
+

5

P
IC
10
F
20
4_
20
6-
I_
P

678 5

1 2 3 4

1 2 3 4 5 6

J1
8

IC
S

P
3

J1
3

V
P

P

V
D

D

G
N

D

IC
S

P
D

A
T

IC
S

P
C

LK

J1
7

1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9

U
3

P
IC
_1
8P

R
A

2

R
A

3

R
A

4/
T

O
C

K
I

M
C

LR

V
ss

R
B

0/
IN

T

R
B

1

R
B

2

R
B

3

R
A

1

R
A

0

O
S

C
1/

C
LK

IN

O
S

C
2/

C
LK

O
U

T

V
D

D

R
B

7

R
B

6

R
B

5

R
B

4

18 17 16 15 14 13 12 11 10

C
3

0.
1u

F

1 2 3 4 5 6 7 8 9

J1
6

IC
S

P
2

J1
2

1 2 3 4 5 6

V
P

P

V
D

D

G
N

D

IC
S

P
D

A
T

IC
S

P
C

LK

V
P

P
3

V
D

D
3

IC
S

P
D

A
T

3

IC
S

P
C

LK
3

V
P

P
3

IC
S

P
D

A
T

3

V
D

D
3

IC
S

P
C

LK
3

G
P

2-
U

5

VDD1

VDD2

VDD3

V
D

D
1

IC
S

P
D

A
T

1

IC
S

P
C

LK
1

R
A

2/
R

B
2

R
C

0

R
C

1

R
C

2

R
B

4

R
B

5

R
B

6

R
A

5/
R

B
5

R
A

4/
R

B
4

R
A

3

R
C

5

R
C

4

R
C

3

R
C

6

R
C

7

R
B

7

V
P

P
1

V
D

D
1

IC
S

P
D

A
T

1

IC
S

P
C

LK
1

S
D

O
/R

S

S
C

L/
S

C
K

S
D

A
/S

D
I

C
S

/T
X

S
P

-

S
P

+

C
P

+

C
N

-

X
T

2

X
T

2

X
T

1

X
T

1

R
B

3

R
B

2

R
B

1

R
B

0

V

P
P
2

R
A

4

R
A

3

R
A

2
R

A
1

R
A

0

O
S

C
1

O
S

C
2

IC
S

P
D

A
T

2

IC
S

P
C

LK
2

U
3_

R
B

5

U
3_

R
B

4

V
D

D
2

V
P

P
2

V
D

D
2

IC
S

P
D

A
T

2

IC
S

P
C

LK
2

DS41369A-page 92 © 2009 Microchip Technology Inc.

AMERICAS
Corporate Office
2355 West Chandler Blvd.

Chandler, AZ 85224-6199

Tel: 480-792-7200

Fax: 480-792-7277

Technical Support:

http://support.microchip.com

Web Address:

