

TPS22914/15EVM-078 2A Load Switch IC

The TPS22914/15EVM-078 evaluation module (EVM) allows the user to connect power to and control the 4-pin YFP package load switch. Parameters such as the On-Resistance, rise time and output pull-down resistance can be easily evaluated. Table 1 lists a short description of the TPS22914/15 load switch performance specifications; for additional details on load switch performance, application notes, and the datasheet see www.ti.com/loadswitch.

Table 1. TPS22914/15 Rise Time, Output Current Rating, Enable, and Output Discharge Characteristics

EVM	Device	Rise Time Typical	VIN (V)	Maximum Continuous Current	Enable (ON Pin)	Quick Output Discharge
HVL078-001	TPS22915B	60µs	3.3	2A	Active High	Yes
HVL078-002	TPS22914B	60µs	3.3	2A	Active High	No
HVL078-003	TPS22915C	1000µs	3.3	2A	Active High	Yes
HVL078-004	TPS22914C	1000µs	3.3	2A	Active HIgh	No

Contents

1	Introduction				
	1.1 Description	2			
	1.2 Features	2			
2	Electrical Performance	2			
3	Schematic	2			
4	Layout				
	4.1 Setup				
5	Operation				
6	Test Configurations				
	6.1 On-Resistance (RON) Test Setup	6			
	6.2 Slew Rate Test Setup	7			
	6.3 VOUT Slew Rate Example				
7	Bill of Materials (BOM)				

List of Figures

1	TPS22914/15EVM-078 Schematic	2
	TPS22914/15EVM-078 Top Assembly	
3	TPS22914/15EVM-078 Top Layout	3
4	TPS22914/15EVM-078 Bottom Layout	4
5	R _{on} Setup	6
6	Slew Rate Setup	7
7	TPS22914/15 Vout t _R Example (V _{IN} = 3.3V, R _L = 10 Ω)	8

List of Tables

1	TPS22914/15 Rise Time, Output Current Rating, Enable, and Output Discharge Characteristics	1
2	Bill of Materials TPS22914/15EVM	9

1 Introduction

1.1 Description

The TPS22914/15EVM is a two sided PCB containing the TPS22914/15 load switch device. The VIN and VOUT connections to the device and the PCB layout routing are capable of handling high continuous currents and provide a low resistance pathway into and out of the device under test. Test point connections allow the EVM User to control the device with user defined test conditions and make accurate R_{ON} measurements.

1.2 Features

- VIN input voltage range: 1.05 V to 5.5 V.
- EVM allows access to the VIN, VOUT, GND, and ON pin of the TPS22914/15 Load Switch Device.
- On board C_{IN} and C_{OUT} capacitors.
- 2 A max continuous current operation.
- 24 mm² Load Switch solution size sampled on this EVM.

2 Electrical Performance

Refer to the datasheet SLVSCO0 for detailed electrical characteristics of the TPS22914/15.

3 Schematic

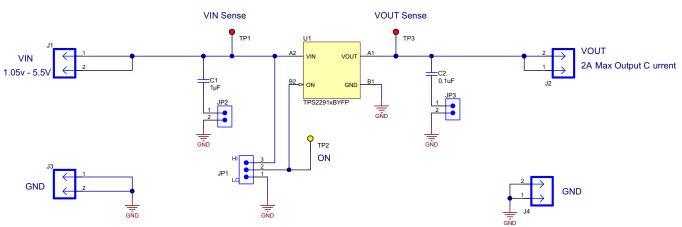


Figure 1. TPS22914/15EVM-078 Schematic

4 Layout

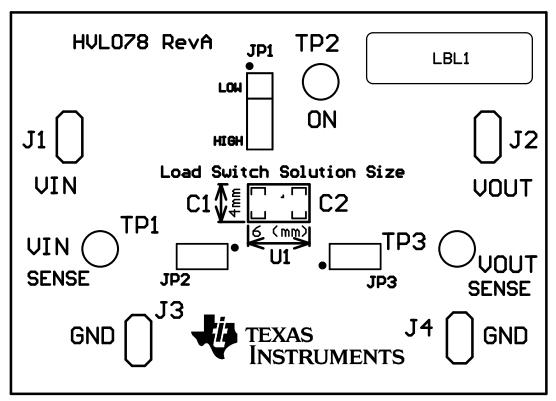
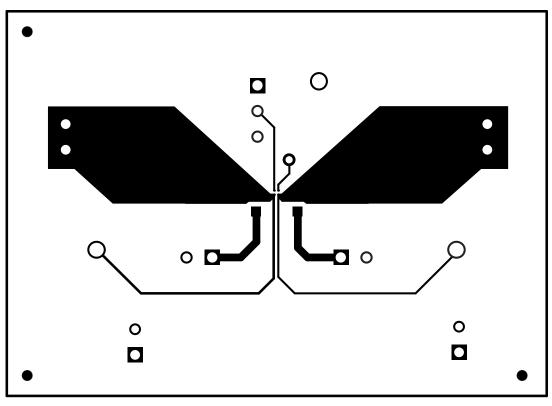



