

August 2012

LM78XX/LM78XXA 3-Terminal 1A Positive Voltage Regulator

Features

- Output Current up to 1A
- Output Voltages of 5, 6, 8, 9, 10, 12, 15, 18, 24
- Thermal Overload Protection
- Short Circuit Protection
- Output Transistor Safe Operating Area Protection

General Description

The LM78XX series of three terminal positive regulators are available in the TO-220 package and with several fixed output voltages, making them useful in a wide range of applications. Each type employs internal current limiting, thermal shut down and safe operating area protection, making it essentially indestructible. If adequate heat sinking is provided, they can deliver over 1A output current. Although designed primarily as fixed voltage regulators, these devices can be used with external components to obtain adjustable voltages and currents.

Ordering Information

Product Number	Output Voltage Tolerance	Package	Operating Temperature
LM7805CT	±4%	TO-220 (Single Gauge)	-40°C to +125°C
LM7806CT			
LM7808CT			
LM7809CT			
LM7810CT			
LM7812CT			
LM7815CT			
LM7818CT			
LM7824CT			
LM7805ACT	±2%		0°C to +125°C
LM7806ACT			
LM7808ACT			
LM7809ACT			
LM7810ACT			
LM7812ACT			
LM7815ACT			
LM7818ACT			
LM7824ACT			

Block Diagram

Figure 1.

Pin Assignment

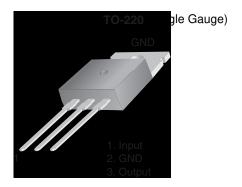


Figure 2.

Absolute Maximum Ratings

Absolute maximum ratings are those values beyond which damage to the device may occur. The datasheet specifications should be met, without exception, to ensure that the system design is reliable over its power supply, temperature, and output/input loading variables. Fairchild does not recommend operation outside datasheet specifications.

Symbol	Parar	neter	Value	Unit
VI	Input Voltage	V _O = 5V to 18V	35	V
		V _O = 24V 40		V
$R_{ heta JC}$	Thermal Resistance Juncti	on-Cases (TO-220)	5	°C/W
$R_{ heta JA}$	Thermal Resistance Juncti	on-Air (TO-220)	65	°C/W
T _{OPR}	Operating Temperature	LM78xx	-40 to +125	°C
	Range	LM78xxA	0 to +125	
T _{STG}	Storage Temperature Rang	je	-65 to +150	°C

Electrical Characteristics (LM7805)

Refer to the test circuits. -40°C < T_J < 125°C, I_O = 500mA, V_I = 10V, C_I = 0.1 μ F, unless otherwise specified.

Symbol	Parameter	(Conditions	Min.	Тур.	Max.	Unit
Vo	Output Voltage	$T_J = +25^{\circ}C$		4.8	5.0	5.2	V
			$5\text{mA} \le I_{\text{O}} \le 1\text{A}, P_{\text{O}} \le 15\text{W},$ $V_{\text{I}} = 7\text{V to } 20\text{V}$		5.0	5.25	
Regline	Line Regulation ⁽¹⁾	$T_J = +25^{\circ}C$	V _O = 7V to 25V	_	4.0	100	mV
			V _I = 8V to 12V	_	1.6	50.0	
Regload	Load Regulation ⁽¹⁾	$T_J = +25^{\circ}C$	$I_O = 5$ mA to 1.5A	_	9.0	100	mV
			I _O = 250mA to 750mA	_	4.0	50.0	
IQ	Quiescent Current	$T_J = +25^{\circ}C$		_	5.0	8.0	mA
ΔI_Q	Quiescent Current Change	$I_O = 5mA$ to	1A	_	0.03	0.5	mA
		$V_{I} = 7V \text{ to } 25$	5V	_	0.3	1.3	
$\Delta V_{O}/\Delta T$	Output Voltage Drift ⁽²⁾	$I_O = 5mA$		_	-0.8	_	mV/°C
V _N	Output Noise Voltage	f = 10Hz to 1	00kHz, T _A = +25°C	_	42.0	_	μV/V _O
RR	Ripple Rejection ⁽²⁾	f = 120Hz, V	O = 8V to 18V	62.0	73.0	_	dB
V _{DROP}	Dropout Voltage	I _O = 1A, T _J =	: +25°C	_	2.0	_	V
r _O	Output Resistance ⁽²⁾	f = 1kHz		_	15.0	_	mΩ
I _{SC}	Short Circuit Current	$V_{I} = 35V, T_{A}$	V _I = 35V, T _A = +25°C		230	_	mA
I _{PK}	Peak Current ⁽²⁾	$T_J = +25^{\circ}C$		_	2.2	_	Α

Notes

1. Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty is used.

3

2. These parameters, although guaranteed, are not 100% tested in production.

Electrical Characteristics (LM7806) (Continued)

Refer to the test circuits. -40°C < T_J < 125°C, I_O = 500mA, V_I = 11V, C_I = 0.33 μ F, C_O = 0.1 μ F, unless otherwise specified.

Symbol	Parameter		Conditions	Min	Тур.	Max.	Unit
Vo	Output Voltage	$T_J = +25^{\circ}C$		5.75	6.0	6.25	V
		$5\text{mA} \le I_{O} \le 1\text{A}, \ P_{O} \le 15\text{W},$ $V_{I} = 8.0\text{V to } 21\text{V}$		5.7	6.0	6.3	
Regline	Line Regulation ⁽³⁾	$T_J = +25^{\circ}C$	V _I = 8V to 25V	_	5.0	120	mV
			V _I = 9V to 13V	_	1.5	60.0	
Regload	Load Regulation ⁽³⁾	$T_J = +25^{\circ}C$	I _O = 5mA to 1.5A	_	9.0	120	mV
			I _O = 250mA to 750mA	_	3.0	60.0	
IQ	Quiescent Current	$T_J = +25^{\circ}C$		_	5.0	8.0	mA
ΔI_{Q}	Quiescent Current	$I_O = 5mA$ to	1A	_	_	0.5	mA
	Change	$V_{I} = 8V \text{ to } 25$	SV .	_	_	1.3	
$\Delta V_{O}/\Delta T$	Output Voltage Drift ⁽⁴⁾	$I_O = 5mA$		_	-0.8	_	mV/°C
V _N	Output Noise Voltage	f = 10Hz to 1	00kHz, T _A = +25°C	_	45.0	_	μV/V _O
RR	Ripple Rejection ⁽⁴⁾	f = 120Hz, V ₀	_O = 8V to 18V	62.0	73.0	_	dB
V _{DROP}	Dropout Voltage	I _O = 1A, T _J =	+25°C	_	2.0	_	V
r _O	Output Resistance ⁽⁴⁾	f = 1kHz		_	19.0	_	mΩ
I _{SC}	Short Circuit Current	V _I = 35V, T _A :	= +25°C	_	250	_	mA
I _{PK}	Peak Current ⁽⁴⁾	$T_J = +25^{\circ}C$		_	2.2	_	Α

- 3. Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty is used.
- 4. These parameters, although guaranteed, are not 100% tested in production.

Electrical Characteristics (LM7808) (Continued)

Refer to the test circuits. -40°C < T_J < 125°C, I_O = 500mA, V_I = 14V, C_I = 0.33 μ F, C_O = 0.1 μ F, unless otherwise specified.

