

GPIHV30SB5L

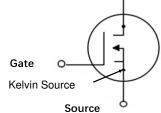
N-channel 1200V 30A GaN Power HEMT in TO263-5L Package

Datasheet version 4: Preliminary

Features

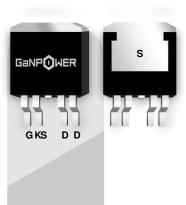
BV _{dss}	R dson	l _{ds}	Qg
1200 V	65 mΩ	30 A	8.25 nC

- Ultra-low R_{DS}(on)
- High dv/dt capability
- Extremely low input capacitance
- Zero Qrr
- Outstanding switching performance
- Low Profile


Applications

- Switching Power Applications
- Server and Telecom Power Applications
- EV OBC and DC-DC Converters
- UPS, Inverters, PV

Description


These devices are N-channel 1200 V Power GaN HEMTs based on proprietary E-mode GaN on silicon technology. The resulting product has extremely low on state resistance, very low input capacitance and zero reverse recovery charge making it especially suitable for applications which require superior power density, ultra-high switching frequency and outstanding efficiency

Device Characteristics

Drain

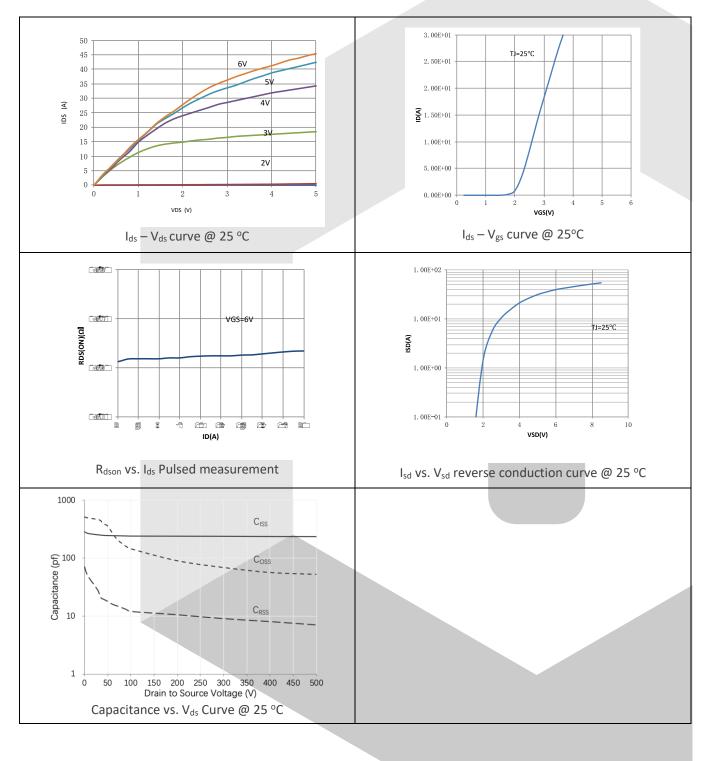
C

Stat	Static Parameters				Test d	ata	
	Parameters		Conditions	Min	Typical	Max	Unit
1	V _{gs(TH)}	Gate threshold voltage	V _{ds} =V _{gs} Id=3.5mA	1.2	1.4	1.7	V
2	BV_{dss}	Drain-Source breakdown voltage	V _{gs} =0V I _d < 20uA (T=25-125C)		1200		V
3	l _{dss}	Zero gate voltage drain current, T_c = 25 °C	V _{gs} =0V V _{ds} =650V		4	40	uA
4	l _{gss}	Gate-Source Leakage	V _{gs} = 6V V _{ds} =0V		65	150	uA
5	R _{dson}	Static drain-source on resistance, T _c = 25℃	V _{gs} =6V I _d =2.5A		60	75	mΩ
6	V_{sd}	Reverse conduction voltage	I _{sd} =1A V _{gs} =0V	1.65	1.95	2.3	V
7	R _g	Gate resistance	f=25Mhz Open drain		1.5		Ω
Dyr	Dynamic Parameters				Test d	ata	
	Parameters		Conditions	Min	Typical	Max	Unit
	C _{iss}	Input capacitance	V _{gs} =0V		236		pf
1	Coss	Output capacitance	V _{ds} =700V		72		pf
	C _{rss}	Reverse transfer capacitance	f=1MHz		4.6		pf
	Qg	Gate charge	V _{ds} =400V		8.25		nC
3	Q _{gs}	Gate to source charge	I _d =9A		1.5		nC
	Q _{gd}	Gate to drain charge	V _{gs} =6V		1.8		nC
2	Q _{rr}	Reverse recovery charge			0		nC
Switching Performance			Test data				
	Parameters		Conditions	Min	Typical	Max	Unit
1	t _{d(on)}	Turn-on delay time	V _{ds} =800V		19		ns
2	tr	Rise time	I _d =8A		20		ns
3	t _{d(off)}	Turn-off delay time	R _g =22/2Ω		17		ns
4	t _f	Fall time	V _{gs} =-3/6V		40		ns