Figure 2. TPS22914/15EVM-078 Top Assembly

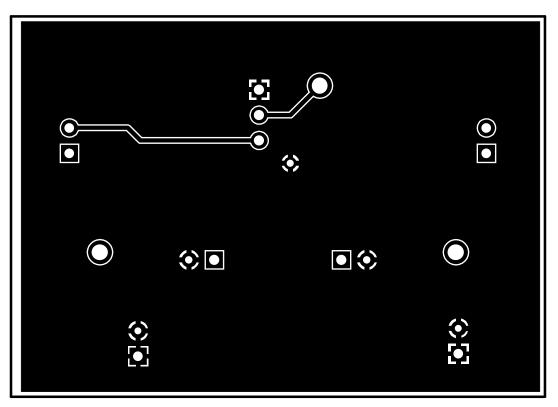


Figure 4. TPS22914/15EVM-078 Bottom Layout

4.1 Setup

This section describes the jumpers and connectors on the EVM as well as how to properly connect, set up, and use the EVM.

4.1.1 J1 – Input Connection

This is the connection for the leads from the input source. Connect the positive lead to J1-1 or 2 (+) terminals and the negative lead to J3-1 or 2 (-) terminals (GND).

4.1.2 J2 – Output Connection

This is the connection for the output of the EVM. Connect the positive lead to J2-1 or 2 (+) terminals and the negative lead to J4-1or 2 (-) terminals (GND).

4.1.3 JP1 – ON

4

This is the enable input for the device. A shorting jumper must be installed on JP3 in either the High or Low position. The TPS22914/15 is active High. ON must not be left floating. An external enable source can be applied to the EVM by removing the shunt and connecting a signal to TP2. Refer to the datasheet for proper ON and OFF voltage level settings. A switching signal may also be used and connected at this point.

4.1.4 TP1 - VIN Sense, TP3 - VOUT Sense

These two connections are used when very accurate measurements of the input or output are required. RON measurements should be made using these sense connections when measuring the voltage drop from VIN to VOUT to calculate the resistance.

4.1.5 JP2 - Input Capacitor

During normal operation a shorting jumper is placed on JP2 this connects C1 capacitor from the input of the device to ground. Refer to the Applications Section of the Datasheet for additional information on selecting the input capacitor.

4.1.6 JP3 - Output Capacitor

During normal operation a shorting jumper is placed on JP3 this connects C2 capacitor from the output of the device to ground. Refer to the Applications Section of the Datasheet for additional information on selecting the output capacitor.

4.1.7 J3-J4 – GND

These are connections to GND.

5 Operation

Connect the positive input of the VIN power supply to VIN at J1. Connect the negative lead of the power supply to GND at J3. The input voltage range of the TPS22914/15EVM-078 is 1.05 V to 5.5 V.

External output loads can be applied to the switch by using J2 VOUT and J4 GND. The TPS22914/15EVM-078 is rated for a maximum continuous current of 2A. Configure JP1 as required. JP1 must be installed for proper operation. When the ON pin is asserted high, the output of the TPS22914/15 will be enabled.

6 Test Configurations

6.1 On-Resistance (RON) Test Setup

Figure 5 shows a typical setup for measuring On-Resistance. The voltage drop across the switch is measured using the sense connections then divided by the current into the load yielding the R_{ON} resistance.

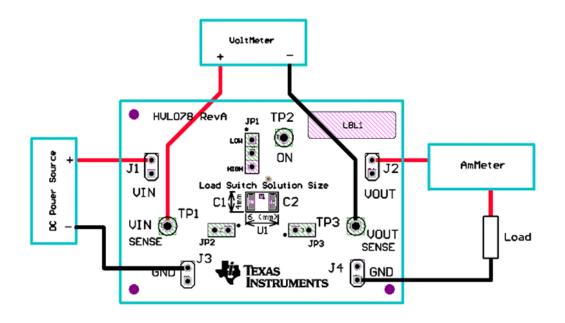


Figure 5. R_{ON} Setup

6.2 Slew Rate Test Setup

Figure 6 shows a test setup for measuring the Slew Rate of the Load Switch. Apply a square wave to the ON pin of the switch using a function generator and apply a voltage to the VIN terminal using a power supply. Observe waveform at VOUT with a scope to measure the slew rate and rise time of the switch with a given input voltage.

