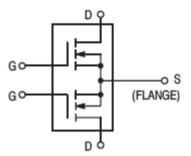

MACOM


RF Power FET 300W, 175MHz, 28V

Rev. V1

Designed for broadband commercial and military applications at frequencies to 175 MHz. The high power, high gain and broadband performance of this device is especially useful for FM broadcast or TV channel frequency band solid state transmitters and amplifiers.

- Guaranteed performance at 175MHz, 28V: Output power: 300W Gain: 12dB (14dB Typ.) Efficiency: 50%
- Low thermal resistance: 0.35°C/W
- Ruggedness tested at rated output power
- Nitride passivated die for enhanced reliability

M/A-COM Technology Solutions Inc. All rights reserved.

Information in this document is provided in connection with M/A COM Technology Solutions Inc ("MACOM") MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Drain–Source Voltage	V _{DSS}	65	Vdc
Drain–Gate Voltage	V _{DGO}	65	Vdc
Gate–Source Voltage	V _{GS}	±40	Vdc
Drain Current — Continuous	Ι _D	32	Adc
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	500 2.85	Watts W/∘C
Storage Temperature Range	T _{stg}	-65 to +150	°C
Operating Junction Temperature	TJ	200	°C

THERMAL CHARACTERISTICS

Characteristic		Мах	Unit
Thermal Resistance, Junction to Case	R _{ejc}	0.35	°C/W

NOTE — <u>CAUTION</u> — MOS devices are susceptible to damage from electrostatic charge. Reasonable precautions in handling and packaging MOS devices should be observed.

fully indemnify MACOM for any damages resulting from such improper use or sale.

¹

M/A-COM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit www.macom.com for additional data sheets and product information.

Rev. V1

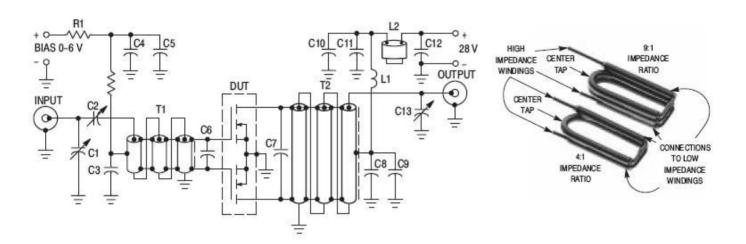
ELECTRICAL CHARACTERISTICS (T_c = 25°C unless otherwise noted)

Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS (1)					
Drain–Source Breakdown Voltage (V _{GS} = 0, I _D = 100 mA)	V _{(BR)DSS}	65	_	_	Vdc
Zero Gate Voltage Drain Current (V _{DS} = 28 V, V _{GS} = 0)	I _{DSS}	—	_	5.0	mAdc
Gate–Body Leakage Current (V _{GS} = 20 V, V _{DS} = 0)	I _{GSS}	—	_	1.0	μAdc
ON CHARACTERISTICS (1)					
Gate Threshold Voltage (V _{DS} = 10 V, I _D = 100 mA)	V _{GS(th)}	1.0	3.0	5.0	Vdc
Drain–Source On–Voltage (V _{GS} = 10 V, I _D = 10 A)	V _{DS(on)}	0.1	0.9	1.5	Vdc
Forward Transconductance $(V_{DS} = 10 \text{ V}, I_D = 5.0 \text{ A})$	9fs	5.0	7.0	—	mhos
DYNAMIC CHARACTERISTICS (1)					
Input Capacitance (V _{DS} = 28 V, V _{GS} = 0, f = 1.0 MHz)	C _{iss}	_	350	—	pF
Output Capacitance (V_{DS} = 28 V, V_{GS} = 0, f = 1.0 MHz)	Coss	_	420	_	pF
Reverse Transfer Capacitance (V _{DS} = 28 V, V _{GS} = 0, f = 1.0 MHz)	C _{rss}	_	35	_	pF
FUNCTIONAL TESTS (2)	1				•
Common Source Amplifier Power Gain (V _{DD} = 28 V, P _{out} = 300 W, I _{DQ} = 500 mA, f = 175 MHz)	G _{ps}	12	14	—	dB
Drain Efficiency (V _{DD} = 28 V, P _{out} = 300 W, f = 175 MHz, I _D (Max) = 21.4 A)	η	45	55	_	%
Load Mismatch (V _{DD} = 28 V, P _{out} = 300 W, I _{DQ} = 500 mA, f = 175 MHz, VSWR 5:1 at all Phase Angles)	Ψ	No Degradation in Output Power			

NOTES:

Each side measured separately.

