AtmeL ATmega16M1/ATmega32M1/ATmega64M1/

ATmega32C1/ATmega64C1 Automotive

8-bit AVR Microcontroller with 16K/32K/64Kbytes
In-system

DATASHEET

Features

e High performance, low power AVR® 8-bit microcontroller
e Advanced RISC architecture

131 powerful instructions - most single clock cycle execution
32 x 8 general purpose working registers
Fully static operation
Up to 1MIPS throughput per MHz
e On-chip 2-cycle multiplier
e Data and non-volatile program memory

e 16K/32K/64Kbytes flash of in-system programmable program memory
e Endurance: 10,000 write/erase cycles

e Optional boot code section with independent lock bits

e In-system programming by on-chip boot program
e True read-while-write operation

e 512/1024/2048 Bytes of in-system programmable EEPROM
e Endurance: 100,000 write/erase cycles

e Programming lock for flash program and EEPROM data security

e 1024/2048/4096 bytes internal SRAM

e On chip debug interface (debugWIRE)

e CAN 2.0A/B with 6 message objects - ISO 16845 certified("

e LIN 2.1 and 1.3 controller or 8-Bit UART

e One 12-bit high-speed PSC (power stage controller) (only Atmel®
ATmega16/32/64M1)

Non overlapping inverted PWM output pins with flexible dead-time
Variable PWM duty cycle and frequency

Synchronous update of all PWM registers

Auto stop function for emergency event

e Peripheral features

e One 8-bit general purpose Timer/Counter with separate prescaler, compare mode
and capture mode

e One 16-bit general purpose Timer/Counter with separate prescaler, compare
mode and capture mode

e One master/slave SPI serial interface

76470-AVR-01/15

e 10-bit ADC
e Up to 11 single ended channels and 3 fully differential ADC channel pairs
e Programmable gain (5x, 10x, 20x, 40x) on differential channels
e Internal reference voltage
e Direct power supply voltage measurement
10-bit DAC for variable voltage reference (comparators, ADC)
Four analog comparators with variable threshold detection
100uA £6% current source (LIN node identification)
Interrupt and wake-up on pin change
Programmable watchdog timer with separate on-chip oscillator
e On-chip temperature sensor
e Special microcontroller features

Low power idle, noise reduction, and power down modes
Power on reset and programmable brown out detection
In-system programmable via SPI port
High precision crystal oscillator for CAN operations (16MHz)
e Internal calibrated RC oscillator (8MHz)
e On-chip PLL for fast PWM (32MHz, 64MHz) and CPU (16MHz) (only Atmel® ATmega16/32/64M1)
e Operating voltage:
e 27V-55V
e Extended operating temperature:
e -40°Cto +125°C
e Core speed grade:
e 0-8MHzat2.7-4.5V
e 0-16MHzat4.5-5.5V

Note: 1. See certification on Atmel web site and note on Section 16.4.3 “Baud Rate” on page 148.

Table 1. ATmega32/64/M1/C1 Product Line-up

Part Number ATmega32C1 ATmega64C1 ATmega16M1 ATmega32M1 ATmega64M1
Flash size 32Kbyte 64Kbyte 16Kbyte 32Kbyte 64Kbyte
RAM size 2048 bytes 4096 bytes 1024 bytes 2048 bytes 4096 bytes

EEPROM size 1024 bytes 2048 bytes 512 bytes 1024 bytes 2048 bytes
8-bit timer Yes
16-bit timer Yes

PSC No Yes
PWM outputs 4 4 10 10 10
Fault inputs (PSC) 0 0 3 3 3
PLL No Yes
10-bit ADC channels 3 L?ﬁse':‘egr:ﬁal
10-bit DAC Yes
analog comparators 4
Current source Yes
CAN Yes
LIN/UART Yes
T
SPl interface Yes
2 ATmega16/32/64/M1/C1 [DATASHEET] Atmel.

76470-AVR-01/15

1. Pin Configurations

Figure 1-1. ATmega16/32/64M1 TQFP32/QFN32 (7*7mm) Package

/ N
(PCINT18/PSCIN2/OC1A/MISO_A) PD2 []1 24[1 PB4 (AMPO+/PCINT4)
(PCINT19/TXD/TXLIN/OCOA/MOSI_A) PD3 [} 2 23[1 PB3 (AMPO-/PCINT3)
(PCINT9/PSCIN1/OC1B/SS_A) PC1 [3 22[1 PC6 (ADC10-/ACMP1/PCINT14)
vce [4 211 AREF(ISRC)
GND [5 201 AGND
(PCINT10/TO/TXCAN) PC2 [6 191 AvVCC
(PCINT11/T1/RXCAN/ICP1B) PC3 [7 181 PC5 (ADC9/ACMP3/AMP1+/PCINT13)
(PCINTO/MISO/PSCOUT2A) PBO [8 17 1 PC4 (ADC8/ACMPN3/AMP1-/PCINT12)
(9 10 11 12 13 14 15 16)
| - | - | - | - | - | - | - | -
- - N < O © ~ o
o ww Ao o0oo0oo
[o T A T o B
DTN TSTqT @A
B2z EED g
2 E 20z z z 3
0OX X %500 &
O Q8 Z 4o adao s
- -
SRR RN
N 5 © = =
c R &32003030
S EE 35 < 2z £ <
S 2 2 x 9 o =
E oo Q = =
zos20 =2
) x = < 0
o 14 @ O
=2 = 8 9(
O =
a <
<
o
N
'_
Z
O
L
Note: On the engineering samples (Parts marked AT90PWM324), the ACMPNS3 alternate function is not located on

PC4. It is located on PE2.

Atmel

@% [1 PD1 (PCINT17/PSCINO/CLKO)

@ [1 PEO (PCINT24/RESET/OCD)
% [1 PCO (PCINT8/INT3/PSCOUT1A)

8 I PDO (PCINT16/PSCOUTOA)

% [PB7 (ADC4/PSCOUTOB/SCK/PCINT7)
N [I PB6 (ADC7/PSCOUT1B/PCINT6)

3 [PB5 (ADC6/INT2/ACMPN1/AMP2-/PCINT5)

N [PC7 (D2A/AMP2+/PCINT15)

ATmega16/32/64/M1/C1 [DATASHEET]

76470-AVR-01/15

Figure 1-2. ATmega32/64C1 TQFP32/QFN32 (7*7 mm) Package

o
'_
Z
O
a
N
o
_ s
3 s E
<} E £&
e o = O © Q g
Jow P a = < 3
ox =z ¥ Z oo
N § S © 00 % o
-~ N O - 0O o £ =
EEEE ZFI 3 Z
Z zZ2 Z2 Z 060 0 <
O O O O oo a0 o
O T S <
- O O O ~ O v I~
O w O o oo amom O
[T O o T O o N N s e
-1 -1 -1 1 -1 -1 -1 -1
" 32 31 30 29 28 27 26 25)
(PCINT18/0C1A/MISO_A) PD2 [1 @ 24[1 PB4 (AMPO+/PCINT4)
(PCINT19/TXD/TXLIN/OCOA/MOSI_A) PD3 [] 2 23[1 PB3 (AMPO-/PCINT3)
(PCINT9/OC1B/SS_A) PC1 []3 22[1 PC6 (ADC10-/ACMP1/PCINT14)
vce [4 21[1 AREF(ISRC)
GND [I5 20[1 AGND
(PCINT10/TO/TXCAN) PC2 []6 191 AvCC
(PCINT11/T1/RXCAN/ICP1B) PC3 [} 7 181 PC5 (ADC9/ACMP3/AMP1+/PCINT13)
(PCINTO/MISO) PBO [} 8 171 PC4 (ADC8/ACMPN3/AMP1-/PCINT12)
(9 10 11 12 13 14 15 16)
| - | - | - | - | - | - | - | -
-~ - N < O © N~ N
o ww oo o000
o T o o T o T A T A T B
8T @
oz LJEEEE
S EE 0z z z 5
SXXo5508
E @O L Z aoaoao g
z 9 O = = = S
= 0OAa § N © o Z
O 5 < % o E Qo o
L $s833Z22
SR Z2292¢%
Z Z x q Qo =
O O g Q = =
s T329 Z
x = < g
8 g
(@] >
a <
<
o
N
'_
Z
O
&
Note: On the first engineering samples (Parts marked AT90PWM324), the ACMPNS alternate function is not located

on PC4. It is located on PE2.