Symbol	Parameter	C	Conditions	Min.	Тур.	Max.	Unit
V _O	Output Voltage	$T_J = +25^{\circ}C$		7.7	8.0	8.3	V
			$5\text{mA} \le I_{O} \le 1\text{A}, P_{O} \le 15\text{W},$ $V_{I} = 10.5\text{V to } 23\text{V}$		8.0	8.4	
Regline	Line Regulation ⁽⁵⁾	$T_J = +25^{\circ}C$	V _I = 10.5V to 25V	_	5.0	160	mV
			V _I = 11.5V to 17V	_	2.0	80.0	
Regload	Load Regulation ⁽⁵⁾	$T_J = +25^{\circ}C$	I _O = 5mA to 1.5A	_	10.0	160	mV
			I _O = 250mA to 750mA	_	5.0	80.0	
IQ	Quiescent Current	$T_J = +25^{\circ}C$		_	5.0	8.0	mA
ΔI_{Q}	Quiescent Current Change	$I_O = 5mA$ to	1A	_	0.05	0.5	mA
		$V_{I} = 10.5V \text{ to}$	25V	_	0.5	1.0	
$\Delta V_{O}/\Delta T$	Output Voltage Drift ⁽⁶⁾	$I_O = 5mA$		_	-0.8	_	mV/°C
V _N	Output Noise Voltage	f = 10Hz to 1	00kHz, T _A = +25°C	_	52.0	_	μV/V _O
RR	Ripple Rejection ⁽⁶⁾	f = 120Hz, V	_O = 11.5V to 21.5V	56.0	73.0	_	dB
V _{DROP}	Dropout Voltage	I _O = 1A, T _J =	+25°C	_	2.0	_	V
r _O	Output Resistance ⁽⁶⁾	f = 1kHz		_	17.0	_	mΩ
I _{SC}	Short Circuit Current	$V_{I} = 35V, T_{A}$	= +25°C	_	230	_	mA
I _{PK}	Peak Current ⁽⁶⁾	$T_J = +25^{\circ}C$		_	2.2	_	Α

- 5. Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty is used.
- 6. These parameters, although guaranteed, are not 100% tested in production.

Electrical Characteristics (LM7809) (Continued)

Refer to the test circuits. -40°C < T_J < 125°C, I_O = 500mA, V_I = 15V, C_I = 0.33 μ F, C_O = 0.1 μ F, unless otherwise specified.

Symbol	Parameter	C	Conditions	Min.	Тур.	Max.	Unit
Vo	Output Voltage	$T_J = +25^{\circ}C$		8.65	9.0	9.35	V
		$5mA \le I_O \le 1A, P_O \le 15W,$ $V_I = 11.5V \text{ to } 24V$		8.6	9.0	9.4	
Regline	Line Regulation ⁽⁷⁾	$T_J = +25^{\circ}C$	V _I = 11.5V to 25V	_	6.0	180	mV
			V _I = 12V to 17V	_	2.0	90.0	
Regload	Load Regulation ⁽⁷⁾	$T_J = +25^{\circ}C$	I _O = 5mA to 1.5A	_	12.0	180	mV
			I _O = 250mA to 750mA	_	4.0	90.0	
IQ	Quiescent Current	$T_J = +25^{\circ}C$		_	5.0	8.0	mA
ΔI_{Q}	Quiescent Current Change	$I_O = 5mA$ to	1A	_	_	0.5	mA
		V _I = 11.5V to	o 26V	_	_	1.3	
$\Delta V_{O}/\Delta T$	Output Voltage Drift ⁽⁸⁾	$I_O = 5mA$		_	-1.0	_	mV/°C
V _N	Output Noise Voltage	f = 10Hz to	100kHz, T _A = +25°C	_	58.0	_	μV/V _O
RR	Ripple Rejection ⁽⁸⁾	f = 120Hz, V	_O = 13V to 23V	56.0	71.0	_	dB
V _{DROP}	Dropout Voltage	I _O = 1A, T _J =	= +25°C	_	2.0	_	V
r _O	Output Resistance ⁽⁸⁾	f = 1kHz		_	17.0	_	mΩ
I _{SC}	Short Circuit Current	$V_{I} = 35V, T_{A}$	= +25°C	_	250	_	mA
I _{PK}	Peak Current ⁽⁸⁾	$T_J = +25^{\circ}C$		_	2.2	_	Α

- 7. Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty is used.
- 8. These parameters, although guaranteed, are not 100% tested in production.

Electrical Characteristics (LM7810) (Continued)

Refer to the test circuits. -40°C < T_J < 125°C, I_O = 500mA, V_I = 16V, C_I = 0.33 μ F, C_O = 0.1 μ F, unless otherwise specified.

Symbol	Parameter	C	Conditions	Min.	Тур.	Max.	Unit
V _O	Output Voltage	$T_J = +25^{\circ}C$		9.6	10.0	10.4	V
		$5\text{mA} \le I_{\text{O}} \le 1$ $V_{\text{I}} = 12.5\text{V to}$	A, P _O ≤ 15W, 25V	9.5	10.0	10.5	
Regline	Line Regulation ⁽⁹⁾	$T_J = +25^{\circ}C$	V _I = 12.5V to 25V	_	10.0	200	mV
			V _I = 13V to 25V	_	3.0	100	
Regload	Load Regulation ⁽⁹⁾	$T_J = +25^{\circ}C$	I _O = 5mA to 1.5A	_	12.0	200	mV
			I _O = 250mA to 750mA	_	4.0	400	
IQ	Quiescent Current	$T_J = +25^{\circ}C$		_	5.1	8.0	mA
ΔI_{Q}	Quiescent Current Change	$I_O = 5$ mA to	1A	_	_	0.5	mA
		$V_{I} = 12.5V \text{ to}$	29V	_	_	1.0	
$\Delta V_{O}/\Delta T$	Output Voltage Drift ⁽¹⁰⁾	I _O = 5mA		_	-1.0	_	mV/°C
V _N	Output Noise Voltage	f = 10Hz to 1	00kHz, T _A = +25°C	-	58.0	-	μV/V _O
RR	Ripple Rejection ⁽¹⁰⁾	f = 120Hz, V ₀	_O = 13V to 23V	56.0	71.0	_	dB
V _{DROP}	Dropout Voltage	I _O = 1A, T _J =	+25°C	_	2.0	_	V
r _O	Output Resistance ⁽¹⁰⁾	f = 1kHz		_	17.0	_	mΩ
I _{SC}	Short Circuit Current	V _I = 35V, T _A :	V _I = 35V, T _A = +25°C		250	_	mA
I _{PK}	Peak Current ⁽¹⁰⁾	T _J = +25°C		_	2.2	-	Α

Notes:

^{9.} Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty is used.

^{10.} These parameters, although guaranteed, are not 100% tested in production.

Electrical Characteristics (LM7812) (Continued)

Refer to the test circuits. -40°C < T_J < 125°C, I_O = 500mA, V_I = 19V, C_I = 0.33 μ F, C_O = 0.1 μ F, unless otherwise specified.