Absolute Max. Ratings

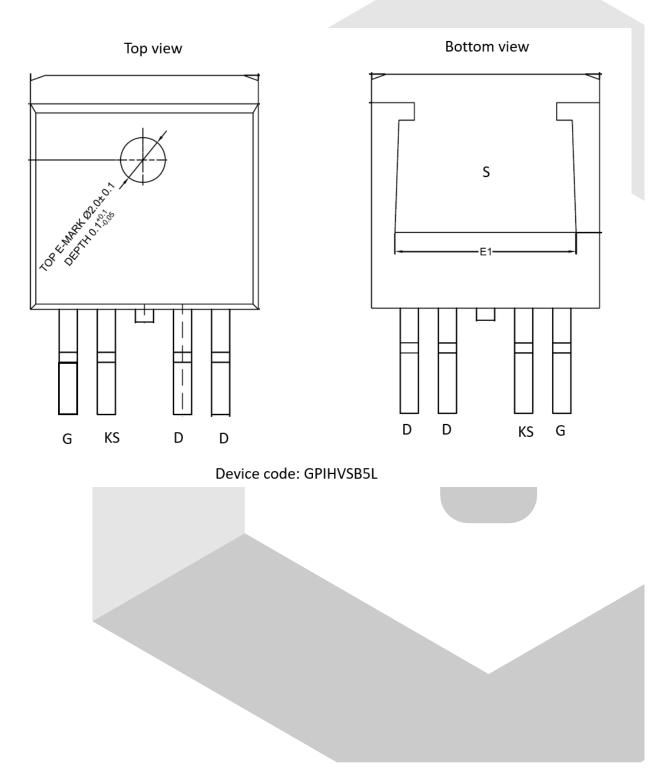
	Symbols	Parameters	Value	Unit
1	V _{DS-max}	Breakdown voltage transient @ T _{case} =25°C	1400	V
	V _{DS-max} Breakdown voltage transient @ T _{case} =125°C		1250	V
2	V _{GS-max}	Gate to source max. transient voltage @ T _{case} =25°C	-12 to +7.5	V
3	l _{ds-max}	Drain to source DC current @ T _{case} =25°C	30	А
4	I _{ds-max}	Drain to source DC current @ T _{case} =100°C	22	А
5	dv/dt- _{max}	Drain to source voltage slew rate	150	V/ns
6	T _{J-max}	Max junction temperature	150	°C
7	T _{S-storage}	Storage temperature	-55 to 150	°C

Thermal and Soldering Characteristics (Typical)

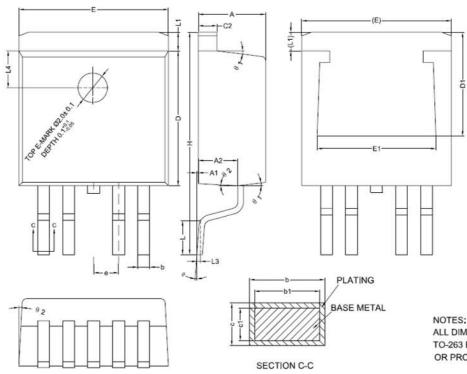

	Symbols	Parameters	Value	Unit
1	R_{thJC}	Thermal resistance (junction to case)	0.9	°C /W
2	R_{thJA}	Thermal resistance (junction to ambient)	62	°C /W
2	T_{solder}	Reflow soldering temperature	260	°C

Ordering

Order Code	Package Type	Packaging Method	Qty
GPIHV30SB5L	TO-263-5		



Electrical Performance



Package Information

For more information, visit us at: www.iganpower.com, or contact us at sales@iganpower.com

COMMON DIMENSIONS (UNITS OF MEASURE=MILLIMETER)

SYMBOL	MIN	NOM	MAX
A	4,40	4.57	4,70
A1	0	0,10	0.25
A2	2.59	2,69	2.79
b	0.77		0.90
b1	0.76	0.81	0.86
с	0,34	-	0,47
c1	0.33	0,38	0.43
c2	1.22	-	1.32
D	9.05	9.15	9.25
D1	6.86	-	7,50
E	10.06	10.16	10.26
E1	7.50	-	8.30
e		1.70BSC	
н	14.70	15.10	15.50
L	2.00	2,30	2,60
L1	1,17	1.27	1,40
L3		0,25BSC	
L4	2.00REF		
θ	0*	-	8"
01	5°	7*	9"
θ2	1*	3*	5°


NOTES: ALL DIMENSIONS REFER TO JEDEC STANDARD TO-263 BA DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.

Device code: GPIHVSB5L

GaN HEMT Frequently Asked Questions

	and power (<20KW) applications. GaN is the ideal choice for high frequency applications. SiC
	devices are better choice for high voltage and high-power applications (>20KW).
4	Q: Do we need to parallel an FRD for applications such as inverters?
	A: GaN devices are different from silicon MOSFET or IGBT in that they have no inherent PN
	junction diodes that cause reverse recovery issue. User do not need to parallel an FRD for the
	purpose of suppressing the body diode reverse recovery effect, since GaN HEMT can operate
	in both first and third quadrants. However, care should be taken for the dead time power loss
	since the Vsd voltage of GaN HEMT is usually close to 2V. This is especially true when a negative
	gate voltage is applied.
6	Q: Can we parallel GaN HEMT devices?
	A: Yes, GaN HEMT is ideal for paralleling, due to positive temperature coefficient of Rdson
	and slightly positive temperature coefficient of threshold voltage.
5	Q: Where can we find drivers for GaNPower HEMT devices?
	A: While some of the GaNPower's HEMTs are either monolithically integrated with gate
	driver or co-packaged with a silicon driver, drivers can be easily found from vendors such as
	TI and Silicon Lab for either single sided or half-bridge configurations:
	✓ <u>TI: LM5114</u> : Single 7.6A Peak Current Low-Side Gate Driver
	✓ <u>TI: UCC27611</u> : 5V, 4A/6A Low Side GaN Driver
	 Maxim: MAX5048C: 7A Sink/3A Source Current, 8ns, SOT23, MOSFET Drive
	✓ Fairchild: FAN3122: Single 9-A High-Speed, Low-Side Gate Driver
	Cilicon Loby Ci027V: 4 Amer ICO driver with Lligh Transient (dy (dt) Inemunity

