May 2009

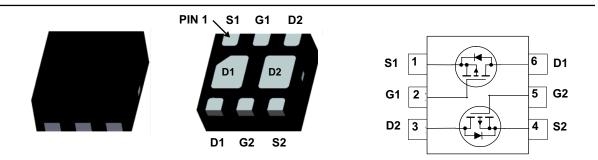
SEMICONDUCTOR®

FDMA1027PT Dual P-Channel PowerTrench[®] MOSFET

–20 V, –3 A, 120 m Ω

Features

- Max $r_{DS(on)}$ = 120 m Ω at V_{GS} = -4.5 V, I_D = -3.0 A
- Max r_{DS(on)} = 160 mΩ at V_{GS} = -2.5 V, I_D = -2.5 A
- Max r_{DS(on)} = 240 mΩ at V_{GS} = -1.8 V, I_D = -1.0 A
- Low profile 0.55 mm maximum in the new package MicroFET 2x2 Thin
- RoHS Compliant
- Free from halogenated compounds and antimony oxides


General Description

This device is designed specifically as a single package solution for the battery charge switch in cellular handset and other ultra-portable applications. It features two independent P-Channel MOSFETs with low on-state resistance for minimum conduction losses. When connected in the typical common source configuration, bi-directional current flow is possible.

The MicroFET 2x2 **Thin** package offers exceptional thermal performance for it's physical size and is well suited to linear mode applications.

Applications

- Battery management
- Load switch
- Battery protection

MicroFET 2X2 Thin

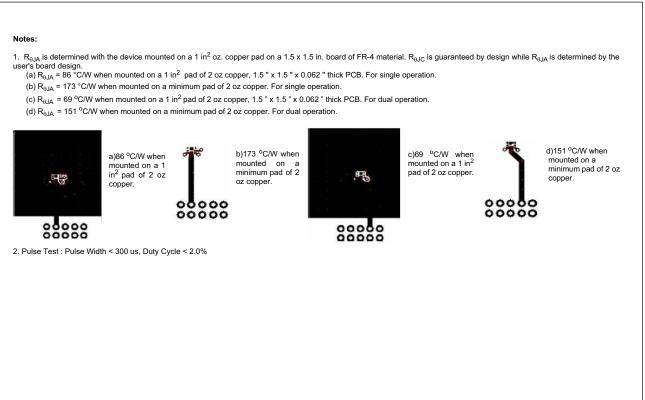
MOSFET Maximum Ratings T_A = 25 °C unless otherwise noted

Symbol	Parameter			Ratings	Units
V _{DS}	Drain to Source Voltage			-20	V
V _{GS}	Gate to Source Voltage			±8	V
ID	Drain Current -Continuous	T _A = 25 °C	(Note 1a)	-3	
	-Pulsed			-6	— A
D	Power Dissipation for Single Operation	T _A = 25 °C	(Note 1a)	1.4	W
PD	Power Dissipation for Single Operation	T _A = 25 °C	(Note 1b)	0.7	vv
T _J , T _{STG}	Operating and Storage Junction Temperat	ure Range		-55 to +150	°C

Thermal Characteristics

R_{\thetaJA}	Thermal Resistance, Junction to Ambient (Single Operation)	(Note 1a)	86	
R_{\thetaJA}	Thermal Resistance, Junction to Ambient (Single Operation)	(Note 1b)	173	°C/W
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient (Dual Operation)	(Note 1c)	69	0.00
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient (Dual Operation)	(Note 1d)	151	