² Measured in push-pull configuration. FITNESS FOR A PARTICULAR PURPOSE, CONSEQUENTIAL OR INCIDENTAL DAMAGES, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. MACOM FURTHER DOES NOT WARRANT THE ACCURACY OR COMPLETENESS OF THE INFORMATION, TEXT, GRAPHICS OR OTHER ITEMS CONTAINED WITHIN THESE MATERIALS. MACOM SHALL NOT BE LIABLE FOR ANY SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVENUES OR LOST PROFITS, WHICH MAY RESULT FROM THE USE OF THESE MATERIALS.


MACOM products are not intended for use in medical, lifesaving or life sustaining applications. MACOM customers using or selling MACOM products for use in such applications do so at their own risk and agree to fully indemnify MACOM for any damages resulting from such improper use or sale.

2

M/A-COM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit www.macom.com for additional data sheets and product information.

RF Power FET 300W, 175MHz, 28V

МАСОМ

- C1 Arco 402, 1.5–20 pF
- C2 Arco 406, 15–115 pF
- C3, C4, C8, C9, C10 1000 pF Chip
- C5, C11 0.1 µF Chip
- C6 330 pF Chip
- C7 200 pF and 180 pF Chips in Parallel
- C12 0.47 µF Ceramic Chip, Kemet 1215 or Equivalent
- C13 Arco 403, 3.0-35 pF
- L1 10 Turns AWG #16 Enameled Wire,
- Close Wound, 1/4" I.D.
- L2 Ferrite Beads of Suitable Material for 1.5–2.0 μH Total Inductance
- R1 100 Ohms, 1/2 W
- R2 1.0 kOhm, 1/2 W

- T1 9:1 RF Transformer. Can be made of 15–18 Ohms Semirigid Co–Ax, 62–90 Mils O.D.
- T2 1:9 RF Transformer. Can be made of 15–18 Ohms Semirigid Co–Ax, 70–90 Mils O.D.
- Board Material 0.062" Fiberglass (G10),
- 1 oz. Copper Clad, 2 Sides, $\varepsilon_r = 5$
- NOTE: For stability, the input transformer T1 must be loaded with ferrite toroids or beads to increase the common mode inductance. For operation below 100 MHz. The same is required for the output transformer.

See pictures for construction details.

Unless Otherwise Noted, All Chip Capacitors are ATC Type 100 or Equivalent.

Figure 1. 175 MHz Test Circuit

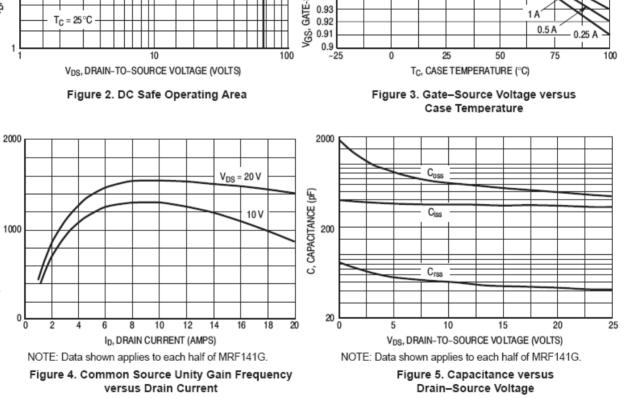
INCIDENTAL DAMAGES, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. MACOM FURTHER DOES NOT WARRANT THE ACCURACY OR COMPLETENESS OF THE INFORMATION, TEXT, GRAPHICS OR OTHER ITEMS CONTAINED WITHIN THESE MATERIALS. MACOM SHALL NOT BE LIABLE FOR ANY SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVENUES OR LOST PROFITS, WHICH MAY RESULT FROM THE USE OF THESE MATERIALS.