Symbol	Parameter	(Conditions	Min.	Тур.	Max.	Unit
Vo	Output Voltage	T _J = +25°C		11.5	12.0	12.5	V
			$5mA \le I_O \le 1A, P_O \le 15W,$ V _I = 14.5V to 27V		12.0	12.6	
Regline	Line Regulation ⁽¹¹⁾	$T_J = +25^{\circ}C$	V _I = 14.5V to 30V	_	10.0	240	mV
			V _I = 16V to 22V	_	3.0	120	
Regload	Load Regulation ⁽¹¹⁾	T _J = +25°C	I _O = 5mA to 1.5A	_	11.0	240	mV
			I _O = 250mA to 750mA	_	5.0	120	
ΙQ	Quiescent Current	T _J = +25°C		_	5.1	8.0	mA
ΔI_{Q}	Quiescent Current Change	$I_O = 5mA to$	1A	_	0.1	0.5	mA
		V _I = 14.5V t	o 30V	_	0.5	1.0	
$\Delta V_{O}/\Delta T$	Output Voltage Drift ⁽¹²⁾	$I_O = 5mA$		_	-1.0	_	mV/°C
V _N	Output Noise Voltage	f = 10Hz to	100kHz, T _A = +25°C	_	76.0	_	μV/V _O
RR	Ripple Rejection ⁽¹²⁾	f = 120Hz, \	/ _I = 15V to 25V	55.0	71.0	_	dB
V _{DROP}	Dropout Voltage	I _O = 1A, T _J :	= +25°C	_	2.0	_	V
r _O	Output Resistance ⁽¹²⁾	f = 1kHz		_	18.0	_	mΩ
I _{SC}	Short Circuit Current	V _I = 35V, T _A = +25°C		_	230	_	mA
I _{PK}	Peak Current ⁽¹²⁾	T _J = +25°C		_	2.2	_	Α

Notes:

^{11.} Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty is used.

^{12.} These parameters, although guaranteed, are not 100% tested in production.

Electrical Characteristics (LM7815) (Continued)

Refer to the test circuits. -40°C < T_J < 125°C, I_O = 500mA, V_I = 23V, C_I = 0.33 μ F, C_O = 0.1 μ F, unless otherwise specified.

Symbol	Parameter	C	Conditions	Min.	Тур.	Max.	Unit
Vo	Output Voltage	$T_{J} = +25^{\circ}C$		14.4	15.0	15.6	V
			$5mA \le I_O \le 1A, P_O \le 15W,$ V _I = 17.5V to 30V		15.0	15.75	
Regline	Line Regulation ⁽¹³⁾	$T_J = +25^{\circ}C$	V _I = 17.5V to 30V	_	11.0	300	mV
			V _I = 20V to 26V	_	3.0	150	
Regload	Load Regulation ⁽¹³⁾	$T_J = +25^{\circ}C$	I _O = 5mA to 1.5A	_	12.0	300	mV
			I _O = 250mA to 750mA	_	4.0	150	
ΙQ	Quiescent Current	$T_J = +25^{\circ}C$		_	5.2	8.0	mA
ΔI_Q	Quiescent Current Change	$I_O = 5mA$ to	1A	_	_	0.5	mA
		V _I = 17.5V to	30V	_	_	1.0	
$\Delta V_O/\Delta T$	Output Voltage Drift ⁽¹⁴⁾	$I_O = 5mA$		_	-1.0	_	mV/°C
V _N	Output Noise Voltage	f = 10Hz to 1	100kHz, T _A = +25°C	_	90.0	_	μV/V _O
RR	Ripple Rejection ⁽¹⁴⁾	f = 120Hz, V	I = 18.5V to 28.5V	54.0	70.0	_	dB
V _{DROP}	Dropout Voltage	I _O = 1A, T _J =	+25°C	_	2.0	-	V
r _O	Output Resistance ⁽¹⁴⁾	f = 1kHz		_	19.0	_	mΩ
I _{SC}	Short Circuit Current	$V_{I} = 35V, T_{A}$	V _I = 35V, T _A = +25°C		250	_	mA
I _{PK}	Peak Current ⁽¹⁴⁾	$T_J = +25^{\circ}C$		_	2.2	_	Α

Notes:

^{13.} Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty is used.

^{14.} These parameters, although guaranteed, are not 100% tested in production.

Electrical Characteristics (LM7818) (Continued)

Refer to the test circuits. -40°C < T_J < 125°C, I_O = 500mA, V_I = 27V, C_I = 0.33 μ F, C_O = 0.1 μ F, unless otherwise specified.

Symbol	Parameter	(Conditions	Min.	Тур.	Max.	Unit
V _O	Output Voltage	$T_J = +25^{\circ}C$		17.3	18.0	18.7	V
			$5mA \le I_O \le 1A, P_O \le 15W,$ $V_I = 21V \text{ to } 33V$		18.0	18.9	
Regline	Line Regulation ⁽¹⁵⁾	$T_J = +25^{\circ}C$	V _I = 21V to 33V	_	15.0	360	mV
			V _I = 24V to 30V	_	5.0	180	
Regload	Load Regulation ⁽¹⁵⁾	$T_J = +25^{\circ}C$	I _O = 5mA to 1.5A	_	15.0	360	mV
			I _O = 250mA to 750mA	_	5.0	180	
IQ	Quiescent Current	$T_J = +25^{\circ}C$		_	5.2	8.0	mA
ΔI_{Q}	Quiescent Current Change	$I_O = 5mA$ to	1A	_	_	0.5	mA
		$V_{I} = 21V \text{ to } 3$	33V	_	_	1.0	
$\Delta V_{O}/\Delta T$	Output Voltage Drift ⁽¹⁶⁾	$I_O = 5mA$		_	-1.0	_	mV/°C
V _N	Output Noise Voltage	f = 10Hz to 1	100kHz, T _A = +25°C	_	110	_	μV/V _O
RR	Ripple Rejection ⁽¹⁶⁾	f = 120Hz, V	1 = 22V to 32V	53.0	69.0	_	dB
V _{DROP}	Dropout Voltage	I _O = 1A, T _J =	+25°C	_	2.0	_	V
r _O	Output Resistance ⁽¹⁶⁾	f = 1kHz		_	22.0	_	mΩ
I _{SC}	Short Circuit Current	V _I = 35V, T _A = +25°C		_	250	_	mA
I _{PK}	Peak Current ⁽¹⁶⁾	$T_J = +25^{\circ}C$		_	2.2	_	Α

^{15.} Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty is used.

^{16.} These parameters, although guaranteed, are not 100% tested in production.

Electrical Characteristics (LM7824) (Continued)

Refer to the test circuits. -40°C < T_J < 125°C, I_O = 500mA, V_I = 33V, C_I = 0.33 μ F, C_O = 0.1 μ F, unless otherwise specified.

Symbol	Parameter	(Conditions	Min.	Тур.	Max.	Unit
Vo	Output Voltage	$T_J = +25^{\circ}C$		23.0	24.0	25.0	V
		$5\text{mA} \le I_{\text{O}} \le 1$ $V_{\text{I}} = 27V \text{ to } 3$	A, P _O ≤ 15W, 88V	22.8	24.0	25.25	
Regline	Line Regulation ⁽¹⁷⁾	$T_J = +25^{\circ}C$	V _I = 27V to 38V	_	17.0	480	mV
			V _I = 30V to 36V	_	6.0	240	
Regload	Load Regulation ⁽¹⁷⁾	$T_J = +25^{\circ}C$	I _O = 5mA to 1.5A	_	15.0	480	mV
			I _O = 250mA to 750mA	_	5.0	240	
ΙQ	Quiescent Current	$T_J = +25^{\circ}C$		_	5.2	8.0	mA
ΔI_Q	Quiescent Current Change	$I_O = 5mA$ to	1A	_	0.1	0.5	mA
		$V_1 = 27V \text{ to } 3$	38V	_	0.5	1.0	
$\Delta V_O/\Delta T$	Output Voltage Drift ⁽¹⁸⁾	$I_O = 5mA$		_	-1.5	_	mV/°C
V _N	Output Noise Voltage	f = 10Hz to 1	00kHz, T _A = +25°C	_	60.0	_	μV/V _O
RR	Ripple Rejection ⁽¹⁸⁾	f = 120Hz, V	_I = 28V to 38V	50.0	67.0	_	dB
V _{DROP}	Dropout Voltage	I _O = 1A, T _J =	I _O = 1A, T _J = +25°C		2.0	_	V
rO	Output Resistance ⁽¹⁸⁾	f = 1kHz		_	28.0	_	mΩ
I _{SC}	Short Circuit Current	$V_{I} = 35V, T_{A}$	= +25°C	_	230	_	mA
I _{PK}	Peak Current ⁽¹⁸⁾	$T_J = +25^{\circ}C$		_	2.2	_	Α

^{17.} Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty is used.