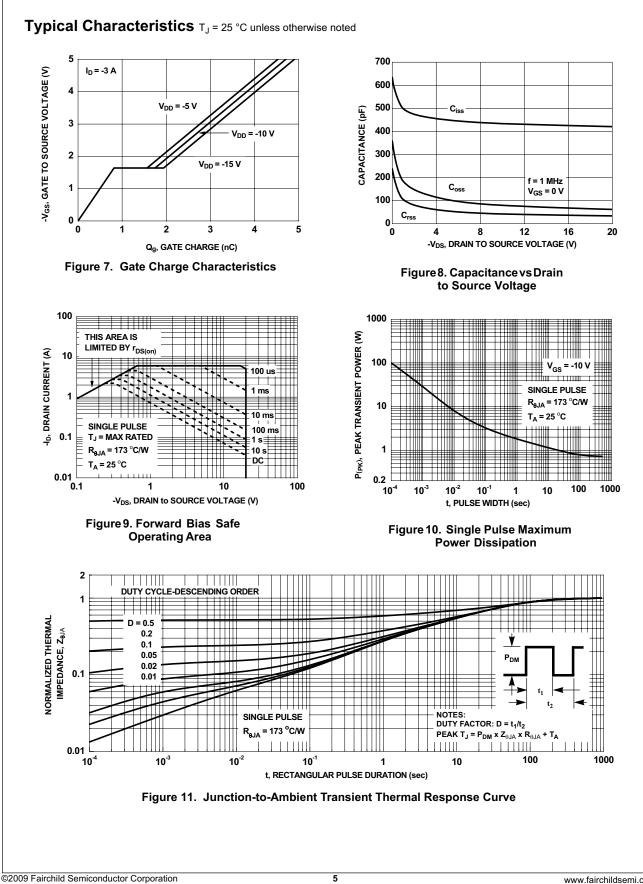
Package Marking and Ordering Information

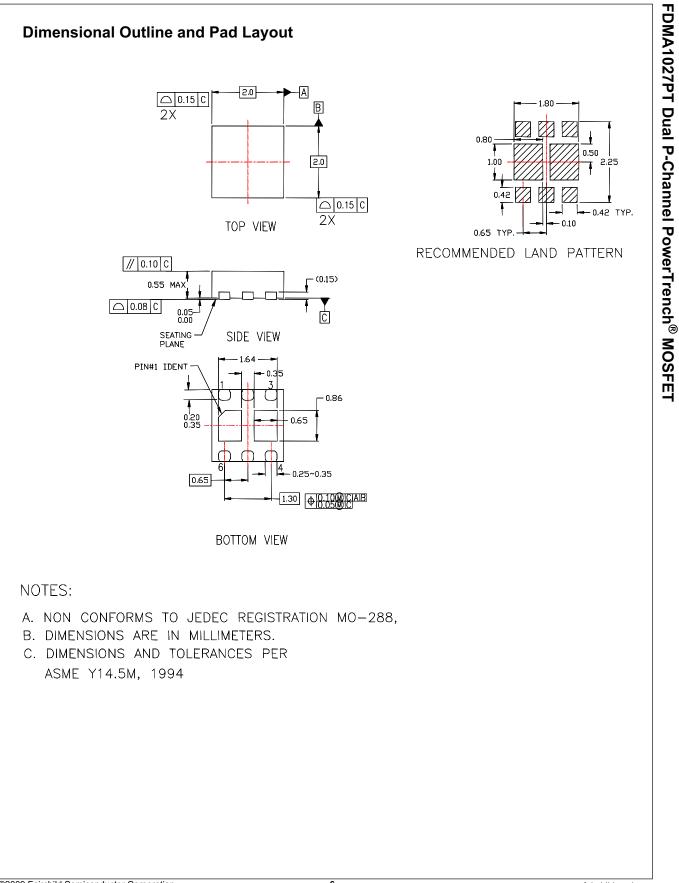

Device Marking	Device	Package	Reel Size	Tape Width	Quantity
27	FDMA1027PT	MicroFET 2x2 Thin	7 "	8 mm	3000 units