³

M/A-COM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit www.macom.com for additional data sheets and product information.

RF Power FET 300W, 175MHz, 28V

100 1.04 (NORMALIZED) 1.03 I_D = 5 A 1.02 ID, DRAIN CURRENT (AMPS) 1.01 VOLTAGE 0.99 0.98 10 0.97 SOURCE 0.96 0.95 0.94 GATE-0.93 T_C = 25°C 0.92 0.5 A νGS, 0.91 0.250.9 50 100 0 25 75 10 -25 100 VDS, DRAIN-TO-SOURCE VOLTAGE (VOLTS) T_C, CASE TEMPERATURE (°C) Figure 2. DC Safe Operating Area Figure 3. Gate-Source Voltage versus **Case Temperature** 2000 2000 T; UNITY GAIN FREQUENCY (MHz) Case V_{DS} = 20 V C, CAPACITANCE (pF) Ciss 10 V 1000 200 Crss 20 0 2 6 8 10 12 14 16 18 20 5 10 15 20 25 ID, DRAIN CURRENT (AMPS) VDS, DRAIN-TO-SOURCE VOLTAGE (VOLTS) NOTE: Data shown applies to each half of MRF141G. NOTE: Data shown applies to each half of MRF141G. Figure 4. Common Source Unity Gain Frequency Figure 5. Capacitance versus versus Drain Current Drain-Source Voltage

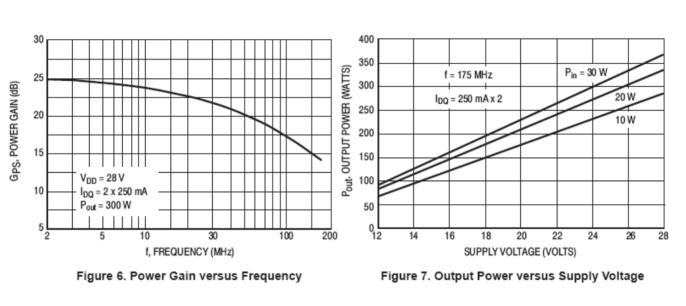

TYPICAL CHARACTERISTICS

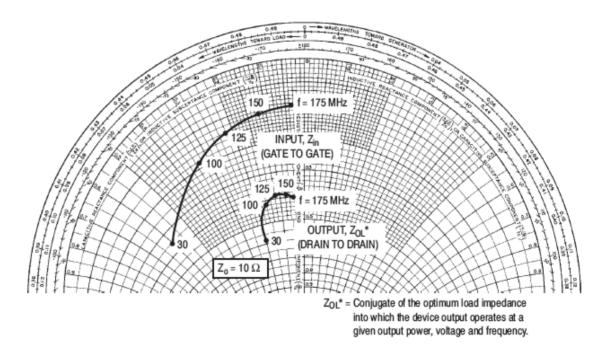
OTHER INTELLECTUAL PROPERTY RIGHT. MACOM FURTHER DOES NOT WARRANT THE ACCURACY OR COMPLETENESS OF THE INFORMATION, TEXT, GRAPHICS OR OTHER ITEMS CONTAINED WITHIN THESE MATERIALS. MACOM SHALL NOT BE LIABLE FOR ANY SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVENUES OR LOST PROFITS, WHICH MAY RESULT FROM THE USE OF THESE MATERIALS.

MACOM products are not intended for use in medical, lifesaving or life sustaining applications. MACOM customers using or selling MACOM products for use in such applications do so at their own risk and agree to fully indemnify MACOM for any damages resulting from such improper use or sale.

M/A-COM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit www.macom.com for additional data sheets and product information.