www.microchip.com

Atlanta
Duluth, GA

Tel: 678-957-9614

Fax: 678-957-1455

Boston
Westborough, MA

Tel: 774-760-0087

Fax: 774-760-0088

Chicago
Itasca, IL

Tel: 630-285-0071

Fax: 630-285-0075

Cleveland
Independence, OH

Tel: 216-447-0464

Fax: 216-447-0643

Dallas
Addison, TX

Tel: 972-818-7423

Fax: 972-818-2924

Detroit
Farmington Hills, MI

Tel: 248-538-2250

Fax: 248-538-2260

Kokomo
Kokomo, IN

Tel: 765-864-8360

Fax: 765-864-8387

Los Angeles

Mission Viejo, CA

Tel: 949-462-9523

Fax: 949-462-9608

Santa Clara

Santa Clara, CA

Tel: 408-961-6444

Fax: 408-961-6445

Toronto
Mississauga, Ontario,

Canada

Tel: 905-673-0699

Fax: 905-673-6509

ASIA/PACIFIC

Asia Pacific Office

Suites 3707-14, 37th Floor

Tower 6, The Gateway

Harbour City, Kowloon

Hong Kong

Tel: 852-2401-1200

Fax: 852-2401-3431

Australia - Sydney
Tel: 61-2-9868-6733

Fax: 61-2-9868-6755

China - Beijing
Tel: 86-10-8528-2100

Fax: 86-10-8528-2104

China - Chengdu

Tel: 86-28-8665-5511

Fax: 86-28-8665-7889

China - Hong Kong SAR

Tel: 852-2401-1200

Fax: 852-2401-3431

China - Nanjing

Tel: 86-25-8473-2460

Fax: 86-25-8473-2470

China - Qingdao

Tel: 86-532-8502-7355

Fax: 86-532-8502-7205

China - Shanghai
Tel: 86-21-5407-5533

Fax: 86-21-5407-5066

China - Shenyang

Tel: 86-24-2334-2829

Fax: 86-24-2334-2393

China - Shenzhen

Tel: 86-755-8203-2660

Fax: 86-755-8203-1760

China - Wuhan

Tel: 86-27-5980-5300

Fax: 86-27-5980-5118

China - Xiamen

Tel: 86-592-2388138

Fax: 86-592-2388130

China - Xian

Tel: 86-29-8833-7252

Fax: 86-29-8833-7256

China - Zhuhai

Tel: 86-756-3210040

Fax: 86-756-3210049

ASIA/PACIFIC

India - Bangalore
Tel: 91-80-3090-4444

Fax: 91-80-3090-4080

India - New Delhi

Tel: 91-11-4160-8631

Fax: 91-11-4160-8632

India - Pune

Tel: 91-20-2566-1512

Fax: 91-20-2566-1513

Japan - Yokohama

Tel: 81-45-471- 6166

Fax: 81-45-471-6122

Korea - Daegu
Tel: 82-53-744-4301

Fax: 82-53-744-4302

Korea - Seoul
Tel: 82-2-554-7200

Fax: 82-2-558-5932 or

82-2-558-5934

Malaysia - Kuala Lumpur

Tel: 60-3-6201-9857

Fax: 60-3-6201-9859

Malaysia - Penang

Tel: 60-4-227-8870

Fax: 60-4-227-4068

Philippines - Manila

Tel: 63-2-634-9065

Fax: 63-2-634-9069

Singapore
Tel: 65-6334-8870

Fax: 65-6334-8850

Taiwan - Hsin Chu

Tel: 886-3-572-9526

Fax: 886-3-572-6459

Taiwan - Kaohsiung
Tel: 886-7-536-4818

Fax: 886-7-536-4803

Taiwan - Taipei
Tel: 886-2-2500-6610

Fax: 886-2-2508-0102

Thailand - Bangkok

Tel: 66-2-694-1351

Fax: 66-2-694-1350

EUROPE

Austria - Wels

Tel: 43-7242-2244-39

Fax: 43-7242-2244-393

Denmark - Copenhagen
Tel: 45-4450-2828

Fax: 45-4485-2829

France - Paris
Tel: 33-1-69-53-63-20

Fax: 33-1-69-30-90-79

Germany - Munich
Tel: 49-89-627-144-0

Fax: 49-89-627-144-44

Italy - Milan
Tel: 39-0331-742611

Fax: 39-0331-466781

Netherlands - Drunen

Tel: 31-416-690399

Fax: 31-416-690340

Spain - Madrid
Tel: 34-91-708-08-90

Fax: 34-91-708-08-91

UK - Wokingham
Tel: 44-118-921-5869

Fax: 44-118-921-5820

WORLDWIDE SALES AND SERVICE

02/04/09

	Chapter 1. Overview
	1.1 Introduction
	1.2 Highlights
	1.3 PICDEM™ Lab Development Kit Contents
	1.4 PICDEM™ Lab Development Board Construction and Layout
	Figure 1-1: PICDEM™ Lab Development Board

	1.5 Target Power
	1.6 Connecting the PICkit™ 2 Programmer/Debugger
	Figure 1-2: Connecting the PICkit™ Programmer/Debugger to an ICSP™ connector

	1.7 Solderless Prototyping Area Strip Configuration
	Figure 1-3: Solderless Prototyping Area Strip Configuration

	Chapter 2. Getting Started
	2.1 Introduction
	2.2 Prerequisites
	2.3 The Software Control Loop
	Figure 2-1: Main() Software Control Loop Flowchart for uSED iN lABS

	2.4 MPLAB® IDE Download Instructions
	Figure 2-2: MPLAB Zip file
	Figure 2-3: HI TECH Installer Window
	Figure 2-4: HI TECH License Agreement
	Figure 2-5: HI TECH Components
	Figure 2-6: HI TECH Language Preferences
	Figure 2-7: HI TECH Install Confirmation

