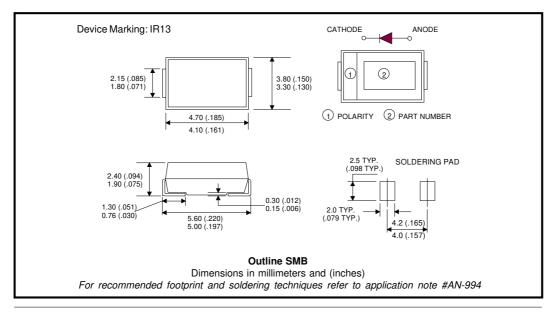

International Rectifier

MBRS130TR

SCHOTTKY RECTIFIER

1 Amp


Major Ratings and Characteristics

Characteristics	MBRS130TR	Units
I _{F(AV)} Rectangular waveform	1.0	Α
V _{RRM}	30	V
I _{FSM} @t _p =5μs sine	230	А
V _F @1.0Apk, T _J =125°C	0.42	V
T _J range	- 55 to 125	°C

Description/ Features

The MBRS130TR surface-mount Schottky rectifier has been designed for applications requiring low forward drop and small foot prints on PC boards. Typical applications are in disk drives, switching power supplies, converters, free-wheeling diodes, battery charging, and reverse battery protection.

- Small foot print, surface mountable
- Very low forward voltage drop
- High frequency operation
- Guard ring for enhanced ruggedness and long term reliability

Voltage Ratings

Part number	MBRS130TR
V _R Max. DC Reverse Voltage (V)	
V _{RWM} Max. Working Peak Reverse Voltage (V)	30

Absolute Maximum Ratings

	Parameters	Value	Units	Conditions	
I _{F(AV)}	Max. Average Forward Current	1.0	Α	50% duty cycle @ $T_L = 147 ^{\circ}\text{C}$,	rectangular wave form
I _{FSM}	Max. Peak One Cycle Non-Repetitive	870	Α	5μs Sine or 3μs Rect. pulse	Following any rated load condition and
	Surge Current	50		10ms Sine or 6ms Rect. pulse	with rated V _{RRM} applied
E _{AS}	Non-Repetitive Avalanche Energy	3.0	mJ	$T_J = 25 ^{\circ}\text{C}, I_{AS} = 1A, L = 6\text{mH}$	
I _{AR}	Repetitive Avalanche Current	1.0	А	Current decaying linearly to zero in 1 μ sec Frequency limited by T_J max. $Va = 1.5 \times Vr$ typical	

Electrical Specifications

	Parameters	Value	Units		Conditions
V_{FM}	Max. Forward Voltage Drop (1)	0.6	V	@ 1A	T ₁ = 25 °C
		0.67	٧	@ 2A	1 _J = 25 0
		0.42	V	@ 1A	T,= 125 °C
		0.52	V	@ 2A	1, 120 0
I _{RM}	Max. Reverse Leakage Current	(1)	0.5	mA	T _J = 25 °C
		5.0	mA	T _J = 100 °C	V _R = rated V _R
		15	mA	T _J = 125 °C	
C _T	Max. Junction Capacitance	200	pF	$V_R = 5V_{DC}$ (test signal range 100KHz to 1Mhz) 25°C	
L _s	Typical Series Inductance	2.0	nH	Measured lead to lead 5mm from package body	
dv/dt	Max. Voltage Rate of Change	10000	V/µs		
	(Rated V _R)				

⁽¹⁾ Pulse Width < 300 μ s, Duty Cycle < 2%

Thermal-Mechanical Specifications

	Parameters	Value	Units	Conditions	
T _J	Max. Junction Temperature Range (*)	-55 to 125	°C		
T _{stg}	Max. Storage Temperature Range	-55 to 150	°C		
R _{thJL}	Max. Thermal Resistance Junction to Lead (**)	25	°C/W	DC operation	
R _{thJA}	Max. Thermal Resistance Junction to Ambient	80	°C/W	DC operation	
wt	Approximate Weight	0.10 (0.003)	g (oz.)		
	Case Style	SMB		Similar to DO-214AA	
	Device Marking	IR13			