4





Rev. V1

ΜΛΟΜ

RF Power FET 300W, 175MHz, 28V

Figure 8. Input and Output Impedances

customers using or selling MACOM products for use in such applications do so at their own risk and agree to fully indemnify MACOM for any damages resulting from such improper use or sale.

⁵

M/A-COM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit www.macom.com for additional data sheets and product information.

300W, 175MHz, 28V

RF Power FET

MACOM

Rev. V1

NOTE: S-Parameter data represents measurements taken from one chip only.

Table 1. Common Source S-Parameters ($v_{DS} = 24 v$, $i_D = 0.57 A$)											
f	s	\$ ₁₁		\$ ₂₁		12	\$ ₂₂				
MHz	S ₁₁	$\angle \phi$	S ₂₁	$\angle \phi$	S ₁₂	∠¢	S ₂₂	∠¢			
30	0.845	-174	4.88	78	0.014	-5	0.939	-174			
40	0.867	-174	3.23	66	0.013	-14	0.856	-172			
50	0.876	-174	2.62	62	0.013	-17	0.868	-175			
60	0.883	-174	2.12	59	0.012	-15	0.938	-176			
70	0.890	-175	1.85	58	0.012	-12	1.036	-177			
80	0.899	-175	1.57	56	0.011	-10	1.110	-177			
90	0.909	-175	1.36	50	0.010	-11	1.190	-176			
100	0.920	-176	1.13	43	0.009	-13	1.160	-176			
110	0.930	-176	0.95	37	0.007	-16	1.100	-177			
120	0.938	-176	0.78	33	0.007	-11	1.010	-175			
130	0.944	-176	0.67	31	0.006	-3	0.954	-176			
140	0.948	-177	0.60	31	0.006	10	0.964	-177			
150	0.951	-177	0.56	32	0.005	23	1.023	-178			
160	0.954	-178	0.52	32	0.005	31	1.130	-179			
170	0.958	-178	0.48	29	0.006	37	1.190	-178			
180	0.962	-178	0.45	24	0.006	39	1.260	-179			
190	0.965	-179	0.40	17	0.007	41	1.200	180			
200	0.968	-179	0.34	15	0.008	49	1.090	-179			
210	0.970	-179	0.30	15	0.008	60	0.980	-178			
220	0.972	-180	0.27	15	0.008	68	0.960	-177			
230	0.973	-180	0.25	17	0.008	68	1.045	-179			
240	0.974	180	0.24	20	0.009	67	1.030	179			
250	0.975	180	0.24	19	0.011	68	1.100	179			
260	0.977	179	0.21	17	0.012	69	1.200	179			
270	0.978	179	0.22	13	0.013	72	1.210	177			
280	0.979	179	0.19	13	0.012	72	1.170	177			
290	0.979	178	0.17	1	0.012	68	1.040	180			
			·	t		1	· · · · · · · · · · · · · · · · · · ·				

Table 1. Commor	Source	S-Parameters	(V _{DS}	= 24 \	/, I _D =	0.57	A)
-----------------	--------	--------------	------------------	--------	---------------------	------	----

THESE MATERIALS. MACOM SHALL NOT BE LABLE FOR ANY SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVENUES OR LOST PROFITS, WHICH MAY RESULT FROM THE USE OF THESE MATERIALS.

⁶

M/A-COM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit www.macom.com for additional data sheets and product information.