4 ATmega16/32/64/M1/C1 [DATASHEET]
76470-AVR-01/15

Atmel

1.1 Pin Descriptions

Table 1-1. Pin Out Description

QFN32 Pin
Number Mnemonic Type Name, Function and Alternate Function
5 GND Power Ground: 0V reference
20 AGND Power Analog Ground: 0V reference for analog part
4 VCC Power Power Supply

Analog Power Supply: This is the power supply voltage for analog
19 AvCC Power part
For a normal use this pin must be connected.

Analog Reference: reference for analog converter. This is the
reference voltage of the A/D converter. As output, can be used by
external analog

ISRC (Current Source Output)

MISO (SPI Master In Slave Out)

8 PBO I/O PSCOUT2A (PSC Module 2 Output A)
PCINTO (Pin Change Interrupt 0)
MOSI (SPI Master Out Slave In)

9 PB1 I/0 PSCOUT2B (PSC Module 2 Output B)
PCINT1 (Pin Change Interrupt 1)
ADCS5 (Analog Input Channel 5)

INT1 (External Interrupt 1 Input)

21 AREF Power

16 PB2 I/O .

ACMPNO (analog comparator 0 Negative Input)

PCINT2 (Pin Change Interrupt 2)

AMPO- (Analog Differential Amplifier 0 Negative Input)
23 PB3 I/0

PCINT3 (Pin Change Interrupt 3)

AMPO+ (Analog Differential Amplifier 0 Positive Input)
24 PB4 I/O

PCINT4 (Pin Change Interrupt 4)

ADCG6 (Analog Input Channel 6)

INT2 (External Interrupt 2 Input)

26 PB5 I/0 ACMPN1 (analog comparator 1 Negative Input)
AMP2- (Analog Differential Amplifier 2 Negative Input)
PCINTS5 (Pin Change Interrupt 5)

ADCY7 (Analog Input Channel 7)

27 PB6 1/0 PSCOUT1B (PSC Module 1 Output A)

PCINT6 (Pin Change Interrupt 6)

ADC4 (Analog Input Channel 4)

PSCOUTOB (PSC Module 0 Output B)

SCK (SPI Clock)

PCINT7 (Pin Change Interrupt 7)

PSCOUT1A (PSC Module 1 Output A)

30 PCO 1/0 INT3 (External Interrupt 3 Input)

PCINT8 (Pin Change Interrupt 8)

Note: 1. On the first engineering samples (Parts marked AT90PWM324), the ACMPNS3 alternate function is not located
on PCA4. ltis located on PE2.

28 PB7 I/0

ATmega16/32/64/M1/C1 [DATASHEET] 5
AtmeL 76470-AVR-01/15

Table 1-1. Pin Out Description (Continued)

QFN32 Pin

Number Mnemonic Type Name, Function and Alternate Function

PSCIN1 (PSC Digital Input 1)
OC1B (Timer 1 Output Compare B)
SS_A (Alternate SPI Slave Select)
PCINT9 (Pin Change Interrupt 9)
TO (Timer 0 clock input)
6 PC2 I/0 TXCAN (CAN Transmit Output)
PCINT10 (Pin Change Interrupt 10)
T1 (Timer 1 clock input)
RXCAN (CAN Receive Input)
ICP1B (Timer 1 input capture alternate B input)
PCINT11 (Pin Change Interrupt 11)
ADCS8 (Analog Input Channel 8)
AMP1- (Analog Differential Amplifier 1 Negative Input)

3 PC1 I/0

7 PC3 I/0

17 PC4 I/O .
ACMPN3 (analog comparator 3 Negative Input)

PCINT12 (Pin Change Interrupt 12)

ADC9 (Analog Input Channel 9)

AMP1+ (Analog Differential Amplifier 1 Positive Input)
18 PC5 I/0
ACMP3 (analog comparator 3 Positive Input)
PCINT13 (Pin Change Interrupt 13)

ADC10 (Analog Input Channel 10)

22 PC6 1/0 ACMP1 (analog comparator 1 Positive Input)
PCINT14 (Pin Change Interrupt 14)

D2A (DAC output)

25 PC7 I/0 AMP2+ (Analog Differential Amplifier 2 Positive Input)
PCINT15 (Pin Change Interrupt 15)

PSCOUTOA (PSC Module 0 Output A)

PCINT16 (Pin Change Interrupt 16)

PSCINO (PSC Digital Input 0)

32 PD1 I/0 CLKO (System Clock Output)

PCINT17 (Pin Change Interrupt 17)

OC1A (Timer 1 Output Compare A)

PSCIN2 (PSC Digital Input 2)

29 PDO I/0

1 PD2 I/O
MISO_A (Programming and alternate SPI Master In Slave Out)
PCINT18 (Pin Change Interrupt 18)
TXD (UART Tx data)
TXLIN (LIN Transmit Output)
OCOA (Timer 0 Output Compare A)
2 PD3 I/0

SS (SPI Slave Select)
MOSI_A (Programming and alternate Master Out SPI Slave In)

PCINT19 (Pin Change Interrupt 19)

Note: 1. On the first engineering samples (Parts marked AT90PWM324), the ACMPNS3 alternate function is not located
on PCA4. ltis located on PE2.

6 ATmega16/32/64/M1/C1 [DATASHEET]
76470-AVR-01/15 A t mel-

Table 1-1. Pin Out Description (Continued)

QFN32 Pin

Number Mnemonic Type Name, Function and Alternate Function

ADC1 (Analog Input Channel 1)
RXD (UART Rx data)
RXLIN (LIN Receive Input)
ICP1A (Timer 1 input capture alternate A input)
SCK_A (Programming and alternate SPI Clock)
PCINT20 (Pin Change Interrupt 20)
ADC2 (Analog Input Channel 2)
13 PD5 I/0 ACMP2 (analog comparator 2 Positive Input)
PCINT21 (Pin Change Interrupt 21)
ADC3 (Analog Input Channel 3)
ACMPN2 (analog comparator 2 Negative Input)

12 PD4 I/0

14 PD6 I/0

INTO (External Interrupt O Input)

PCINT22 (Pin Change Interrupt 22)

ACMPO (analog comparator 0 Positive Input)
15 PD7 I/0

PCINT23 (Pin Change Interrupt 23)
RESET (Reset Input)

31 PEO /O or | OCD (On Chip Debug I/0O)
PCINT24 (Pin Change Interrupt 24)
XTAL1 (XTAL Input)

10 PE1 1/0 OCOB (Timer 0 Output Compare B)
PCINT25 (Pin Change Interrupt 25)
XTAL2 (XTAL Output)

1 PE2 1/0 ADCO (Analog Input Channel 0)

PCINT26 (Pin Change Interrupt 26)

Note: 1. On the first engineering samples (Parts marked AT90PWM324), the ACMPNS3 alternate function is not located
on PC4. Itis located on PE2.