^{18.} These parameters, although guaranteed, are not 100% tested in production.

Electrical Characteristics (LM7805A) (Continued)

Refer to the test circuits. $0^{\circ}\text{C} < \text{T}_{\text{J}} < 125^{\circ}\text{C}$, $I_{\text{O}} = 1\text{A}$, $V_{\text{I}} = 10\text{V}$, $C_{\text{I}} = 0.33\mu\text{F}$, $C_{\text{O}} = 0.1\mu\text{F}$, unless otherwise specified.

Symbol	Parameter	Co	onditions	Min.	Тур.	Max.	Unit
Vo	Output Voltage	$T_J = +25^{\circ}C$		4.9	5.0	5.1	V
		$I_O = 5mA \text{ to } 1A,$ $V_I = 7.5V \text{ to } 20V$		4.8	5.0	5.2	
Regline	Line Regulation ⁽¹⁹⁾	$V_{I} = 7.5V \text{ to } 25V$	/, I _O = 500mA	_	5.0	50.0	mV
		$V_{I} = 8V \text{ to } 12V$		_	3.0	50.0	
		$T_J = +25^{\circ}C$	V _I = 7.3V to 20V	_	5.0	50.0	
			V _I = 8V to 12V	_	1.5	25.0	
Regload	Load Regulation ⁽¹⁹⁾	$T_{J} = +25^{\circ}C, I_{O} =$	$T_J = +25^{\circ}C$, $I_O = 5mA$ to 1.5A		9.0	100	mV
		$I_O = 5$ mA to 1A		_	9.0	100	
		$I_{O} = 250 \text{mA to } 7$	'50mA	_	4.0	50.0	
IQ	Quiescent Current	$T_J = +25^{\circ}C$		_	5.0	6.0	mA
ΔI_Q	Quiescent Current	$I_O = 5mA \text{ to } 1A$		_	_	0.5	mA
	Change	$V_{I} = 8V \text{ to } 25V, I$	_O = 500mA	_	_	0.8	
		$V_{I} = 7.5V \text{ to } 20V$	/, T _J = +25°C	_	_	0.8	
$\Delta V_{O}/\Delta T$	Output Voltage Drift ⁽²⁰⁾	I _O = 5mA		_	-0.8	_	mV/°C
V _N	Output Noise Voltage	f = 10Hz to 100h	κHz, T _A = +25°C	_	10.0	_	μV/V _O
RR	Ripple Rejection ⁽²⁰⁾	f = 120Hz, I _O = \$	500mA, V _I = 8V to 18V	_	68.0	_	dB
V _{DROP}	Dropout Voltage	I _O = 1A, T _J = +25°C		_	2.0	_	V
r _O	Output Resistance ⁽²⁰⁾	f = 1kHz		-	17.0	-	mΩ
I _{SC}	Short Circuit Current	$V_I = 35V, T_A = +2$	25°C	_	250	_	mA
I _{PK}	Peak Current ⁽²⁰⁾	$T_J = +25^{\circ}C$		_	2.2	_	Α

^{19.} Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty is used.

^{20.} These parameters, although guaranteed, are not 100% tested in production.

Electrical Characteristics (LM7806A) (Continued)

Refer to the test circuits. $0^{\circ}\text{C} < \text{T}_{\text{J}} < 125^{\circ}\text{C}$, $I_{\text{O}} = 1\text{A}$, $V_{\text{I}} = 11\text{V}$, $C_{\text{I}} = 0.33\mu\text{F}$, $C_{\text{O}} = 0.1\mu\text{F}$, unless otherwise specified.

Symbol	Parameter		Conditions	Min.	Тур.	Max.	Unit
Vo	Output Voltage	T _J = +25°C		5.58	6.0	6.12	V
		$I_{O} = 5 \text{mA to}$ $V_{I} = 8.6 \text{V to}$	1A, P _O ≤ 15W, 21V	5.76	6.0	6.24	
Regline	Line Regulation ⁽²¹⁾	$V_1 = 8.6V \text{ to } 3$	25V, I _O = 500mA	_	5.0	60.0	mV
		$V_{I} = 9V \text{ to } 13$	3V	_	3.0	60.0	
		$T_J = +25^{\circ}C$	V _I = 8.3V to 21V	_	5.0	60.0	
			V _I = 9V to 13V	_	1.5	30.0	
Regload	Load Regulation ⁽²¹⁾	$T_{J} = +25^{\circ}C,$	I _O = 5mA to 1.5A	_	9.0	100	mV
		$I_O = 5mA$ to	1A	_	9.0	100	
		I _O = 250mA	to 750mA	_	5.0	50.0	
ΙQ	Quiescent Current	$T_J = +25^{\circ}C$		_	4.3	6.0	mA
ΔI_{Q}	Quiescent Current Change	$I_O = 5mA$ to	1A	_	_	0.5	mA
		V _I = 19V to 2	25V, I _O = 500mA	_	_	0.8	
		$V_{I} = 8.5V \text{ to } 3$	21V, T _J = +25°C	_	_	0.8	
$\Delta V_{O}/\Delta T$	Output Voltage Drift ⁽²²⁾	$I_O = 5mA$		_	-0.8	_	mV/°C
V _N	Output Noise Voltage	f = 10Hz to 1	00kHz, T _A = +25°C	_	10.0	_	μV/V _O
RR	Ripple Rejection ⁽²²⁾	f = 120Hz, I _O = 500mA, V _I = 9V to 19V		_	65.0	_	dB
V _{DROP}	Dropout Voltage	I _O = 1A, T _J = +25°C		_	2.0	_	V
r _O	Output Resistance ⁽²²⁾	f = 1kHz		-	17.0	_	mΩ
I _{SC}	Short Circuit Current	V _I = 35V, T _A = +25°C		_	250	_	mA
I _{PK}	Peak Current ⁽²²⁾	$T_J = +25^{\circ}C$	_		2.2	_	Α

- 21. Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty is used.
- 22. These parameters, although guaranteed, are not 100% tested in production.

Electrical Characteristics (LM7808A) (Continued)

Refer to the test circuits. $0^{\circ}\text{C} < \text{T}_{\text{J}} < 125^{\circ}\text{C}$, $I_{\text{O}} = 1\text{A}$, $V_{\text{I}} = 14\text{V}$, $C_{\text{I}} = 0.33\mu\text{F}$, $C_{\text{O}} = 0.1\mu\text{F}$, unless otherwise specified.