RF Power FET 300W, 175MHz, 28V

Rev. V1

f	S ₁₁		S	\$ ₂₁		\$ ₁₂		\$ ₂₂	
MHz	S ₁₁	∠¢	S ₂₁	∠¢	S ₁₂	$\angle \phi$	S ₂₂	$\angle \phi$	
300	0.980	178	0.16	8	0.013	65	0.998	179	
310	0.980	178	0.16	13	0.015	70	0.977	179	
320	0.981	178	0.16	15	0.017	76	0.979	178	
330	0.982	177	0.13	10	0.017	83	1.033	178	
340	0.982	177	0.15	19	0.016	81	1.110	176	
350	0.982	177	0.13	16	0.016	73	1.140	177	
360	0.983	177	0.13	8	0.020	63	1.150	177	
370	0.982	176	0.10	6	0.023	65	1.120	176	
380	0.982	176	0.10	7	0.023	72	1.050	177	
390	0.982	176	0.10	10	0.021	81	0.993	177	
400	0.982	176	0.09	14	0.018	83	0.959	179	
410	0.983	175	0.10	12	0.020	71	1.040	176	
420	0.983	175	0.09	16	0.025	65	1.090	174	
430	0.984	175	0.09	15	0.028	70	1.100	174	
440	0.983	174	0.09	12	0.028	77	1.100	175	
450	0.983	174	0.09	13	0.025	82	1.090	176	
460	0.983	174	0.07	14	0.022	66	1.080	174	
470	0.983	174	0.07	13	0.024	56	0.992	175	
480	0.983	174	0.07	16	0.032	60	0.970	175	
490	0.984	173	0.07	13	0.036	74	0.996	174	
500	0.984	173	0.07	18	0.035	85	1.040	174	

Table 1. Common Source S-Parameters (VDs = 24 V, ID = 0.57 A) (continued)

Table 2. Commor	Source S-Parameters	s (V _{DS} = 28 V, I _D = 0.65 A)
-----------------	---------------------	---

f	S	S ₁₁		S ₁₁ S ₂₁		\$ ₁₂		\$ ₂₂	
MHz	S ₁₁	$\angle \phi$	S ₂₁	$\angle \phi$	S ₁₂	∠¢	S ₂₂	∠¢	
30	0.849	-174	5.41	79	0.013	-6	0.934	-174	
40	0.869	-174	3.59	67	0.013	-16	0.849	-172	
50	0.878	-174	2.91	62	0.012	-17	0.859	-174	
60	0.884	-174	2.36	60	0.011	-13	0.928	-176	
70	0.890	-175	2.06	59	0.010	-11	1.029	-177	
80	0.899	-175	1.75	56	0.009	-14	1.110	-177	
90	0.910	-176	1.52	51	0.009	-18	1.190	-175	
100	0.920	-176	1.26	43	0.009	-19	1.150	-175	

iding indemnity incomination any damages resulting from such interoper use of sale.

7

M/A-COM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information.

RF Power FET 300W, 175MHz, 28V

Rev. V1

Table 2. Common Source S–Parameters (VDs = 28 V, ID = 0.65 A) (continued)

440	0.000	170	4.07		0.000	45	4 400	477
110	0.929	-176	1.07	37	0.008	-15	1.100	-177
120	0.937	-176	0.88	34	0.006	-4	1.000	-175
130	0.943	-176	0.75	32	0.004	5	0.953	-176
140	0.947	-177	0.67	32	0.003	6	0.966	-177
150	0.950	-177	0.63	32	0.004	6	1.030	-178
160	0.953	-178	0.58	32	0.005	18	1.120	-178
170	0.957	-178	0.54	29	0.006	36	1.180	-178
180	0.961	-178	0.51	24	0.006	53	1.250	-179
190	0.964	-179	0.45	18	0.006	65	1.200	180
200	0.967	-179	0.39	15	0.005	69	1.110	-179
210	0.969	-179	0.35	15	0.005	63	1.030	-178
220	0.971	-180	0.31	15	0.006	59	0.975	-177
230	0.972	-180	0.28	17	0.009	66	1.040	-179
240	0.973	180	0.27	20	0.010	78	1.030	179
250	0.974	180	0.27	19	0.010	88	1.090	180
260	0.976	179	0.24	17	0.009	85	1.200	179
270	0.977	179	0.24	12	0.010	73	1.220	177
280	0.978	179	0.21	12	0.011	66	1.170	178
290	0.979	178	0.19	2	0.013	70	1.040	180
300	0.979	178	0.18	8	0.013	78	1.000	179
310	0.979	178	0.17	13	0.013	89	0.975	179
320	0.980	178	0.17	14	0.012	88	0.988	177
330	0.981	177	0.14	9	0.013	80	1.050	177
340	0.982	177	0.16	17	0.015	75	1.110	176
350	0.982	177	0.15	14	0.018	80	1.130	177
360	0.982	177	0.14	8	0.018	82	1.160	177
370	0.982	176	0.12	6	0.017	82	1.120	176
380	0.982	176	0.12	6	0.015	77	1.060	177
390	0.982	176	0.11	9	0.016	72	0.992	177
400	0.982	176	0.10	13	0.018	78	0.958	179
410	0.983	175	0.11	11	0.021	83	1.050	176