ATmega16/32/64/M1/C1 [DATASHEET] 7
AtmeL 76470-AVR-01/15

2.1

Overview

The Atmel® ATmega16/32/64/M1/C1 is a low-power CMOS 8-bit microcontroller based on the AVR® enhanced RISC
architecture. By executing powerful instructions in a single clock cycle, the Atmel ATmega16/32/64/M1/C1 achieves
throughputs approaching 1MIPS per MHz allowing the system designer to optimize power consumption versus processing
speed.

Block Diagram

Figure 2-1. Block Diagram
Data Bus 8-bit

e
Y
Flash . Program Statusand | R . Interrupt
Program Counter Control Unit
Memory A
L SPI
v -~ 32x8 Unit
Instruction General -
1 Purpose <l Watchdog
Register ™| Registers ™ Timer
A
o o 4 Analog
Instruction =) £ [~ | Comparators
Decoder @ g ALU
[°
l 3 < <—»{ HW LIN/UART
Control Lines S @
2 'g »
= - - Timer 0
.
Data P aia Timer 1
-~ SRAM
- ADC
EEPROM [
- DAC
1/0 Lines Raliay PR MPSC
Current Source [CAN

The AVR core combines a rich instruction set with 32 general purpose working registers. All the 32 registers are directly
connected to the Arithmetic Logic Unit (ALU), allowing two independent registers to be accessed in one single instruction
executed in one clock cycle. The resulting architecture is more code efficient while achieving throughputs up to ten times
faster than conventional CISC microcontrollers.

The Atmel ATmega16/32/64/M1/C1 provides the following features: 16K/32K/64K bytes of In-System Programmable Flash
with Read-while-write capabilities, 512/1024/2048 bytes EEPROM, 1024/2048/4096 bytes SRAM, 27 general purpose 1/O
lines, 32 general purpose working registers, one Motor Power Stage Controller, two flexible Timer/Counters with compare
modes and PWM, one UART with HW LIN, an 11-channel 10-bit ADC with two differential input stages with programmable
gain, a 10-bit DAC, a programmable Watchdog Timer with Internal Individual Oscillator, an SPI serial port, an On-chip Debug
system and four software selectable power saving modes.

ATmega16/32/64/M1/C1 [DATASHEET]
76470-AVR-01/15

Atmel

The Idle mode stops the CPU while allowing the SRAM, Timer/Counters, SPI ports, CAN, LIN/UART and interrupt system to
continue functioning. The Power-down mode saves the register contents but freezes the Oscillator, disabling all other chip
functions until the next interrupt or Hardware Reset. The ADC noise reduction mode stops the CPU and all /O modules
except ADC, to minimize switching noise during ADC conversions. In Standby mode, the Crystal/Resonator Oscillator is
running while the rest of the device is sleeping. This allows very fast start-up combined with low power consumption.

The device is manufactured using Atmel’s high-density nonvolatile memory technology. The On-chip ISP Flash allows the
program memory to be reprogrammed in-system through an SPI serial interface, by a conventional nonvolatile memory
programmer, or by an On-chip Boot program running on the AVR core. The boot program can use any interface to download
the application program in the application Flash memory. Software in the boot flash section will continue to run while the
application flash section is updated, providing true read-while-write operation. By combining an 8-bit RISC CPU with in-
system self-programmable flash on a monolithic chip, the Atmel ATmega16/32/64/M1/C1 is a powerful microcontroller that
provides a highly flexible and cost effective solution to many embedded control applications.

The ATmega16/32/64/M1/C1 AVR is supported with a full suite of program and system development tools including: C
compilers, macro assemblers, program debugger/simulators, in-circuit emulators, and evaluation kits.

2.2 Automotive Quality Grade
The Atmel® ATmega16/32/64/M1/C1 have been developed and manufactured according to the most stringent requirements
of the international standard ISO-TS-16949. This data sheet contains limit values extracted from the results of extensive
characterization (Temperature and Voltage). The quality and reliability of the ATmega16/32/64/M1/C1 have been verified
during regular product qualification as per AEC-Q100 grade 1.
As indicated in the ordering information paragraph, the products are available in only one temperature grade.
Table 2-1. Temperature Grade Identification for Automotive Products
Temperature Temperature Identifier Comments
—40, +125 Z Full automotive temperature range
2.3 Pin Descriptions
23.1 VCC
Digital supply voltage.
232 GND
Ground.
2.3.3 PortB (PB7..PB0)
Port B is an 8-bit bi-directional 1/0 port with internal pull-up resistors (selected for each bit). The Port B output buffers have
symmetrical drive characteristics with both high sink and source capability. As inputs, Port B pins that are externally pulled
low will source current if the pull-up resistors are activated. The Port B pins are tri-stated when a reset condition becomes
active, even if the clock is not running.
Port B also serves the functions of various special features of the Atmel ATmega16/32/64/M1/C1 as listed in Section 9.3.2
“Alternate Functions of Port B” on page 58.
2.3.4 Port C (PC7..PCO)
Port C is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port C output buffers have
symmetrical drive characteristics with both high sink and source capability. As inputs, Port C pins that are externally pulled
low will source current if the pull-up resistors are activated. The Port C pins are tri-stated when a reset condition becomes
active, even if the clock is not running.
Port C also serves the functions of special features of the ATmega16/32/64/M1/C1 as listed in Section 9.3.3 “Alternate
Functions of Port C” on page 61.
ATmega16/32/64/M1/C1 [DATASHEET 9
Atmel 9 []

76470-AVR-01/15

2.3.5 Port D (PD7..PDO)

Port D is an 8-bit bi-directional 1/O port with internal pull-up resistors (selected for each bit). The port D output buffers have
symmetrical drive characteristics with both high sink and source capability. As inputs, port D pins that are externally pulled
low will source current if the pull-up resistors are activated. The port D pins are tri-stated when a reset condition becomes
active, even if the clock is not running.

Port D also serves the functions of various special features of the Atmel® ATmega16/32/64/M1/C1 as listed on 64.

2.3.6 Port E (PE2..0) RESET/ XTAL1/ XTAL2

Port E is an 3-bit bi-directional 1/0O port with internal pull-up resistors (selected for each bit). The port E output buffers have
symmetrical drive characteristics with both high sink and source capability. As inputs, port E pins that are externally pulled
low will source current if the pull-up resistors are activated. The Port E pins are tri-stated when a reset condition becomes
active, even if the clock is not running.

If the RSTDISBL fuse is programmed, PEO is used as an I/O pin. Note that the electrical characteristics of PEO differ from
those of the other pins of Port E.

If the RSTDISBL fuse is unprogrammed, PEO is used as a Reset input. A low level on this pin for longer than the minimum
pulse length will generate a Reset, even if the clock is not running. The minimum pulse length is given in Table 7-1 on page
39. Shorter pulses are not guaranteed to generate a reset.

Depending on the clock selection fuse settings, PE1 can be used as input to the inverting oscillator amplifier and input to the
internal clock operating circuit.

Depending on the clock selection fuse settings, PE2 can be used as output from the inverting oscillator amplifier.

The various special features of Port E are elaborated in Section 9.3.5 “Alternate Functions of Port E” on page 67 and Section
5.1 “Clock Systems and their Distribution” on page 25.

23.7 AvCC

AVCC is the supply voltage pin for the A/D converter, D/A converter, current source. It should be externally connected to
V¢, even if the ADC, DAC are not used. If the ADC is used, it should be connected to V¢ through a low-pass filter (see
Section 18.6.2 “Analog Noise Canceling Techniques” on page 204).

2.3.8 AREF

This is the analog reference pin for the A/D converter.