Symbol	Parameter	Conditions		Min.	Тур.	Max.	Unit
V _O	Output Voltage	T _J = +25°C		7.84	8.0	8.16	V
		$I_O = 5mA \text{ to } 100$ $V_I = 10.6V \text{ to } 200$		7.7	8.0	8.3	
Regline	Line Regulation ⁽²³⁾	$V_1 = 10.6V \text{ to } 2$	25V, I _O = 500mA	_	6.0	80.0	mV
		V _I = 11V to 17	V	-	3.0	80.0	
		T _J = +25°C	V _I = 10.4V to 23V	_	6.0	80.0	
			V _I = 11V to 17V	_	2.0	40.0	
Regload	Load Regulation ⁽²³⁾	$T_J = +25^{\circ}C, I_O$	= 5mA to 1.5A	_	12.0	100	mV
		I _O = 5mA to 1A		_	12.0	100	
		I _O = 250mA to 750mA		_	5.0	50.0	
IQ	Quiescent Current	$T_J = +25^{\circ}C$		_	5.0	6.0	mA
ΔI_Q	Quiescent Current Change	$I_O = 5$ mA to 1/	4	_	_	0.5	mA
		V _I = 11V to 25	V, I _O = 500mA	_	_	0.8	
		$V_I = 10.6V \text{ to } 23V, T_J = +25^{\circ}C$		_	_	0.8	
$\Delta V_{O}/\Delta T$	Output Voltage Drift ⁽²⁴⁾	$I_O = 5mA$		_	-0.8	_	mV/°C
V _N	Output Noise Voltage	f = 10Hz to 10	0kHz, T _A = +25°C	_	10.0	_	μV/V _O
RR	Ripple Rejection ⁽²⁴⁾	f = 120Hz, I _O = 500mA, V _I = 11.5V to 21.5V		_	62.0	_	dB
V _{DROP}	Dropout Voltage	I _O = 1A, T _J = +25°C		-	2.0	-	V
r _O	Output Resistance ⁽²⁴⁾	f = 1kHz		_	18.0	_	mΩ
I _{SC}	Short Circuit Current	V _I = 35V, T _A =	+25°C	_	250	_	mA
I _{PK}	Peak Current ⁽²⁴⁾	T _J = +25°C		_	2.2	_	Α

Notes:

^{23.} Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty is used.

^{24.} These parameters, although guaranteed, are not 100% tested in production.

Electrical Characteristics (LM7809A) (Continued)

Refer to the test circuits. $0^{\circ}C < T_J < 125^{\circ}C$, $I_O = 1A$, $V_I = 15V$, $C_I = 0.33 \mu F$, $C_O = 0.1 \mu F$, unless otherwise specified.

Symbol	Parameter	C	onditions	Min.	Тур.	Max.	Units
V _O	Output Voltage	$T_J = +25^{\circ}C$		8.82	9.0	9.16	V
		$I_O = 5mA$ to $V_I = 11.2V$ to	1A, P _O ≤ 15W, 24V	8.65	9.0	9.35	
Regline	Line Regulation ⁽²⁵⁾	V _I = 11.7V to	25V, I _O = 500mA	_	6.0	90.0	mV
		V _I = 12.5V to	19V	_	4.0	45.0	
		T _J = +25°C	V _I = 11.5V to 24V	_	6.0	90.0	
			V _I = 12.5V to 19V	_	2.0	45.0	
Regload	Load Regulation ⁽²⁵⁾	$T_{J} = +25^{\circ}C,$	I _O = 5mA to 1.5A	_	12.0	100	mV
		I _O = 5mA to 1A		_	12.0	100	
		I _O = 250mA	to 750mA	_	5.0	50.0	
IQ	Quiescent Current	$T_J = +25^{\circ}C$		_	5.0	6.0	mA
ΔI_{Q}	Quiescent Current Change	$I_O = 5mA$ to	1A	_	_	0.5	mA
		V _I = 12V to 2	25V, I _O = 500mA	_	_	0.8	
		V _I = 11.7V to	25V, T _J = +25°C	_	_	0.8	
$\Delta V_{O}/\Delta T$	Output Voltage Drift ⁽²⁶⁾	$I_O = 5mA$		_	-1.0	_	mV/°C
V _N	Output Noise Voltage	f = 10Hz to 1	$00kHz, T_A = +25^{\circ}C$	_	10.0	_	μV/V _O
RR	Ripple Rejection ⁽²⁶⁾	f = 120Hz, I _O = 500mA, V _I = 12V to 22V		_	62.0	-	dB
V _{DROP}	Dropout Voltage	I _O = 1A, T _J = +25°C		_	2.0	_	V
r _O	Output Resistance ⁽²⁶⁾	f = 1kHz		_	17.0	-	mΩ
I _{SC}	Short Circuit Current	V _I = 35V, T _A = +25°C		_	250	-	mA
I _{PK}	Peak Current ⁽²⁶⁾	$T_J = +25^{\circ}C$		_	2.2	_	Α

^{25.} Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty is used.

^{26.} These parameters, although guaranteed, are not 100% tested in production.

Electrical Characteristics (LM7810A) (Continued)

Refer to the test circuits. $0^{\circ}\text{C} < \text{T}_{\text{J}} < 125^{\circ}\text{C}$, $I_{\text{O}} = 1\text{A}$, $V_{\text{I}} = 16\text{V}$, $C_{\text{I}} = 0.33\mu\text{F}$, $C_{\text{O}} = 0.1\mu\text{F}$, unless otherwise specified.

Symbol	Parameter	Con	ditions	Min.	Тур.	Max.	Units
Vo	Output Voltage	T _J = +25°C		9.8	10.0	10.2	V
		$I_O = 5mA \text{ to } 1A, F$ $V_I = 12.8V \text{ to } 25V$		9.6	10.0	10.4	
Regline	Line Regulation ⁽²⁷⁾	$V_{I} = 12.8V \text{ to } 26V$, I _O = 500mA	-	8.0	100	mV
		V _I = 13V to 20V		-	4.0	50.0	
		T _J = +25°C	V _I = 12.5V to 25V	_	8.0	100	
			V _I = 13V to 20V	_	3.0	50.0	
Regload	Load Regulation ⁽²⁷⁾	$T_J = +25^{\circ}C, I_O = $	5mA to 1.5A	_	12.0	100	mV
		$I_O = 5$ mA to 1A		_	12.0	100	
		I _O = 250mA to 750mA		_	5.0	50.0	
IQ	Quiescent Current	T _J = +25°C		_	5.0	6.0	mA
ΔI_Q	Quiescent Current	$I_O = 5$ mA to 1A		_	_	0.5	mA
	Change	V _I = 12.8V to 25V, I _O = 500mA		_	_	0.8	
		$V_{I} = 13V \text{ to } 26V, T$	_J = +25°C	_	-	0.5	
$\Delta V_O/\Delta T$	Output Voltage Drift ⁽²⁸⁾	$I_O = 5mA$		_	-1.0	_	mV/°C
V _N	Output Noise Voltage	f = 10Hz to 100kH	Iz, T _A = +25°C	_	10.0	_	μV/V _O
RR	Ripple Rejection ⁽²⁸⁾	f = 120Hz, I _O = 500mA, V _I = 14V to 24V		_	62.0	_	dB
V _{DROP}	Dropout Voltage	I _O = 1A, T _J = +25°C		_	2.0	_	V
r _O	Output Resistance ⁽²⁸⁾	f = 1kHz		_	17.0	_	mΩ
I _{SC}	Short Circuit Current	$V_I = 35V, T_A = +25$	5°C	_	250	-	mA
I _{PK}	Peak Current ⁽²⁸⁾	$T_J = +25^{\circ}C$		_	2.2	_	Α

^{27.} Load and line regulation are specified at constant junction temperature. Changes in V_0 due to heating effects must be taken into account separately. Pulse testing with low duty is used.