WITICH WAT RESULT FROM THE USE OF THESE WATERIALS.

MACOM products are not intended for use in medical, lifesaving or life sustaining applications. MACOM customers using or selling MACOM products for use in such applications do so at their own risk and agree to fully indemnify MACOM for any damages resulting from such improper use or sale.

8

M/A-COM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information.

Rev.	V 1

f	S .	S ₁₁		\$ ₂₁ \$ ₁₂		s	22	
MHz	S ₁₁	∠¢	S ₂₁	$\angle \phi$	S ₁₂	∠¢	S ₂₂	∠¢
420	0.983	175	0.10	15	0.021	87	1.070	175
430	0.983	175	0.10	14	0.019	85	1.090	175
440	0.983	174	0.10	10	0.018	76	1.130	175
450	0.983	174	0.10	9	0.021	71	1.130	176
460	0.982	174	0.08	10	0.024	70	1.080	174
470	0.983	174	0.08	11	0.023	82	0.996	175
480	0.983	174	0.08	15	0.021	90	0.974	176
490	0.983	173	0.08	12	0.019	87	0.971	175
500	0.983	173	0.08	17	0.021	78	1.010	174

Table 2. Common Source S–Parameters (V_{DS} = 28 V, I_D = 0.65 A) (continued)

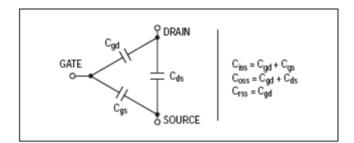
M/A-COM Technology Solutions Inc. All rights reserved.

Information in this document is provided in connection with M/A-COM Technology Solutions Inc ("MACOM") products. These materials are provided by MACOM as a service to its customers and may be used for informational purposes only. Except as provided in MACOM's Terms and Conditions of Sale for such products or in any separate agreement related to this document, MACOM assumes no liability whatsoever. MACOM assumes no responsibility for errors or omissions in these materials. MACOM may make changes to specifications and product descriptions at any time, without notice. MACOM makes no commitment to update the information and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to its specifications and product descriptions. No license, express or implied, by estoppels or otherwise, to any intellectual property rights is granted by this document.

THESE MATERIALS ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF MACOM PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, CONSEQUENTIAL OR INCIDENTAL DAMAGES, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. MACOM FURTHER DOES NOT WARRANT THE ACCURACY OR COMPLETENESS OF THE INFORMATION, TEXT, GRAPHICS OR OTHER ITEMS CONTAINED WITHIN THESE MATERIALS. MACOM SHALL NOT BE LIABLE FOR ANY SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVENUES OR LOST PROFITS, WHICH MAY RESULT FROM THE USE OF THESE MATERIALS.

⁹

M/A-COM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit www.macom.com for additional data sheets and product information.


RF POWER MOSFET CONSIDERATIONS

MOSFET CAPACITANCES

The physical structure of a MOSFET results in capacitors between the terminals. The metal oxide gate structure determines the capacitors from gate-to-drain (C_{gd}), and gate-to-source (C_{gs}). The PN junction formed during the fabrication of the RF MOSFET results in a junction capacitance from drain-to-source (C_{ds}).

These capacitances are characterized as input (C_{iss}), output (C_{oss}) and reverse transfer (C_{rss}) capacitances on data sheets. The relationships between the inter-terminal capacitances and those given on data sheets are shown below. The C_{iss} can be specified in two ways:

- Drain shorted to source and positive voltage at the gate.
- Positive voltage of the drain in respect to source and zero volts at the gate. In the latter case the numbers are lower. However, neither method represents the actual operating conditions in RF applications.