24 About Code Examples

This documentation contains simple code examples that briefly show how to use various parts of the device. These code
examples assume that the part specific header file is included before compilation. Be aware that not all C compiler vendors
include bit definitions in the header files and interrupt handling in C is compiler dependent. Please confirm with the C
compiler documentation for more details.

10 ATmega16/32/64/M1/C1 [DATASHEET]
76470-AVR-01/15 Atmel

3.1

3.2

Atmel

AVR CPU Core

Introduction

This section discusses the AVR® core architecture in general. The main function of the CPU core is to ensure correct
program execution. The CPU must therefore be able to access memories, perform calculations, control peripherals, and
handle interrupts.

Architectural Overview

Figure 3-1. Block Diagram of the AVR Architecture
Data Bus 8-bit

-
Y
Flash | Program | Status and |
Program Counter Control
Memory B
Y - 32x8 - Interr_upt
Unit
Instruction General -
Redgist Purpose
egister] Registers SPI
Unit
\
Instruction o 2
£ 2 _ | watchdog
Decoder @ g ALU > o
o]
| 3| 2
< S
Control Lines © o e Analog
2 S » Comparator
a £
<+ |/O Module 1
]
Data -
o SRAM
<+ |/O Module 2
-1 |/O Module n
EEPROM -—p-
1/0 Lines -

\

In order to maximize performance and parallelism, the AVR uses a Harvard architecture — with separate memories and
buses for program and data. Instructions in the program memory are executed with a single level pipelining. While one
instruction is being executed, the next instruction is pre-fetched from the program memory. This concept enables instructions
to be executed in every clock cycle. The program memory is in-system reprogrammable Flash memory.

The fast-access register file contains 32 x 8-bit general purpose working registers with a single clock cycle access time. This
allows single-cycle arithmetic logic unit (ALU) operation. In a typical ALU operation, two operands are output from the
register file, the operation is executed, and the result is stored back in the register file — in one clock cycle.

ATmega16/32/64/M1/C1 [DATASHEET] 11
76470-AVR-01/15

Six of the 32 registers can be used as three 16-bit indirect address register pointers for data space addressing — enabling
efficient address calculations. One of the these address pointers can also be used as an address pointer for look up tables in
Flash program memory. These added function registers are the 16-bit X-, Y-, and Z-register, described later in this section.

The ALU supports arithmetic and logic operations between registers or between a constant and a register. Single register
operations can also be executed in the ALU. After an arithmetic operation, the Status Register is updated to reflect
information about the result of the operation.

Program flow is provided by conditional and unconditional jump and call instructions, able to directly address the whole
address space. Most AVR instructions have a single 16-bit word format. Every program memory address contains a 16- or
32-bit instruction.

Program flash memory space is divided in two sections, the boot program section and the application program section. Both
sections have dedicated Lock bits for write and read/write protection. The SPM (store program memory) instruction that
writes into the application flash memory section must reside in the boot program section.

during interrupts and subroutine calls, the return address program counter (PC) is stored on the stack. The stack is
effectively allocated in the general data SRAM, and consequently the stack size is only limited by the total SRAM size and
the usage of the SRAM. All user programs must initialize the SP in the reset routine (before subroutines or interrupts are
executed). The stack pointer (SP) is read/write accessible in the I/O space. The data SRAM can easily be accessed through
the five different addressing modes supported in the AVR architecture.

The memory spaces in the AVR® architecture are all linear and regular memory maps.

A flexible interrupt module has its control registers in the 1/0 space with an additional global interrupt enable bit in the status
register. All interrupts have a separate interrupt vector in the interrupt vector table. The interrupts have priority in accordance
with their interrupt vector position. The lower the interrupt vector address, the higher is the priority.

The 1/0 memory space contains 64 addresses for CPU peripheral functions as control registers, SPI, and other 1/O functions.
The I/O memory can be accessed directly, or as the data space locations following those of the register file, 0x20 - Ox5F. In
addition, the Atmel ATmega16/32/64/M1/C1 has extended 1/O space from 0x60 - OxFF in SRAM where only the
ST/STS/STD and LD/LDS/LDD instructions can be used.

3.3 ALU - Arithmetic Logic Unit

The high-performance AVR ALU operates in direct connection with all the 32 general purpose working registers. Within a
single clock cycle, arithmetic operations between general purpose registers or between a register and an immediate are
executed. The ALU operations are divided into three main categories — arithmetic, logical, and bit-functions. Some
implementations of the architecture also provide a powerful multiplier supporting both signed/unsigned multiplication and
fractional format. See the “Instruction Set” section for a detailed description.

34 Status Register

The status register contains information about the result of the most recently executed arithmetic instruction. This
information can be used for altering program flow in order to perform conditional operations. Note that the status register is
updated after all ALU operations, as specified in the Instruction Set Reference. This will in many cases remove the need for
using the dedicated compare instructions, resulting in faster and more compact code.

The status register is not automatically stored when entering an interrupt routine and restored when returning from an
interrupt. This must be handled by software.

The AVR Status Register — SREG - is defined as:

Bit 7 6 5 4 3 2 1 0
| + | 7 | H [s | v N Z C | SREG

Read/Write RIW R/W R/W RIW R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

- Bit 7 - I: Global Interrupt Enable

The global interrupt enable bit must be set to enabled the interrupts. The individual interrupt enable control is then performed
in separate control registers. If the global interrupt enable register is cleared, none of the interrupts are enabled independent
of the individual interrupt enable settings. The I-bit is cleared by hardware after an interrupt has occurred, and is set by the
RETI instruction to enable subsequent interrupts. The I-bit can also be set and cleared by the application with the SEI and
CLI instructions, as described in the instruction set reference.

12 ATmega16/32/64/M1/C1 [DATASHEET]
76470-AVR-01/15 A t mel-

« Bit 6 — T: Bit Copy Storage

The bit copy instructions BLD (Bit LoaD) and BST (Bit STore) use the T-bit as source or destination for the operated bit. A bit
from a register in the register file can be copied into T by the BST instruction, and a bit in T can be copied into a bit in a
register in the register file by the BLD instruction.

« Bit 5 - H: Half Carry Flag

The half carry flag H indicates a half carry in some arithmetic operations. Half carry Is useful in BCD arithmetic. See the
“Instruction Set Description” for detailed information.

« Bit4-S:SignBit,S=N®V

The S-bit is always an exclusive or between the negative flag N and the two’s complement overflow flag V. See the
“Instruction Set Description” for detailed information.

« Bit 3 -V: Two’s Complement Overflow Flag

The two’s complement overflow flag V supports two’s complement arithmetics. See the “Instruction Set Description” for
detailed information.

« Bit 2 — N: Negative Flag

The negative flag N indicates a negative result in an arithmetic or logic operation. See the “Instruction Set Description” for
detailed information.

e Bit1-2Z: Zero Flag

The zero flag Z indicates a zero result in an arithmetic or logic operation. See the “Instruction Set Description” for detailed
information.

- Bit 0- C: Carry Flag

The carry flag C indicates a carry in an arithmetic or logic operation. See the “Instruction Set Description” for detailed
information.

3.5 General Purpose Register File
The register file is optimized for the AVR enhanced RISC instruction set. In order to achieve the required performance and
flexibility, the following input/output schemes are supported by the register file:
e One 8-bit output operand and one 8-bit result input
e Two 8-bit output operands and one 8-bit result input
e Two 8-bit output operands and one 16-bit result input
e One 16-bit output operand and one 16-bit result input

ATmega16/32/64/M1/C1 [DATASHEET] 13
Atmel 76470-AVR—01/15

Figure 3-2 shows the structure of the 32 general purpose working registers in the CPU.