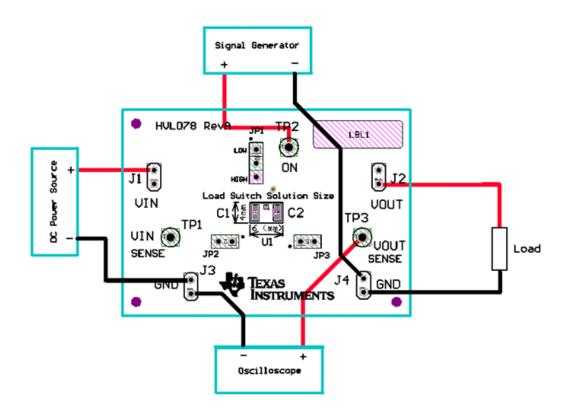


Figure 6. Slew Rate Setup

7

Test Configurations

Test Configurations

www.ti.com

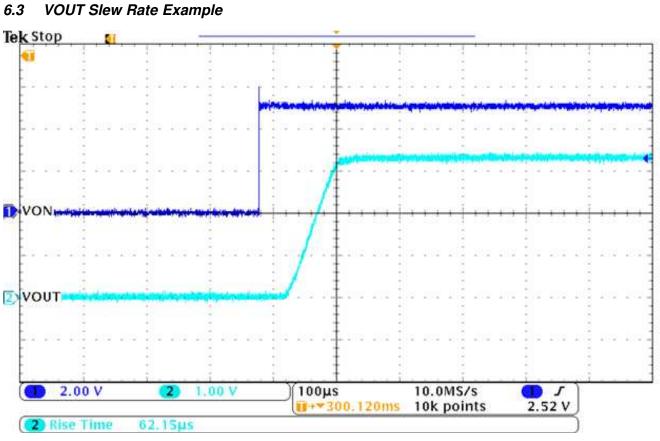


Figure 7. TPS22914/15 Vout t_R Example (V_{IN} = 3.3V, R_L = 10 Ω)

7 Bill of Materials (BOM)

Qty	Designator	Value	Description	Package Reference	Manufacturer	Part Number
1	!PCB1		Printed Circuit Board		Any	HVL078
1	C1	1uF	CAP, CERM, 1uF, 25V, +/-10%, X7R, 0603	0603	MuRata	GRM188R71E105KA12D
1	C2	0.1uF	CAP, CERM, 0.1uF, 100V, +/-10%, X7R, 0603	0603	MuRata	GRM188R72A104KA35D
4	J1, J2, J3, J4	PEC02S AAN	Header, Male 2-pin, 100mil spacing,	0.100 inch x 2	Sullins	PEC02SAAN
1	JP1		Header, 100mil, 3x1, Tin plated, TH	Header, 3 PIN, 100mil, Tin	Sullins Connector Solutions	PEC03SAAN
2	JP2, JP3		Header, 100mil, 2x1, Tin plated, TH	Header, 2 PIN, 100mil, Tin	Sullins Connector Solutions	PEC02SAAN
1	LBL1		Thermal Transfer Printable Labels, 0.650" W x 0.200" H - 10,000 per roll	PCB Label 0.650"H x 0.200"W	Brady	THT-14-423-10
3	SH-J1, SH-J2, SH-J3	1x2	Shunt, 100mil, Gold plated, Black	Shunt	3M, alternate: Samtec	969102-0000-DA, alternate: SNT- 100-BK-G
2	TP1, TP3	Red	Test Point, Multipurpose, Red, TH	Red Multipurpose Testpoint	Keystone	5010
1	TP2	Yellow	Test Point, Multipurpose, Yellow, TH	Yellow Multipurpose Testpoint	Keystone	5014
1	U1		Single Channel Ultra-Low Resistnace Load Switch	YFP0004ABAB	Texas Instruments	TPS22915BYFP
1	U1		Single Channel Ultra-Low Resistnace Load Switch	YFP0004ABAB	Texas Instruments	TPS22914BYFP
1	U1		Single Channel Ultra-Low Resistnace Load Switch	YFP0004ABAB	Texas Instruments	TPS22915CYFP
1	U1		Single Channel Ultra-Low Resistnace Load Switch	YFP0004ABAB	Texas Instruments	TPS22914CYFP
0	FID1, FID2, FID3		Fiducial mark. There is nothing to buy or mount.	Fiducial	N/A	N/A

Table 2. Bill of Materials TPS22914/15EVM

Revision History

www.ti.com

Revision History

Cł	nanges from A Revision (July 2014) to B Revision Pa	age
•	Added TPS22914C and TPS22915C to document.	. 1

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products Audio	www.ti.com/audio	Applications Automotive and Transportation	www.ti.com/automotive
Amplifiers	amplifier.ti.com	Communications and Telecom	www.ti.com/communications
Data Converters	dataconverter.ti.com	Computers and Peripherals	www.ti.com/computers
DLP® Products	www.dlp.com	Consumer Electronics	www.ti.com/consumer-apps
DSP	dsp.ti.com	Energy and Lighting	www.ti.com/energy
Clocks and Timers	www.ti.com/clocks	Industrial	www.ti.com/industrial
Interface	interface.ti.com	Medical	www.ti.com/medical
Logic	logic.ti.com	Security	www.ti.com/security
Power Mgmt	power.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video
RFID	www.ti-rfid.com		
OMAP Applications Processors	www.ti.com/omap	TI E2E Community	e2e.ti.com
Wireless Connectivity	www.ti.com/wirelessconne	ctivity	

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2014, Texas Instruments Incorporated