LINEARITY AND GAIN CHARACTERISTICS

In addition to the typical IMD and power gain data presented, Figure 5 may give the designer additional information on the capabilities of this device. The graph represents the small signal unity current gain frequency at a given drain current level. This is equivalent to f_T for bipolar transistors.

Since this test is performed at a fast sweep speed, heating of the device does not occur. Thus, in normal use, the higher temperatures may degrade these characteristics to some extent.

DRAIN CHARACTERISTICS

One figure of merit for a FET is its static resistance in the full-on condition. This on-resistance, $V_{DS(on)}$, occurs in the linear region of the output characteristic and is specified under specific test conditions for gate-source voltage and drain current. For MOSFETs, $V_{DS(on)}$ has a positive temperature coefficient and constitutes an important design consideration at high temperatures, because it contributes to the power dissipation within the device.

GATE CHARACTERISTICS

The gate of the RF MOSFET is a polysilicon material, and is electrically isolated from the source by a layer of oxide. The input resistance is very high — on the order of 10⁹ ohms resulting in a leakage current of a few nanoamperes.

Gate control is achieved by applying a positive voltage slightly in excess of the gate-to-source threshold voltage, V_{GS(th)}.

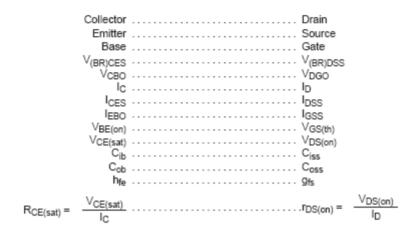
Gate Voltage Rating — Never exceed the gate voltage rating. Exceeding the rated V_{GS} can result in permanent damage to the oxide layer in the gate region.

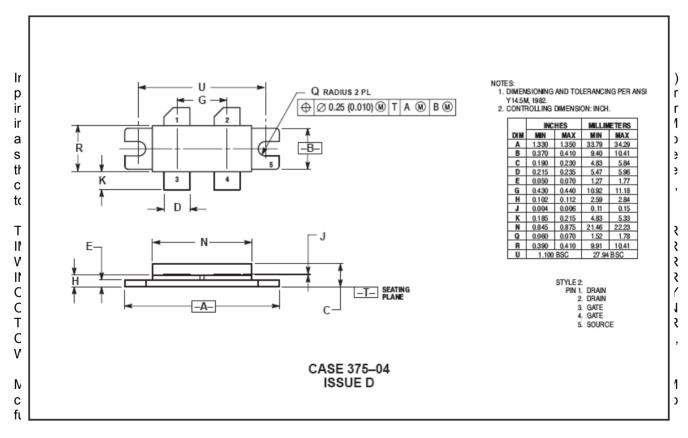
Gate Termination — The gates of these devices are essentially capacitors. Circuits that leave the gate open-circuited or floating should be avoided. These conditions can result in turn-on of the devices due to voltage build-up on the input capacitor due to leakage currents or pickup.

Gate Protection — These devices do not have an internal monolithic zener diode from gate-to-source. If gate protection is required, an external zener diode is recommended.

INCIDENTAL DAMAGES, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. MACOM FURTHER DOES NOT WARRANT THE ACCURACY OR COMPLETENESS OF THE INFORMATION, TEXT, GRAPHICS OR OTHER ITEMS CONTAINED WITHIN THESE MATERIALS. MACOM SHALL NOT BE LIABLE FOR ANY SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVENUES OR LOST PROFITS, WHICH MAY RESULT FROM THE USE OF THESE MATERIALS.

¹⁰


M/A-COM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit www.macom.com for additional data sheets and product information.



Rev. V1

EQUIVALENT TRANSISTOR PARAMETER TERMINOLOGY

PACKAGE DIMENSIONS

11

M/A-COM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information.