Figure 3-2. AVR CPU General Purpose Working Registers

7 0 Addr.
RO 0x00
R1 0x01
R2 0x02
R13 0x0D
General R14 0x0E
Purpose R15 OxOF
Working R16 0x10
Registers R17 0x11
R26 O0x1A X-register Low Byte
R27 0x1B X-register High Byte
R28 0x1C Y-register Low Byte
R29 0x1D Y-register High Byte
R30 Ox1E Z-register Low Byte
R31 Ox1F Z-register High Byte

Most of the instructions operating on the register file have direct access to all registers, and most of them are single cycle
instructions.

As shown in Figure 3-2, each register is also assigned a data memory address, mapping them directly into the first 32
locations of the user data space. Although not being physically implemented as SRAM locations, this memory organization
provides great flexibility in access of the registers, as the X-, Y- and Z-pointer registers can be set to index any register in the
file.

3.5.1 The X-register, Y-register, and Z-register

The registers R26..R31 have some added functions to their general purpose usage. These registers are 16-bit address
pointers for indirect addressing of the data space. The three indirect address registers X, Y, and Z are defined as described
in

Figure 3-3.

Figure 3-3. The X-, Y-, and Z-registers

15 XH XL
X-register | 7 0 | 7 0 |
R27 (Ox1B) R26 (Ox1A)
15 YH YL 0
Y-register | 7 0 | 7 0 |
R29 (0x1D) R28 (0x1C)
15 ZH ZL
Z-register | 7 0 | 7 0 |
R31 (Ox1F) R30 (OX1E)

In the different addressing modes these address registers have functions as fixed displacement, automatic increment, and
automatic decrement (see the instruction set reference for details).

14 ATmegal16/32/64/M1/C1 [DATASHEET]
76470-AVR-01/15 A t mel-

3.6

3.7

Stack Pointer

The stack is mainly used for storing temporary data, for storing local variables and for storing return addresses after
interrupts and subroutine calls. The stack pointer register always points to the top of the stack. Note that the stack is
implemented as growing from higher memory locations to lower memory locations. This implies that a Stack PUSH
command decreases the stack pointer.

The stack pointer points to the data SRAM stack area where the subroutine and interrupt stacks are located. This stack
space in the data SRAM must be defined by the program before any subroutine calls are executed or interrupts are enabled.
The stack pointer must be set to point above 0x100. The stack pointer is decremented by one when data is pushed onto the
stack with the PUSH instruction, and it is decremented by two when the return address is pushed onto the stack with
subroutine call or interrupt. The stack pointer is incremented by one when data is popped from the stack with the POP
instruction, and it is incremented by two when data is popped from the stack with return from subroutine RET or return from
interrupt RETI.

The AVR® stack pointer is implemented as two 8-bit registers in the 1/0 space. The number of bits actually used is
implementation dependent. Note that the data space in some implementations of the AVR architecture is so small that only
SPL is needed. In this case, the SPH Register will not be present.

Bit 15 14 13 12 11 10 9 8

SP15 SP14 SP13 SP12 SP11 SP10 SP9 SP8 SPH
SP7 SP6 SP5 SP4 SP3 SP2 SP1 SPO SPL
7 6 5 4 3 2 1 0
Read/Write R/W R/W R/W R/W R/W R/W R/IW R/W
R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value Top address of the SRAM (0x04FF/0x08FF/0x10FF)

Instruction Execution Timing

This section describes the general access timing concepts for instruction execution. The AVR CPU is driven by the CPU
clock clkepy, directly generated from the selected clock source for the chip. No internal clock division is used.

Figure 3-4 shows the parallel instruction fetches and instruction executions enabled by the Harvard architecture and the fast-
access Register File concept. This is the basic pipelining concept to obtain up to 1 MIPS per MHz with the corresponding
unique results for functions per cost, functions per clocks, and functions per power-unit.

Figure 3-4. The Parallel Instruction Fetches and Instruction Executions
T1 T2 T3 T4

ckeey 4 N/ N1 _/ _
1st Instruction Fetch —'-<:)

1st Instruction Execute —Hh

2nd Instruction Fetch 7

2nd Instruction Execute
3rd Instruction Fetch

3rd Instruction Execute
4th Instruction Fetch

ATmega16/32/64/M1/C1 [DATASHEET] 15
Atmel ? [)

76470-AVR-01/15

Figure 3-5 shows the internal timing concept for the Register File. In a single clock cycle an ALU operation using two register
operands is executed, and the result is stored back to the destination register.

Figure 3-5. Single Cycle ALU Operation
T T2 T3 T4

clkepy J__/__/__/__
Total Execution Time —'-<:)

Register Operands Fetch :\‘) : :
ALU Operation Execute E {) E E
Result Write Back : {) : :

1

3.8 Reset and Interrupt Handling

The AVR® provides several different interrupt sources. These interrupts and the separate reset vector each have a separate
program vector in the program memory space. All interrupts are assigned individual enable bits which must be written logic
one together with the global interrupt enable bit in the status register in order to enable the interrupt. Depending on the
program counter value, interrupts may be automatically disabled when boot lock bits BLB02 or BLB12 are programmed. This
feature improves software security. See Section 25. “Memory Programming” on page 255 for details.

The lowest addresses in the program memory space are by default defined as the reset and interrupt vectors. The complete
list of vectors is shown in Section 8. “Interrupts” on page 47. The list also determines the priority levels of the different
interrupts. The lower the address the higher is the priority level. RESET has the highest priority, and next is ANACOMPO —
the analog comparator 0 interrupt. The interrupt vectors can be moved to the start of the boot flash section by setting the
IVSEL bit in the MCU control register (MCUCR). Refer to Section 8. “Interrupts” on page 47 for more information. The reset
vector can also be moved to the start of the boot flash section by programming the BOOTRST fuse, see Section 24. “Boot
Loader Support — Read-while-write Self-Programming ATmega16/32/64/M1/C1” on page 241.

3.8.1 Interrupt Behavior

When an interrupt occurs, the global interrupt enable I-bit is cleared and all interrupts are disabled. The user software can
write logic one to the I-bit to enable nested interrupts. All enabled interrupts can then interrupt the current interrupt routine.
The I-bit is automatically set when a return from interrupt instruction — RETI — is executed.

There are basically two types of interrupts. The first type is triggered by an event that sets the interrupt flag. For these
interrupts, the program counter is vectored to the actual interrupt vector in order to execute the interrupt handling routine,
and hardware clears the corresponding interrupt flag. Interrupt flags can also be cleared by writing a logic one to the flag bit
position(s) to be cleared. If an interrupt condition occurs while the corresponding interrupt enable bit is cleared, the interrupt
flag will be set and remembered until the interrupt is enabled, or the flag is cleared by software. Similarly, if one or more
interrupt conditions occur while the global interrupt enable bit is cleared, the corresponding interrupt flag(s) will be set and
remembered until the global interrupt enable bit is set, and will then be executed by order of priority.

The second type of interrupts will trigger as long as the interrupt condition is present. These interrupts do not necessarily
have interrupt flags. If the interrupt condition disappears before the interrupt is enabled, the interrupt will not be triggered.

When the AVR exits from an interrupt, it will always return to the main program and execute one more instruction before any
pending interrupt is served.

Note that the status register is not automatically stored when entering an interrupt routine, nor restored when returning from
an interrupt routine. This must be handled by software.

When using the CLI instruction to disable interrupts, the interrupts will be immediately disabled. No interrupt will be executed
after the CLI instruction, even if it occurs simultaneously with the CLI instruction. The following example shows how this can
be used to avoid interrupts during the timed EEPROM write sequence.