 $[\]frac{\text{(*)}}{\text{dTj}} < \frac{\text{dPtot}}{\text{Rth(j-a)}} < \frac{1}{\text{Rth(j-a)}} \text{ thermal runaway condition for a diode on its own heatsink}$

^(**) Mounted 1 inch square PCB

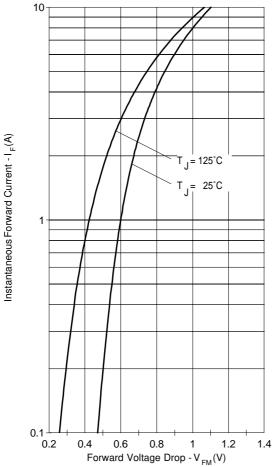


Fig. 1 - Maximum Forward Voltage Drop Characteristics

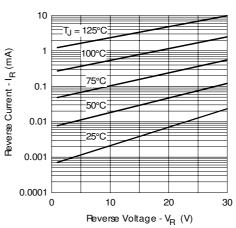


Fig. 2 - Typical Peak Reverse Current Vs. Reverse Voltage

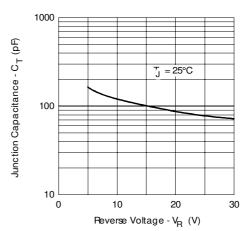


Fig. 3 - Typical Junction Capacitance Vs. Reverse Voltage

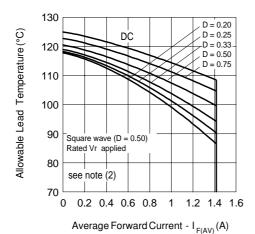


Fig. 4 - Maximum Average Forward Current Vs. Allowable Lead Temperature

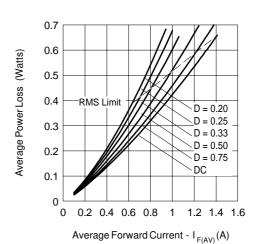


Fig. 5 - Maximum Average Forward Dissipation
Vs. Average Forward Current

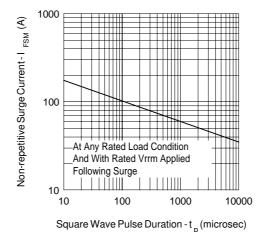
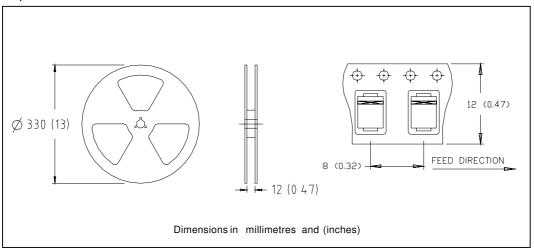
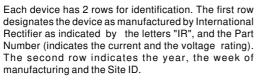
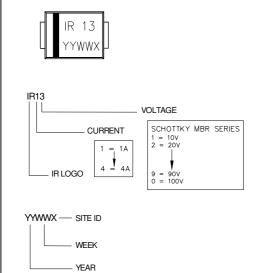



Fig. 6 - Maximum Peak Surge Forward Current Vs. Pulse Duration


(2) Formula used: $T_C = T_J - (Pd + Pd_{REV}) \times R_{thJC}$; $Pd = Forward Power Loss = I_{F(AV)} \times V_{FM} @ (I_{F(AV)}/D)$ (see Fig. 6); $Pd_{REV} = Inverse Power Loss = V_{R1} \times I_R (1 - D); I_R @ V_{R1} = 80\% rated V_R$


Tape & Reel Information

Marking & Identification

Ordering Information

MBRS130TR - TAPE AND REEL

WHEN ORDERING, INDICATE THE PART NUMBER AND THE QUANTITY (IN MULTIPLES OF 3000 PIECES).

EXAMPLE: MBRS130TR - 6000 PIECES

MBRS130TR

Bulletin PD-20584 rev. D 03/03

Data and specifications subject to change without notice. This product has been designed and qualified for Industrial Level.

Qualification Standards can be found on IR's Web site.

International TOR Rectifier

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7309
Visit us at www.irf.com for sales contact information. 03/03