	2.5 Installing the Included Lab Files
	Chapter 3. General Purpose Input/Output Labs
	3.1 Introduction
	3.2 General Purpose Input/Output Labs
	3.3 GPIO Output Labs
	3.3.1 Reference Documentation
	3.3.2 Equipment Required for GPIO Output Labs
	3.3.3 PICDEM Lab Development Board Setup for GPIO Output Labs
	Figure 3-1: PICDEM Lab Schematic for GPIO Output Labs
	3.3.4 Lab 1: Light LEDs
	Figure 3-2: MAIN() Software Control Loop Flowchart for Lab 1
	Figure 3-3: Step One
	Figure 3-4: Step Two
	Figure 3-5: Step Three
	Figure 3-6: Step Four
	Figure 3-7: Summary
	Figure 3-8: Project Window
	Figure 3-9: PICkit 2 PROGRAMMER/DEBUGGER TOOLBAR
	Figure 3-10: Lab 1 LED Output
	3.3.5 Lab 2: Flash LEDs (Delay Loop)
	Figure 3-11: Main() Software Control Loop Flowchart for Lab 2
	Figure 3-12: Timing() Delay Routine Flowchart for Lab 2
	3.3.6 Lab 3: Simple Delays Using Timer0
	Equation 3-1: TMR0 Overflow Period using FOSC/4
	Equation 3-2: TMR0 Overflow Period when including the Prescaler
	Equation 3-3: Calculating a TMR0 PreLoad Value to generate a 10mS Overflow Period
	Figure 3-13: Delay_10mS() using Timer0
	Equation 3-4: Maximum TMR0 Overflow Period
	Figure 3-14: Delay_1S() using Timer0
	3.3.7 Lab 4: Rotate LEDs
	Figure 3-15: Main() Software Control Loop Flowchart for Lab 4
	Figure 3-16: Decide() Flowchart for Lab 4
	Figure 3-17: Results of Do_Output()

	3.4 GPIO Input Labs
	3.4.1 Reference Documentation
	3.4.2 Equipment Required for GPIO Input Labs
	3.4.3 PICDEM Lab Development Board Setup for GPIO Input Labs
	Figure 3-18: PICDEM Lab Schematic for GPIO Input Labs
	3.4.4 Lab 5: Adding a Push Button
	Figure 3-19: Main() Software Control Loop Flowchart for Lab 5
	Figure 3-20: Get_Inputs() Software Flowchart for Lab 5
	Figure 3-21: Delay_5mS() Software Flowchart for Lab 5
	Figure 3-22: Decide() Software FlowChart for Lab 5
	3.4.5 Lab 6: Push Button Interrupt
	Figure 3-23: Main() Software Control Loop Flowchart for GPIO Lab 6
	Figure 3-24: pb_pressISR() for Lab 6 Showing Switch Debounce
	3.4.6 Lab 7: Push Button Interrupt-on-Change
	Figure 3-25: pb_pressisr Flowchart for Lab 7
	3.4.7 Lab 8: Using Weak Pull-Ups

	Chapter 4. Comparator Peripheral Labs
	4.1 Introduction
	4.2 Comparator Labs
	4.2.1 Reference Documentation
	4.2.2 Comparator Labs
	4.2.3 Equipment Required
	4.2.4 Lab 1: Simple Compare
	Figure 4-1: Schematic for Comparator Lab 1
	Figure 4-2: Main() software Control Loop Flowchart for Comparator Lab 1
	4.2.5 Lab 2: Using the Comparator Voltage Reference
	Equation 4-1: CVref Output Voltage
	Equation 4-2: Calculating a 2.5V Internal Reference (Low-Range Method)
	Figure 4-3: Schematic for Comparator Lab 2
	4.2.6 Lab 3: Higher Resolution Sensor Readings Using a Single Comparator
	Figure 4-4: Basic Relaxation Oscillator Circuit
	Figure 4-5: Schematic for Comparator Lab 3
	Figure 4-6: Main() software Control Loop Flowchart for Comparator Lab 3
	Figure 4-7: TMR0_ISR Flowchart for Comparator Lab 3

	Chapter 5. Analog-to-Digital Converter Peripheral Labs
	5.1 Introduction
	5.2 ADC Labs
	Figure 5-1: Schematic for ADC Lab 1
	Figure 5-2: Main() software Control Loop Flowchart for Comparator Lab 1
	Figure 5-3: Main() software Control Loop Flowchart for Comparator Lab 1
	Figure 5-4: ADC Result Bit Significance
	Figure 5-5: Schematic for ADC Lab 2
	Figure 5-6: Main() software Control Loop Flowchart for ADC Lab 2

	Appendix A. Schematic
	Worldwide Sales