16 ATmegal16/32/64/M1/C1 [DATASHEET]
76470-AVR-01/15 A t mel-

Assembly Code Example

in rl6, SREG ; Store SREG value

cli ; disable interrupts during timed sequence
sbi EECR, EEMWE ; Sstart EEPROM write

sbi EECR, EEWE

out SREG, rl6 ; restore SREG value (I-bit)

C Code Example

char cSREG;

cSREG = SREG; /* store SREG value */

/* disable interrupts during timed sequence */

_CLI();

EECR |= (1<<EEMWE); /* start EEPROM write */

EECR |= (1<<EEWE);

SREG = cSREG; /* restore SREG value (I-bit) */

When using the SEI instruction to enable interrupts, the instruction following SEI will be executed before any pending
interrupts, as shown in this example.

Assembly Code Example

sei ; set Global Interrupt Enable

sleep ; enter sleep, waiting for interrupt
; note: will enter sleep before any pending

; interrupt (s)

C Code Example

_SEI(); /* set Global Interrupt Enable */
_SLEEP(); /* enter sleep, waiting for interrupt */
/* note: will enter sleep before any pending interrupt(s) */

3.8.2 Interrupt Response Time
The interrupt execution response for all the enabled AVR® interrupts is four clock cycles minimum. After four clock cycles the
program vector address for the actual interrupt handling routine is executed. during this four clock cycle period, the program
counter is pushed onto the stack. The vector is normally a jump to the interrupt routine, and this jump takes three clock
cycles. If an interrupt occurs during execution of a multi-cycle instruction, this instruction is completed before the interrupt is
served. If an interrupt occurs when the MCU is in sleep mode, the interrupt execution response time is increased by four
clock cycles. This increase comes in addition to the start-up time from the selected sleep mode.
A return from an interrupt handling routine takes four clock cycles. during these four clock cycles, the program counter (two
bytes) is popped back from the stack, the stack pointer is incremented by two, and the I-bit in SREG is set.

/It L ATmega16/32/64/M1/C1 [DATASHEET] 17

me 76470-AVR-01/15

41

4.2

18

Memories

This section describes the different memories in the Atmel® ATmega16/32/64/M1/C1. The AVR architecture has two main
memory spaces, the data memory and the program memory space. In addition, the Atmel ATmega16/32/64/M1/C1 features
an EEPROM Memory for data storage. All three memory spaces are linear and regular.

In-system Reprogrammable Flash Program Memory

The Atmel ATmega16/32/64/M1/C1 contains 16K/32K/64K bytes on-chip in-system reprogrammable flash memory for
program storage. Since all AVR® instructions are 16 or 32 bits wide, the Flash is organized as 8K x 16, 16K x 16 , 32K x 16.
For software security, the flash program memory space is divided into two sections, boot program section and application
program section.

The flash memory has an endurance of at least 10,000 write/erase cycles. The Atmel ATmega16/32/64/M1/C1 program
counter (PC) is 14/15 bits wide, thus addressing the 8K/16K/32K program memory locations. The operation of boot program
section and associated boot lock bits for software protection are described in detail in Section 24. “Boot Loader Support —
Read-while-write Self-Programming ATmega16/32/64/M1/C1” on page 241. Section 25. “Memory Programming” on page
255 contains a detailed description on flash programming in SPI or parallel programming mode.

Constant tables can be allocated within the entire program memory address space (see the LPM — Load Program Memory.
Timing diagrams for instruction fetch and execution are presented in Section 3.7 “Instruction Execution Timing” on page 15.

Figure 4-1. Program Memory Map

Program Memory

0x0000

Application Flash Section

|

Boot Flash Section
0x1FFF/0x3FFF/0x7F

SRAM Data Memory

Figure 4-2 shows how the Atmel ATmega16/32/64/M1/C1 SRAM memory is organized.

The Atmel ATmega16/32/64/M1/C1 is a complex microcontroller with more peripheral units than can be supported within the
64 locations reserved in the Opcode for the IN and OUT instructions. For the extended I/O space from 0x60 - OxFF in SRAM,
only the ST/STS/STD and LD/LDS/LDD instructions can be used.

The lower 2304 data memory locations address both the register File, the I/O memory, extended I/O memory, and the
internal data SRAM. The first 32 locations address the register file, the next 64 location the standard 1/0O memory, then 160
locations of extended /O memory, and the next 1024/2048/4096 locations address the internal data SRAM.

The five different addressing modes for the data memory cover: Direct, Indirect with Displacement, Indirect, Indirect with Pre-
decrement, and Indirect with Post-increment. In the register File, registers R26 to R31 feature the indirect addressing pointer
registers.

ATmega16/32/64/M1/C1 [DATASHEET]
76470-AVR-01/15 Atmel

The direct addressing reaches the entire data space.
The Indirect with Displacement mode reaches 63 address locations from the base address given by the Y- or Z-register.

When using register indirect addressing modes with automatic pre-decrement and post-increment, the address registers X,
Y, and Z are decremented or incremented.

The 32 general purpose working registers, 64 1/O registers, 160 extended I/O registers, and the 1024/2048/4096 bytes of
internal data SRAM in the Atmel® ATmega16/32/64/M1/C1 are all accessible through all these addressing modes. The
register file is described in Section 3.5 “General Purpose Register File” on page 13.

Figure 4-2. Data Memory Map for 1024/2048/4096 Internal SRAM

Data Memory

32 Registers 0x0000 - 0x001F

64 1/0 Registers 0x0020 - 0x005F

160 Ext I/O Registers | 0x0060 - 0x00FF
Internal SRAM 0x0100

(1024x8)

(2048x8)
(4096x8)

0x04FF/0x08FF/0x10FF

421 SRAM Data Access Times
This section describes the general access timing concepts for internal memory access. The internal data SRAM access is
performed in two clk¢gpy cycles as described in Figure 4-3 on page 19.
Figure 4-3. On-chip Data SRAM Access Cycles
T T2 T3
oy S N N ___
Address : Compute Address : X Address valid !
Data ; —)
i i : Write
WR : i/ P\
Data 5 —()
i i i Read
RD : / AN
\ /
V
Memory Access Instruction Next Instruction
ATmega16/32/64/M1/C1 [DATASHEET 19
Atmel 9 []

76470-AVR-01/15

4.3 EEPROM Data Memory

The Atmel® ATmega16/32/64/M1/C1 contains 512/1024/2048 bytes of data EEPROM memory. It is organized as a separate
data space, in which single bytes can be read and written. The EEPROM has an endurance of at least 100,000 write/erase
cycles. The access between the EEPROM and the CPU is described in the following, specifying the EEPROM Address
Registers, the EEPROM Data Register, and the EEPROM Control Register.

For a detailed description of SPI and Parallel data downloading to the EEPROM, see Section 25.9 “Serial Downloading” on
page 270, and Section 25.6 “Parallel Programming Parameters, Pin Mapping, and Commands” on page 259 respectively.

4.3.1 EEPROM Read/Write Access

The EEPROM Access Registers are accessible in the I/O space.

The write access time for the EEPROM is given in Table 4-2. A self-timing function, however, lets the user software detect
when the next byte can be written. If the user code contains instructions that write the EEPROM, some precautions must be
taken. In heavily filtered power supplies, V. is likely to rise or fall slowly on power-up/down. This causes the device for
some period of time to run at a voltage lower than specified as minimum for the clock frequency used. Section 4.3.5
“Preventing EEPROM Corruption” on page 23 for details on how to avoid problems in these situations.

In order to prevent unintentional EEPROM writes, a specific write procedure must be followed. Refer to the description of the
EEPROM Control Register for details on this.