©2009 Fairchild Semiconductor Corporation FDMA1027PT Rev.B4

www.fairchildsemi.com

Symbol	Parameter	Test Conditions	Min	Тур	Max	Units
Off Chara	octeristics					
BV _{DSS}	Drain to Source Breakdown Voltage	I _D = -250 μA, V _{GS} = 0 V	-20			V
$\frac{\Delta BV_{DSS}}{\Delta T_J}$	Breakdown Voltage Temperature Coefficient	$I_D = -250 \ \mu$ A, referenced to 25 °C		-12		mV/°C
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} = -16 V, V _{GS} = 0 V			-1	μA
I _{GSS}	Gate to Source Leakage Current	V _{GS} = ±8 V, V _{DS} = 0 V			±100	nA
On Chara	cteristics					
V _{GS(th)}	Gate to Source Threshold Voltage	V _{GS} = V _{DS} , I _D = -250 μA	-0.4	-0.7	-1.3	V
$\frac{\Delta V_{GS(th)}}{\Delta T_J}$	Gate to Source Threshold Voltage Temperature Coefficient	$I_D = -250 \ \mu$ A, referenced to 25 °C		2		mV/°C
		V _{GS} = -4.5 V, I _D = -3.0 A		90	120	
		$V_{GS} = -2.5 \text{ V}, I_D = -2.5 \text{ A}$		120	160	
	Drain to Source On Resistance	V _{GS} = -1.8 V, I _D = -1.0 A		172	240	mΩ
		$V_{GS} = -4.5 \text{ V}, \ \text{I}_{D} = -3.0 \text{ A},$	118 160			
		T _J = 125 °C				
I _{D(on)}	On to State Drain Current	$V_{\rm GS} = -4.5 \text{ V}, V_{\rm DS} = -5 \text{ V}$	-20			A
9 _{FS}	Forward Transconductance	0	-20	7		A S
Dynamic C _{iss} C _{oss}	Forward Transconductance Characteristics Input Capacitance Output Capacitance	V _{GS} = -4.5 V, V _{DS} = -5 V	-20	435 80		S pF pF
9fs	Forward Transconductance Characteristics Input Capacitance	$V_{GS} = -4.5 V, V_{DS} = -5 V$ $V_{DS} = -5 V, I_D = -3.0 A$	-20	435		S pF
g _{FS} Dynamic C _{iss} C _{oss} C _{rss}	Forward Transconductance Characteristics Input Capacitance Output Capacitance	$V_{GS} = -4.5 V, V_{DS} = -5 V$ $V_{DS} = -5 V, I_D = -3.0 A$	-20	435 80		S pF pF
9 _{FS} Dynamic C _{iss} C _{oss} C _{rss} Switching	Forward Transconductance Characteristics Input Capacitance Output Capacitance Reverse Transfer Capacitance	$V_{GS} = -4.5 V, V_{DS} = -5 V$ $V_{DS} = -5 V, I_D = -3.0 A$	-20	435 80	18	S pF pF
9 _{FS} Dynamic C _{iss} C _{oss} C _{rss} Switching	Forward Transconductance Characteristics Input Capacitance Output Capacitance Reverse Transfer Capacitance Characteristics	$V_{GS} = -4.5 \text{ V}, V_{DS} = -5 \text{ V}$ $V_{DS} = -5 \text{ V}, I_D = -3.0 \text{ A}$ $V_{DS} = -10 \text{ V}, V_{GS} = 0 \text{ V},$ $f = 1 \text{ MHz}$ $V_{DD} = -10 \text{ V}, I_D = -1.0 \text{ A}$	-20	435 80 45	18	S pF pF
9 _{FS} Dynamic C _{iss} C _{oss} C _{rss} Switching t _{d(on)} t _r	Forward Transconductance Characteristics Input Capacitance Output Capacitance Reverse Transfer Capacitance g Characteristics Turn-On Delay Time	$V_{GS} = -4.5 \text{ V}, V_{DS} = -5 \text{ V}$ $V_{DS} = -5 \text{ V}, I_D = -3.0 \text{ A}$ $-V_{DS} = -10 \text{ V}, V_{GS} = 0 \text{ V},$ $f = 1 \text{ MHz}$	-20	435 80 45 9	-	S pF pF pF