^{28.} These parameters, although guaranteed, are not 100% tested in production.

Electrical Characteristics (LM7812A) (Continued)

Refer to the test circuits. $0^{\circ}\text{C} < \text{T}_{\text{J}} < 125^{\circ}\text{C}$, $I_{\text{O}} = 1\text{A}$, $V_{\text{I}} = 19\text{V}$, $C_{\text{I}} = 0.33\mu\text{F}$, $C_{\text{O}} = 0.1\mu\text{F}$, unless otherwise specified.

Symbol	Parameter	Conditions		Min.	Тур.	Max.	Units
V _O	Output Voltage	T _J = +25°C		11.75	12.0	12.25	V
		$I_{O} = 5$ mA to 1 $V_{I} = 14.8$ V to	A, P _O ≤ 15W, 27V	11.5	12.0	12.5	
Regline	Line Regulation ⁽²⁹⁾	$V_{I} = 14.8V \text{ to}$	30V, I _O = 500mA	_	10.0	120	mV
		V _I = 16V to 22	2V	_	4.0	120]
		$T_J = +25^{\circ}C$	V _I = 14.5V to 27V	_	10.0	120]
			V _I = 16V to 22V	_	3.0	60.0]
Regload	Load Regulation ⁽²⁹⁾	$T_J = +25^{\circ}C, I_0$	_O = 5mA to 1.5A	_	12.0	100	mV
		I _O = 5mA to 1A		_	12.0	100]
		I _O = 250mA to 750mA		_	5.0	50.0]
IQ	Quiescent Current	$T_J = +25^{\circ}C$		_	5.1	6.0	mA
ΔI_{Q}	Quiescent Current Change	$I_O = 5mA \text{ to } 1$	A	_	_	0.5	mA
		V _I = 14V to 2	7V, I _O = 500mA	_	_	0.8]
		$V_I = 15V \text{ to } 30V, T_J = +25^{\circ}C$		_	_	0.8	1
$\Delta V_{O}/\Delta T$	Output Voltage Drift ⁽³⁰⁾	$I_O = 5mA$		_	-1.0	_	mV/°C
V _N	Output Noise Voltage	f = 10Hz to 10	$00kHz, T_A = +25^{\circ}C$	_	10.0	_	μV/V _O
RR	Ripple Rejection ⁽³⁰⁾	f = 120Hz, I _O = 500mA, V _I = 14V to 24V		-	60.0	_	dB
V _{DROP}	Dropout Voltage	I _O = 1A, T _J = +25°C		_	2.0	_	V
r _O	Output Resistance ⁽³⁰⁾	f = 1kHz		_	18.0	_	mΩ
I _{SC}	Short Circuit Current	V _I = 35V, T _A =	: +25°C	-	250	-	mA
I _{PK}	Peak Current ⁽³⁰⁾	T _J = +25°C		_	2.2	_	Α

^{29.} Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty is used.

^{30.} These parameters, although guaranteed, are not 100% tested in production.

Electrical Characteristics (LM7815A) (Continued)

Refer to the test circuits. $0^{\circ}\text{C} < \text{T}_{\text{J}} < 125^{\circ}\text{C}$, $\text{I}_{\text{O}} = 1\text{A}$, $\text{V}_{\text{I}} = 23\text{V}$, $\text{C}_{\text{I}} = 0.33\mu\text{F}$, $\text{C}_{\text{O}} = 0.1\mu\text{F}$, unless otherwise specified.

Symbol	Parameter	С	onditions	Min.	Тур.	Max.	Units
V _O	Output Voltage	T _J = +25°C		14.75	15.0	15.3	V
		$I_O = 5mA \text{ to } 1A, P_O \le 15W,$ $V_I = 17.7V \text{ to } 30V$		14.4	15.0	15.6	
Regline	Line Regulation ⁽³¹⁾	$V_{l} = 17.4V t$	o 30V, I _O = 500mA	_	10.0	150	mV
		$V_I = 20V \text{ to}$	26V	_	5.0	150	
		$T_J = +25^{\circ}C$	V _I = 17.5V to 30V	_	11.0	150	
			V _I = 20V to 26V	_	3.0	75.0	
Regload	Load Regulation ⁽³¹⁾	$T_{J} = +25^{\circ}C,$	I _O = 5mA to 1.5A	_	12.0	100	mV
		I _O = 5mA to 1A		_	12.0	100	
		I _O = 250mA	to 750mA	_	5.0	50.0	
IQ	Quiescent Current	$T_J = +25^{\circ}C$		_	5.2	6.0	mA
ΔI_{Q}	Quiescent Current Change	$I_O = 5mA$ to	1A	_	_	0.5	mA
		$V_{I} = 17.5V t$	o 30V, I _O = 500mA	_	_	0.8	
		$V_{I} = 17.5V t$	o 30V, T _J = +25°C	_	_	0.8	
$\Delta V_{O}/\Delta T$	Output Voltage Drift ⁽³²⁾	$I_O = 5mA$		_	-1.0	_	mV/°C
V _N	Output Noise Voltage	f = 10Hz to	100kHz, T _A = +25°C	_	10.0	_	μV/V _O
RR	Ripple Rejection ⁽³²⁾	f = 120Hz, I _O = 500mA, V _I = 18.5V to 28.5V		_	58.0	_	dB
V _{DROP}	Dropout Voltage	I _O = 1A, T _J = +25°C		_	2.0	_	V
r _O	Output Resistance ⁽³²⁾	f = 1kHz		_	19.0	_	mΩ
I _{SC}	Short Circuit Current	$V_{I} = 35V, T_{A}$	= +25°C	_	250	_	mA
I _{PK}	Peak Current ⁽³²⁾	T _J = +25°C		_	2.2	_	Α

^{31.} Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty is used.

^{32.} These parameters, although guaranteed, are not 100% tested in production.

Electrical Characteristics (LM7818A) (Continued)

Refer to the test circuits. $0^{\circ}\text{C} < \text{T}_{\text{J}} < 125^{\circ}\text{C}$, $\text{I}_{\text{O}} = 1\text{A}$, $\text{V}_{\text{I}} = 27\text{V}$, $\text{C}_{\text{I}} = 0.33\mu\text{F}$, $\text{C}_{\text{O}} = 0.1\mu\text{F}$, unless otherwise specified.

Symbol	Parameter	C	onditions	Min.	Тур.	Max.	Units
V _O	Output Voltage	$T_J = +25^{\circ}C$		17.64	18.0	18.36	V
		$I_O = 5$ mA to $V_I = 21$ V to 3	1A, P _O ≤ 15W, 33V	17.3	18.0	18.7	
Regline	Line Regulation ⁽³³⁾	$V_{I} = 21V \text{ to } 3$	33V, I _O = 500mA	_	15.0	180	mV
		$V_{I} = 21V \text{ to } 3$	33V	_	5.0	180	
		$T_J = +25^{\circ}C$	$V_I = 20.6V \text{ to } 33V$	_	15.0	180	
			V _I = 24V to 30V	_	5.0	90.0	
Regload	Load Regulation ⁽³³⁾	$T_{J} = +25^{\circ}C,$	I _O = 5mA to 1.5A	_	15.0	100	mV
		I _O = 5mA to 1A		_	15.0	100]
		I _O = 250mA to 750mA		_	7.0	50.0	
IQ	Quiescent Current	$T_J = +25^{\circ}C$		_	5.2	6.0	mA
ΔI_Q	Quiescent Current Change	$I_O = 5mA$ to	1A	_	_	0.5	mA
		$V_{I} = 12V \text{ to } 3$	33V, I _O = 500mA	_	_	0.8	
		V _I = 12V to 33V, T _J = +25°C		_	_	0.8	1
$\Delta V_{O}/\Delta T$	Output Voltage Drift ⁽³⁴⁾	$I_O = 5mA$		_	-1.0	_	mV/°C
V _N	Output Noise Voltage	f = 10Hz to 1	00kHz, T _A = +25°C	_	10.0	_	μV/V _O
RR	Ripple Rejection ⁽³⁴⁾	f = 120Hz, I _O = 500mA, V _I = 22V to 32V		_	57.0	_	dB
V _{DROP}	Dropout Voltage	I _O = 1A, T _J = +25°C		_	2.0	_	V
r _O	Output Resistance ⁽³⁴⁾	f = 1kHz		_	19.0	_	mΩ
I _{SC}	Short Circuit Current	$V_{I} = 35V, T_{A}$	= +25°C	_	250	_	mA
I _{PK}	Peak Current ⁽³⁴⁾	$T_J = +25^{\circ}C$		_	2.2	_	Α

Notes:

^{33.} Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty is used.