When the EEPROM is read, the CPU is halted for four clock cycles before the next instruction is executed. When the
EEPROM is written, the CPU is halted for two clock cycles before the next instruction is executed.

4.3.2 The EEPROM Address Registers — EEARH and EEARL

Bit 15 14 13 12 1 10 9 8
- EEAR10 | EEAR9 | EEARS | EEARH
EEAR7 | EEAR6 | EEAR5 | EEAR4 | EEAR3 | EEAR2 | EEAR1 | EEARO | EEARL

7 6 5 4 3 2 1 0
Read/Write R R R R R R/W R/W R/W
R/W R/W R/W R/W R/W R/wW R/W RW
Initial Value 0 0 0 0 0 X X X
X X X X X X X X

- Bits 15.11 — Reserved Bits
These bits are reserved bits in the ATmega16/32/64/M1/C1 and will always read as zero.
- Bits 9..0 - EEAR10..0: EEPROM Address

The EEPROM address registers — EEARH and EEARL specify the EEPROM address in the 512/1024/2048 bytes EEPROM
space. The EEPROM data bytes are addressed linearly between 0 and 511/1023/2047. The initial value of EEAR is
undefined. A proper value must be written before the EEPROM may be accessed.

4.3.3 The EEPROM Data Register — EEDR

Bit 7 6 5 4 3 2 1 0
| EEDR7 | EEDR6 | EEDR5 | EEDR4 | EEDR3 | EEDR2 | EEDR1 | EEDRO | EEDR
Read/Write R/W RIW R/W R/W R/IW RIW RIW RIW
Initial Value 0 0 0 0 0 0 0 0

« Bits 7..0 - EEDR7.0: EEPROM Data

For the EEPROM write operation, the EEDR register contains the data to be written to the EEPROM in the address given by
the EEAR register. For the EEPROM read operation, the EEDR contains the data read out from the EEPROM at the address
given by EEAR.

20 ATmega16/32/64/M1/C1 [DATASHEET]
76470-AVR-01/15 A t mel-

4.3.4 The EEPROM Control Register — EECR

Bit 7 6 5 4 3 2 1 0

| - | - |EEPM1|EEPMO | EERIE | EEMWE | EEWE | EERE | EECR
Read/Write R R R/W R/W R/W R/W RIW RIW
Initial Value 0 0 X X 0 0 X 0

- Bits 7..6 — Reserved Bits
These bits are reserved bits in the ATmega16/32/64/M1/C1 and will always read as zero.
- Bits 5..4 - EEPM1 and EEPMO0: EEPROM Programming Mode Bits

The EEPROM Programming mode bit setting defines which programming action that will be triggered when writing EEWE. It
is possible to program data in one atomic operation (erase the old value and program the new value) or to split the Erase
and Write operations in two different operations. The Programming times for the different modes are shown in Table 4-1.
While EEWE is set, any write to EEPMn will be ignored. during reset, the EEPMn bits will be reset to 0b00 unless the
EEPROM is busy programming.

Table 4-1. EEPROM Mode Bits

EEPM1 EEPMO Programming Time Operation
0 0 3.4ms Erase and write in one operation (atomic operation)
0 1 1.8ms Erase only
1 0 1.8ms Write only
1 1 - Reserved for future use

- Bit 3 - EERIE: EEPROM Ready Interrupt Enable

Writing EERIE to one enables the EEPROM ready Interrupt if the | bit in SREG is set. Writing EERIE to zero disables the
interrupt. The EEPROM ready interrupt generates a constant interrupt when EEWE is cleared. The interrupt will not be
generated during EEPROM write or SPM.

- Bit 2 - EEMWE: EEPROM Master Write Enable

The EEMWE bit determines whether setting EEWE to one causes the EEPROM to be written. When EEMWE is set, setting
EEWE within four clock cycles will write data to the EEPROM at the selected address If EEMWE is zero, setting EEWE will
have no effect. When EEMWE has been written to one by software, hardware clears the bit to zero after four clock cycles.
See the description of the EEWE bit for an EEPROM write procedure.

- Bit1- EEWE: EEPROM Write Enable

The EEPROM Write Enable Signal EEWE is the write strobe to the EEPROM. When address and data are correctly set up,
the EEWE bit must be written to one to write the value into the EEPROM. The EEMWE bit must be written to one before a
logical one is written to EEWE, otherwise no EEPROM write takes place. The following procedure should be followed when
writing the EEPROM (the order of steps 3 and 4 is not essential):

1. Wait until EEWE becomes zero.

2. Wait until SPMEN (Store Program Memory Enable) in SPMCSR (Store Program Memory control and status regis-
ter) becomes zero.

Write new EEPROM address to EEAR (optional).

Write new EEPROM data to EEDR (optional).

Write a logical one to the EEMWE bit while writing a zero to EEWE in EECR.
6. Within four clock cycles after setting EEMWE, write a logical one to EEWE.

o ko

The EEPROM can not be programmed during a CPU write to the Flash memory. The software must check that the Flash
programming is completed before initiating a new EEPROM write. Step 2 is only relevant if the software contains a Boot
Loader allowing the CPU to program the Flash. If the Flash is never being updated by the CPU, step 2 can be omitted. See
Section 24. “Boot Loader Support — Read-while-write Self-Programming ATmega16/32/64/M1/C1” on page 241 for details
about Boot programming.

ATmega16/32/64/M1/C1 [DATASHEET] 21
AtmeL 76470-AVR-01/15

Caution: Caution: An interrupt between step 5 and step 6 will make the write cycle fail, since the EEPROM master write
enable will time-out. If an interrupt routine accessing the EEPROM is interrupting another EEPROM access,
the EEAR or EEDR register will be modified, causing the interrupted EEPROM access to fail. It is
recommended to have the global interrupt flag cleared during all the steps to avoid these problems.

When the write access time has elapsed, the EEWE bit is cleared by hardware. The user software can poll this
bit and wait for a zero before writing the next byte. When EEWE has been set, the CPU is halted for two cycles
before the next instruction is executed.

- Bit 0 - EERE: EEPROM Read Enable

The EEPROM read enable signal EERE is the read strobe to the EEPROM. When the correct address is set up in the EEAR
register, the EERE bit must be written to a logic one to trigger the EEPROM read. The EEPROM read access takes one
instruction, and the requested data is available immediately. When the EEPROM is read, the CPU is halted for four cycles
before the next instruction is executed.

The user should poll the EEWE bit before starting the read operation. If a write operation is in progress, it is neither possible
to read the EEPROM, nor to change the EEAR register.

The calibrated oscillator is used to time the EEPROM accesses. Table 4-2 lists the typical programming time for EEPROM
access from the CPU.

Table 4-2. EEPROM Programming Time.

Number of Calibrated RC Oscillator Cycles Typ Programming Time

EEPROM write (from
CPU) 26368 3.3ms
The following code examples show one assembly and one C function for writing to the EEPROM. The examples assume
that interrupts are controlled (e.g. by disabling interrupts globally) so that no interrupts will occur during execution of these
functions. The examples also assume that no flash boot loader is present in the software. If such code is present, the
EEPROM write function must also wait for any ongoing SPM command to finish.
Assembly Code Example

EEPROM_write:

; Wait for completion of previous write

sbic EECR, EEWE

rjmp EEPROM_write

; Set up address (rl8:rl17) in address register
out EEARH, rl8

out EEARL, rl7

; Write data (rlé6é) to data register
out EEDR, rl6

; Write logical one to EEMWE

sbi EECR, EEMWE

; Start eeprom write by setting EEWE
sbi EECR, EEWE

ret

C Code Example
void EEPROM_write (unsigned int uiAddress, unsigned char ucData)

{

/* Wait for completion of previous write */
while (EECR & (1<<EEWE))

7
/* Set up address and data registers */
EEAR = uiAddress;
EEDR = ucData;
/* Write logical one to EEMWE */
EECR |= (1<<EEMWE);
/* Start eeprom write by setting EEWE */
EECR |= (1<<EEWE);

22 ATmega16/32/64/M1/C1 [DATASHEET]
76470-AVR-01/15 A t mel-

The next code examples show assembly and C functions for reading the EEPROM. The examples assume that interrupts
are controlled so that no interrupts will occur during execution of these functions.