9 _{FS} Dynamic C _{iss} C _{oss} C _{rss} Switching t _{d(on)} t _r t _{d(off)}	Forward Transconductance Characteristics Input Capacitance Output Capacitance Reverse Transfer Capacitance g Characteristics Turn-On Delay Time Rise Time	$V_{GS} = -4.5 \text{ V}, V_{DS} = -5 \text{ V}$ $V_{DS} = -5 \text{ V}, I_D = -3.0 \text{ A}$ $V_{DS} = -10 \text{ V}, V_{GS} = 0 \text{ V},$ $f = 1 \text{ MHz}$ $V_{DD} = -10 \text{ V}, I_D = -1.0 \text{ A}$	-20	435 80 45 9 11	19	S pF pF pF ns
9 _{FS} Dynamic C _{iss} C _{oss} C _{rss} Switching t _{d(on)} t _r t _{d(off)} t _f	Forward Transconductance Characteristics Input Capacitance Output Capacitance Reverse Transfer Capacitance g Characteristics Turn-On Delay Time Rise Time Turn-Off Delay Time	$V_{GS} = -4.5 \text{ V}, V_{DS} = -5 \text{ V}$ $V_{DS} = -5 \text{ V}, I_D = -3.0 \text{ A}$ $V_{DS} = -10 \text{ V}, V_{GS} = 0 \text{ V},$ $f = 1 \text{ MHz}$ $V_{DD} = -10 \text{ V}, I_D = -1.0 \text{ A}$ $V_{GS} = -4.5 \text{ V}, R_{GEN} = 6 \Omega$	-20	435 80 45 9 11 15	19 27	S pF pF pF ns ns
$\frac{g_{FS}}{Dynamic}$ C_{iss} C_{rss} $Switching$ $\frac{t_{d(on)}}{t_r}$ $t_{d(off)}$ t_{f} Q_g	Forward Transconductance Characteristics Input Capacitance Output Capacitance Reverse Transfer Capacitance g Characteristics Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time	$V_{GS} = -4.5 \text{ V}, V_{DS} = -5 \text{ V}$ $V_{DS} = -5 \text{ V}, I_D = -3.0 \text{ A}$ $-V_{DS} = -10 \text{ V}, V_{GS} = 0 \text{ V},$ $f = 1 \text{ MHz}$ $-V_{DD} = -10 \text{ V}, I_D = -1.0 \text{ A}$ $V_{GS} = -4.5 \text{ V}, R_{GEN} = 6 \Omega$ $-V_{DD} = -10 \text{ V}, I_D = -3.0 \text{ A}$	-20	435 80 45 9 11 15 6	19 27 12	S pF pF pF ns ns ns ns
gFS Dynamic C _{iss} C _{oss} C _{rss} Switching t _{d(on)} t _r t _{d(off)} t _f Q _g	Forward Transconductance Characteristics Input Capacitance Output Capacitance Reverse Transfer Capacitance g Characteristics Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Total Gate Charge	$V_{GS} = -4.5 \text{ V}, V_{DS} = -5 \text{ V}$ $V_{DS} = -5 \text{ V}, I_D = -3.0 \text{ A}$ $V_{DS} = -10 \text{ V}, V_{GS} = 0 \text{ V},$ $f = 1 \text{ MHz}$ $V_{DD} = -10 \text{ V}, I_D = -1.0 \text{ A}$ $V_{GS} = -4.5 \text{ V}, R_{GEN} = 6 \Omega$	-20	435 80 45 9 11 15 6 4	19 27 12	S pF pF pF ns ns ns ns ns
gFS Dynamic Ciss Coss Crss Switching td(on) tr td(off) tf Qg Qg Qg Qgd	Forward Transconductance Characteristics Input Capacitance Output Capacitance Reverse Transfer Capacitance g Characteristics Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Total Gate Charge Gate to Source Gate Charge Gate to Drain "Miller" Charge	$V_{GS} = -4.5 \text{ V}, V_{DS} = -5 \text{ V}$ $V_{DS} = -5 \text{ V}, I_D = -3.0 \text{ A}$ $-V_{DS} = -10 \text{ V}, V_{GS} = 0 \text{ V},$ $f = 1 \text{ MHz}$ $-V_{DD} = -10 \text{ V}, I_D = -1.0 \text{ A}$ $V_{GS} = -4.5 \text{ V}, R_{GEN} = 6 \Omega$ $-V_{DD} = -10 \text{ V}, I_D = -3.0 \text{ A}$	-20	435 80 45 9 11 15 6 4 0.8	19 27 12	S pF pF pF ns ns ns nc nC