^{34.} These parameters, although guaranteed, are not 100% tested in production.

Electrical Characteristics (LM7824A) (Continued)

Refer to the test circuits. $0^{\circ}\text{C} < \text{T}_{\text{J}} < 125^{\circ}\text{C}$, $I_{\text{O}} = 1\text{A}$, $V_{\text{I}} = 33\text{V}$, $C_{\text{I}} = 0.33\mu\text{F}$, $C_{\text{O}} = 0.1\mu\text{F}$, unless otherwise specified.

Symbol	Parameter	Co	nditions	Min.	Тур.	Max.	Units
Vo	Output Voltage	$T_J = +25^{\circ}C$		23.5	24.0	24.5	V
		$I_O = 5mA \text{ to } 1A$ $V_I = 27.3V \text{ to } 3$		23.0	24.0	25.0	
Regline	Line Regulation ⁽³⁵⁾	$V_{I} = 27V \text{ to } 38V$	/, I _O = 500mA	_	18.0	240	mV
		$V_{I} = 21V \text{ to } 33V$	/	_	6.0	240	
		T _J = +25°C	V _I = 26.7V to 38V	_	18.0	240	
			V _I = 30V to 36V	_	6.0	120	
Regload	Load Regulation ⁽³⁵⁾	$T_J = +25^{\circ}C, I_O$	= 5mA to 1.5A	_	15.0	100	mV
		$I_O = 5$ mA to 1A	ı	_	15.0	100	
		$I_O = 250$ mA to	I _O = 250mA to 750mA		7.0	50.0	
IQ	Quiescent Current	T _J = +25°C		_	5.2	6.0	mA
ΔI_Q	Quiescent Current Change	$I_O = 5mA \text{ to } 1A$		_	_	0.5	mA
		$V_I = 27.3V \text{ to } 3$	8V, I _O = 500mA	_	_	0.8	
		$V_1 = 27.3V \text{ to } 3$	8V, T _J = +25°C	_	_	0.8	
$\Delta V_O/\Delta T$	Output Voltage Drift ⁽³⁶⁾	$I_O = 5mA$		_	-1.5	_	mV/°C
V _N	Output Noise Voltage	f = 10Hz to 100)kHz, T _A = +25°C	_	10.0	_	μV/V _O
RR	Ripple Rejection ⁽³⁶⁾	f = 120Hz, I _O = 500mA, V _I = 28V to 38V		_	54.0	_	dB
V _{DROP}	Dropout Voltage	I _O = 1A, T _J = +25°C		_	2.0	_	V
r _O	Output Resistance ⁽³⁶⁾	f = 1kHz		_	20.0	_	mΩ
I _{SC}	Short Circuit Current	V _I = 35V, T _A = +25°C		_	250	_	mA
I _{PK}	Peak Current ⁽³⁶⁾	$T_J = +25^{\circ}C$		_	2.2	_	Α

^{35.} Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty is used.

^{36.} These parameters, although guaranteed, are not 100% tested in production.

Typical Performance Characteristics

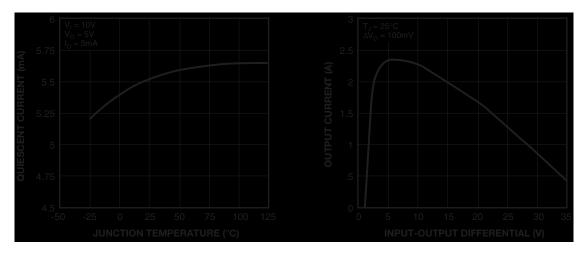


Figure 3. Quiescent Current

Figure 4. Peak Output Current

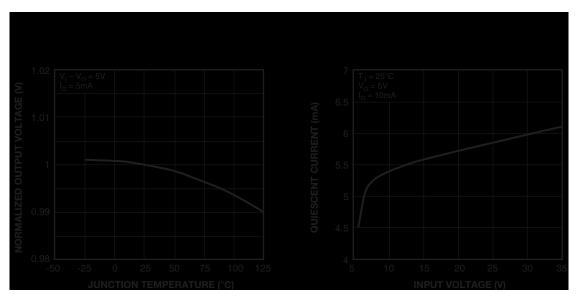


Figure 5. Output Voltage

Figure 6. Quiescent Current

Typical Applications

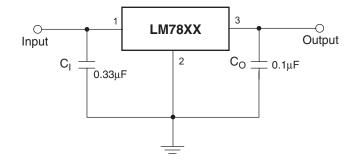


Figure 7. DC Parameters

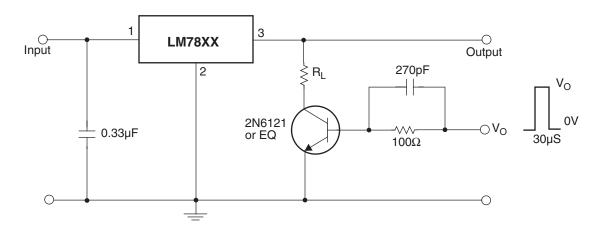


Figure 8. Load Regulation

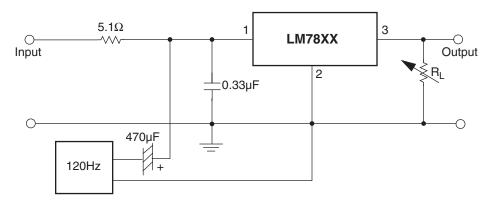


Figure 9. Ripple Rejection

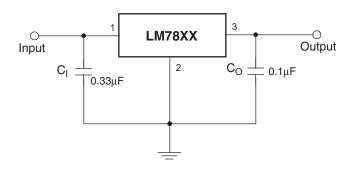
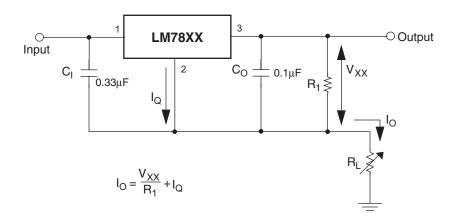



Figure 10. Fixed Output Regulator

- 1. To specify an output voltage, substitute voltage value for "XX." A common ground is required between the input and the output voltage. The input voltage must remain typically 2.0V above the output voltage even during the low point on the input ripple voltage.
- 2. C_I is required if regulator is located an appreciable distance from power supply filter.
- 3. C_O improves stability and transient response.

Figure 11.