$\begin{array}{c} \underline{g}_{FS} \\ \hline \mathbf{Dynamic} \\ \hline C_{iss} \\ \hline C_{rss} \\ \hline \mathbf{C}_{rss} \\ \hline \mathbf{Switching} \\ \hline \mathbf{Switching} \\ \hline \mathbf{Switching} \\ \hline \mathbf{t}_{d(on)} \\ \hline \mathbf{t}_{r} \\ \hline \mathbf{t}_{d(off)} \\ \hline \mathbf{t}_{f} \\ \hline \mathbf{Q}_{g} \\ \hline \mathbf{Q}_{gs} \\ \hline \mathbf{Q}_{gd} \\ \hline \hline \mathbf{Drain-Sou} \end{array}$	Forward Transconductance Characteristics Input Capacitance Output Capacitance Reverse Transfer Capacitance g Characteristics Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Total Gate Charge Gate to Source Gate Charge Gate to Drain "Miller" Charge urce Diode Characteristics	$V_{GS} = -4.5 \text{ V}, V_{DS} = -5 \text{ V}$ $V_{DS} = -5 \text{ V}, I_D = -3.0 \text{ A}$ $V_{DS} = -10 \text{ V}, V_{GS} = 0 \text{ V},$ $f = 1 \text{ MHz}$ $V_{DD} = -10 \text{ V}, I_D = -1.0 \text{ A}$ $V_{GS} = -4.5 \text{ V}, R_{GEN} = 6 \Omega$ $V_{DD} = -10 \text{ V}, I_D = -3.0 \text{ A}$ $V_{GS} = -4.5 \text{ V}$	-20	435 80 45 9 11 15 6 4 0.8	19 27 12 6	S pF pF pF ns ns ns nc nC nC
9FS Dynamic Ciss Coss Crss Switching td(on) tr dqg Qg Qgd Drain-Sou Is	Forward Transconductance Characteristics Input Capacitance Output Capacitance Reverse Transfer Capacitance g Characteristics Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Total Gate Charge Gate to Source Gate Charge Gate to Drain "Miller" Charge Urce Diode Characteristics Maximum continuous Source-Drain Diode	$V_{GS} = -4.5 \text{ V}, V_{DS} = -5 \text{ V}$ $V_{DS} = -5 \text{ V}, I_D = -3.0 \text{ A}$ $V_{DS} = -10 \text{ V}, V_{GS} = 0 \text{ V},$ $f = 1 \text{ MHz}$ $V_{DD} = -10 \text{ V}, I_D = -1.0 \text{ A}$ $V_{GS} = -4.5 \text{ V}, R_{GEN} = 6 \Omega$ $V_{DD} = -10 \text{ V}, I_D = -3.0 \text{ A}$ $V_{GS} = -4.5 \text{ V}$ Forward Current	-20	435 80 45 9 11 15 6 4 0.8 0.9	19 27 12 6 -1.1	S pF pF pF ns ns ns nc nC
$\frac{g_{FS}}{Dynamic} \\ C_{iss} \\ C_{css} \\ C_{rss} \\ \hline \\ \frac{b_{d(on)}}{b_{d(off)}} \\ t_{d(off)} \\ t_{f} \\ Q_{g} \\ Q_{gs} \\ Q_{gd} \\ \hline \\ Q_{gd} \\ \hline \\ Q_{gd} \\ \hline \\ \\ \\ Q_{gd} \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	Forward Transconductance Characteristics Input Capacitance Output Capacitance Reverse Transfer Capacitance g Characteristics Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Total Gate Charge Gate to Source Gate Charge Gate to Drain "Miller" Charge urce Diode Characteristics	$V_{GS} = -4.5 \text{ V}, V_{DS} = -5 \text{ V}$ $V_{DS} = -5 \text{ V}, I_D = -3.0 \text{ A}$ $V_{DS} = -10 \text{ V}, V_{GS} = 0 \text{ V},$ $f = 1 \text{ MHz}$ $V_{DD} = -10 \text{ V}, I_D = -1.0 \text{ A}$ $V_{GS} = -4.5 \text{ V}, R_{GEN} = 6 \Omega$ $V_{DD} = -10 \text{ V}, I_D = -3.0 \text{ A}$ $V_{GS} = -4.5 \text{ V}$	-20	435 80 45 9 11 15 6 4 0.8	19 27 12 6	S pF pF pF ns ns ns nC nC nC