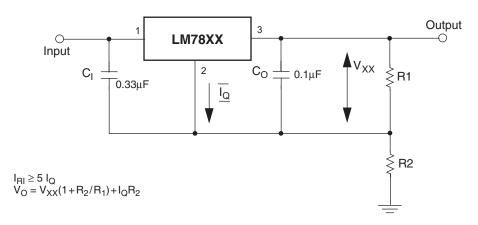


Figure 12. Circuit for Increasing Output Voltage

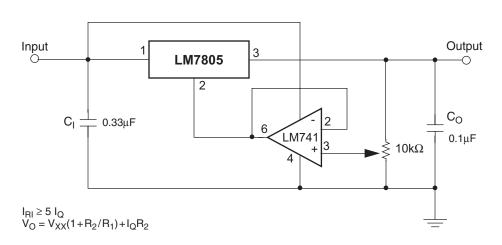


Figure 13. Adjustable Output Regulator (7V to 30V)

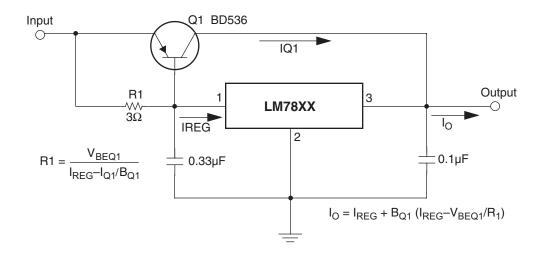


Figure 14. High Current Voltage Regulator

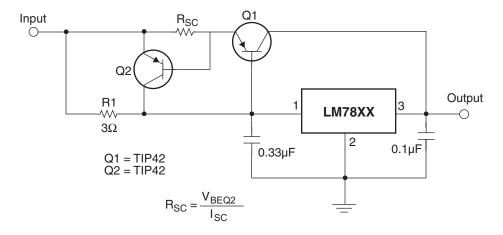


Figure 15. High Output Current with Short Circuit Protection

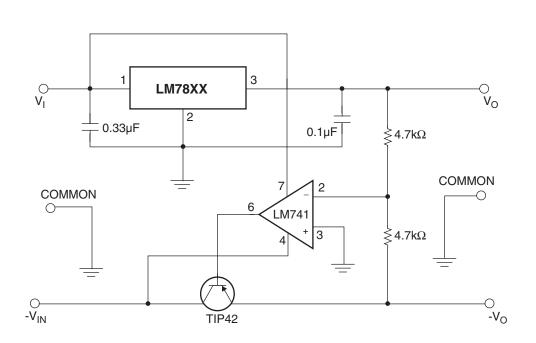


Figure 16. Tracking Voltage Regulator

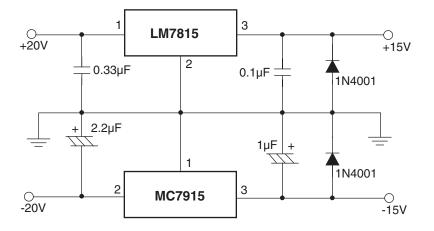


Figure 17. Split Power Supply (±15V – 1A)

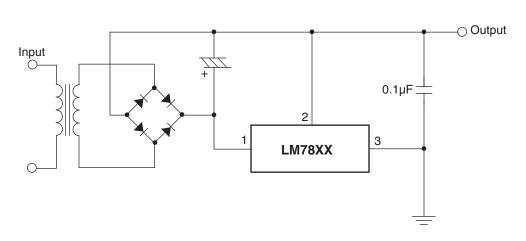


Figure 18. Negative Output Voltage Circuit

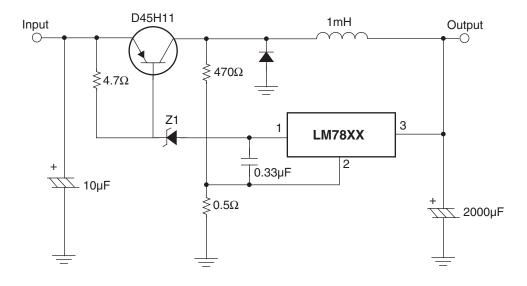
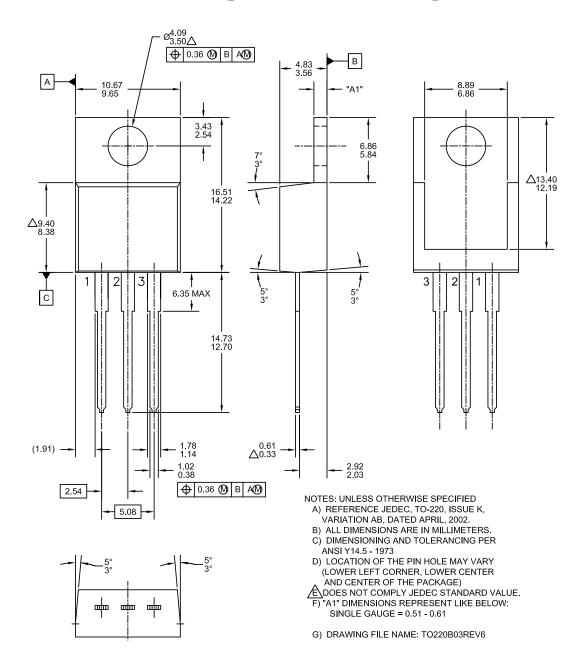



Figure 19. Switching Regulator

Mechanical Dimensions

Dimensions in millimeters

TO-220 [SINGLE GAUGE]

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

F-PFS™ FRFET® AccuPower™ AX-CAP™ Global Power ResourceSM GreenBridge™ BitSiC™ Build it Now™ Green FPS™ CorePLUS™ Green FPS™ e-Series™

CorePOWER™ Gmax™ GTO™ CROSSVOLT™ IntelliMAX™ CTL™

ISOPLANAR™ Current Transfer Logic™ Making Small Speakers Sound Louder **DEUXPEED**[©]

Dual Cool™ and Better™ EcoSPARK® MegaBuck™ MIČROCOUPLER™ EfficientMax™ **ESBC™** MicroFET™ F® MicroPak™

MicroPak2™ Fairchild® MillerDrive™ Fairchild Semiconductor® MotionMax™ FACT Quiet Series™ Motion-SPM™ FACT[®] mWSaver™ FAST® OptoHiT™ OPTOLOGIC®

FastvCore™ FFTBench™ **OPTOPLANAR®** FlashWriter®* **FPSTM**

PowerTrench® PowerXS™

QFET[®]

Programmable Active Droop™

QS™ Quiet Series™ RapidConfigure™

Saving our world, 1mW/W/kW at a time™

SignalWise™ SmartMax™ SMART START™

Solutions for Your Success™

SPM® STEALTH™ SuperFET® SuperSOT™-3 SuperSOT™-6 SuperSOT™-8 SupreMOS® SyncFET™

Sync-Lock™ SYSTEM SGENERAL®* The Power Franchise®

pjuwer* franchi TinyBoost™ TinyBuck™ TinyCalc™ TinyLogic[®] TINYOPTO™ TinyPower™ TinyPWM™ TinyWire™ TranSiC™ TriFault Detect™ TRUECURRENT®*

UHC Ultra FRFET™ UniFET™ VCX™ VisualMax™ VoltagePlus™

XSTM

սSerDes™

* Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- 2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification		Definition				
Advance Information Formative / In Design		Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.				
Preliminary First Production		Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.				
No Identification Needed Full Production		Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.				
Obsolete Not In Production		Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.				

Rev. 161