©2009 Fairchild Semiconductor Corporation FDMA1027PT Rev.B4


Typical Characteristics T_J = 25 °C unless otherwise noted 6 3.0 = -4.5 V NORMALIZED DRAIN TO SOURCE ON-RESISTANCE PULSE DURATION = 300 µs 100 5 DUTY CYCLE = 2%MAX H_D, DRAIN CURRENT (A) 2.5 V_{GS} = -2 V -3.5 4 -2 V V_{GS} 2.0 V_{GS} = -1.8 V 3 V_{GS} = -3 V V_{GS} = -2.5 V 1.5 V_{GS} = -2.5 V 2 1.0 V_{GS} = -1.5 V 1 PULSE DURATION = 300 µs - - 3 V V_{GS} -3.5 V V_{GS} = -4.5 V V_{GS} DUTY CYCLE = 2% MAX 0 0.5 0 0.5 1.0 1.5 2.0 2.5 0 2 3 4 5 6 -ID, DRAIN CURRENT (A) -V_{DS}, DRAIN TO SOURCE VOLTAGE (V) Figure 2. Normalized On-Resistance Figure 1. On Region Characteristics vs Drain Current and Gate Voltage 1.4 0.28 I_D = -3 A NORMALIZED DRAIN TO SOURCE ON-RESISTANCE PULSE DURATION = 300 µs V_{GS} = -4.5 V DUTY CYCLE = 2% MAX 1.3 I_D = -1.5 A r_{DS(on)}, DRAIN TO 1.2 1.1 T_J = 125 °C 1.0 0.9 T_J = 25 °C 0.8 0.04 , -50 -25 100 125 150 0 25 50 75 0 2 4 6 8 10 TJ, JUNCTION TEMPERATURE (°C) -VGS, GATE TO SOURCE VOLTAGE (V) Figure 3. Normalized On Resistance Figure 4. On-Resistance vs Gate to Source Voltage vs Junction Temperature 6 10 PULSE DURATION = 300 μs DUTY CYCLE = 2% MAX Hs, REVERSE DRAIN CURRENT (A) $V_{GS} = 0 V$ 5 1 -I_D, DRAIN CURRENT (A) V_{DS} = -5 V T_J = 125 °C 4 0.1 3 T_J = 25 °C 0.01 2 T_J = 125 °C T_J = 25 °C 0.001 T_ = -55 °C 1 T_J = -55 °C 0 0.0001 0.5 2.5 0 1.0 1.5 2.0 0.2 0.4 0.6 0.8 1.0 1.2 -VSD, BODY DIODE FORWARD VOLTAGE (V) -VGS, GATE TO SOURCE VOLTAGE (V) Figure 5. Transfer Characteristics Figure 6. Source to Drain Diode Forward Voltage vs Source Current

FDMA1027PT Dual P-Channel PowerTrench[®] MOSFET

©2009 Fairchild Semiconductor Corporation FDMA1027PT Rev.B4 www.fairchildsemi.com

FDMA1027PT Dual P-Channel PowerTrench[®] MOSFET

©2009 Fairchild Semiconductor Corporation FDMA1027PT Rev.B4

www.fairchildsemi.com

SEMICONDUCTOR

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

Auto-SPM™	F-PFS™	PowerTrench [®]	The Power Franchise [®]
Build it Now™	FRFET®	PowerXS™	
CorePLUS™	Global Power Resource SM	Programmable Active Droop™	puwer [®]
CorePOWER™	Green FPS™	QFET®	franchise
CROSSVOLT™	Green FPS™ e-Series™	QS™	TinyBoost™
CTL™	G <i>max</i> ™	Quiet Series™	TinyBuck™
Current Transfer Logic™	GTO™	RapidConfigure™	TinyLogic [®]
EcoSPARK [®]	IntelliMAX™		TINYOPTO™
EfficentMax™	ISOPLANAR™		TinyPower™
EZSWITCH™ *	MegaBuck™	Saving our world, 1mW /W /kW at a time™	TinyPWM™
TM +	MICROCOUPLER™	SmartMax™	TinyWire™
	MicroFET™	SMART START™	TriFault Detect™
	MicroPak™	SPM®	TRUECURRENT™*
+	MillerDrive™	STEALTH™	µSerDes™
Fairchild [®]	MotionMax™	SuperFET™	
Fairchild Semiconductor [®]	Motion-SPM™	SuperSOT™-3	SerDes
FACT Quiet Series™	OPTOLOGIC®	SuperSOT™-6	UHC®
FACT [®]	OPTOPLANAR®	SuperSOT™-8	Ultra FRFET™
FAST®	®	SupreMOS™	UniFET™
FastvCore™		SyncFET™	VCX™
FETBench™		Sync-Lock™	VisualMax™
FlashWriter [®] *	PDP SPM™		XS™
FPS™	Power-SPM™		
-		GENERAL	
*Trademarks of System General Cor	poration, used under license by Fairchild	Semiconductor.	

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

- 1 Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- 2 A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.Fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufactures of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed application, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handing and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address and warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS **Definition of Terms**

©2009 Fairchild Semiconductor Corporation

FDMA1027PT Rev.B4

Datasheet Identification	Product Status	Definition
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.
		Rev