Assembly Code Example

EEPROM_read:
; Wait for completion of previous write

sbic EECR, EEWE

rjmp EEPROM_read

; Set up address (rl18:rl17) in address register
out EEARH, rl8

out EEARL, rl7

; Start eeprom read by writing EERE

sbi EECR, EERE

; Read data from data register

in rl6,EEDR

ret

C Code Example

unsigned char EEPROM_read (unsigned int uiAddress)
{
/* Wait for completion of previous write */
while (EECR & (1<<EEWE))
7
/* Set up address register */
EEAR = uiAddress;
/* Start eeprom read by writing EERE */
EECR |= (1<<EERE);
/* Return data from data register */
return EEDR;

4.3.5 Preventing EEPROM Corruption

during periods of low V¢ the EEPROM data can be corrupted because the supply voltage is too low for the CPU and the
EEPROM to operate properly. These issues are the same as for board level systems using EEPROM, and the same design
solutions should be applied.

An EEPROM data corruption can be caused by two situations when the voltage is too low. First, a regular write sequence to
the EEPROM requires a minimum voltage to operate correctly. Secondly, the CPU itself can execute instructions incorrectly,
if the supply voltage is too low.

EEPROM data corruption can easily be avoided by following this design recommendation:

Keep the AVR® RESET active (low) during periods of insufficient power supply voltage. This can be done by enabling the
internal Brown-out Detector (BOD). If the detection level of the internal BOD does not match the needed detection level, an
external low V reset Protection circuit can be used. If a reset occurs while a write operation is in progress, the write
operation will be completed provided that the power supply voltage is sufficient.

4.4 1/0 Memory
The 1/O space definition of the ATmega16/32/64/M1/C1 is shown in Section 29. “Register Summary” on page 299.

All Atmel® ATmega16/32/64/M1/C1 1/Os and peripherals are placed in the I/O space. All I/O locations may be accessed by
the LD/LDS/LDD and ST/STS/STD instructions, transferring data between the 32 general purpose working registers and the
I/O space. I/O registers within the address range 0x00 - Ox1F are directly bit-accessible using the SBI and CBI instructions.
In these registers, the value of single bits can be checked by using the SBIS and SBIC instructions. Refer to the instruction
set section for more details. When using the I/O specific commands IN and OUT, the I/0O addresses 0x00 - Ox3F must be
used. When addressing I/O registers as data space using LD and ST instructions, 0x20 must be added to these addresses.
The Atmel ATmega16/32/64/M1/C1 is a complex microcontroller with more peripheral units than can be supported within the
64 location reserved in Opcode for the IN and OUT instructions. For the Extended 1/O space from 0x60 - OxFF in SRAM, only
the ST/STS/STD and LD/LDS/LDD instructions can be used.

ATmega16/32/64/M1/C1 [DATASHEET] 23
Atmel 76470-AVR—01/15

4.5

4.5.1

4.5.2

4.5.3

24

For compatibility with future devices, reserved bits should be written to zero if accessed. Reserved I/O memory addresses
should never be written.

Some of the status flags are cleared by writing a logical one to them. Note that, unlike most other AVR’s, the CBI and SBI
instructions will only operate on the specified bit, and can therefore be used on registers containing such status flags. The
CBI and SBI instructions work with registers 0x00 to Ox1F only.

The 1/0 and peripherals control registers are explained in later sections.

General Purpose I/O Registers

The Atmel® ATmega16/32/64/M1/C1 contains four general purpose I/O registers. These registers can be used for storing
any information, and they are particularly useful for storing global variables and status flags.

The general purpose /O registers, within the address range 0x00 - 0x1F, are directly bit-accessible using the SBI, CBI,
SBIS, and SBIC instructions.

General Purpose 1/0 Register 0 — GPIORO

Bit 7 6 5 4 3 2 1 0
[GPIOR07] GPIOR06 | GPIOR05 | GPIOR04| GPIOR03 | GPIOR02| GPIOR01| GPIOR00] GPIORO
ReadWrite ~ RW RW RW RW RW RW RW RW
Initial Value 0 0 0 0 0 0 0 0

General Purpose I/O Register 1 — GPIOR1

Bit 7 6 5 4 3 2 1 0

| GPIOR17 | GPIOR16 | GPIOR15 | GPIOR14 | GPIOR13 | GPIOR12 | GPIOR11 | GPIOR10| GPIOR1
Read/Write R/W R/W RIW RIW R/W R/IW RIW R/W
Initial Value 0 0 0 0 0 0 0 0

General Purpose 1/0 Register 2 — GPIOR2

Bit 7 6 5 4 3 2 1 0
[GPIOR27] GPIOR26 | GPIOR25 | GPIOR24 | GPIOR23 | GPIOR22 | GPIOR21 | GPIOR20]| GPIOR2
Read/Write R/W RIW RIW RIW RIW RIW RIW RIW
Initial Value 0 0 0 0 0 0 0 0
ATmega16/32/64/M1/C1 [DATASHEET] Atmel.

76470-AVR-01/15

5. System Clock

5.1 Clock Systems and their Distribution

Figure 5-1 presents the principal clock systems in the AVR® and their distribution. All of the clocks need not be active at a
given time. In order to reduce power consumption, the clocks to unused modules can be halted by using different sleep
modes, as described in Section 6. “Power Management and Sleep Modes” on page 34. The clock systems are detailed
below.

Figure 5-1. Clock Distribution

) General I1/10 Flash and
Fast Peripherals Modules ADC CPU Core RAM EEPROM

A A A A A A A A

clkpy L clkapc

PLL —— L
Clk|/0 AVR Clock CIKCPU
1 Control Unit
clke ash

Reset Logic Watchdog Timer

* * A

Source Clock Watchdog Clock

PLL Input Clock Watchdog
Multiplexer Multiplexer Oscillator

A A A T A A2

]

Crystal Calibrated RC
Oscillator Oscillator

External Clock

5.1.1 CPU Clock — clkgpy

The CPU clock is routed to parts of the system concerned with operation of the AVR core. Examples of such modules are
the General Purpose Register File, the Status Register and the data memory holding the Stack Pointer. Halting the CPU
clock inhibits the core from performing general operations and calculations.

5.1.2 1/0 Clock - clk)o

The 1/O clock is used by the majority of the I/O modules, like Timer/Counters, SPI, UART. The I/O clock is also used by the
External Interrupt module, but note that some external interrupts are detected by asynchronous logic, allowing such
interrupts to be detected even if the 1/O clock is halted.

5.1.3 Flash Clock — clkg ash

The Flash clock controls operation of the Flash interface. The flash clock is usually active simultaneously with the CPU clock.

ATmega16/32/64/M1/C1 [DATASHEET] 25
Atmel 76470-AVR—01/15

5.1.4 PLL Clock - clkp |
The PLL clock allows the fast peripherals to be clocked directly from a 64/32MHz clock. A 16MHz clock is also derived for
the CPU.

5.1.5 ADC Clock - clkppc

The ADC is provided with a dedicated clock domain. This allows halting the CPU and I/O clocks in order to reduce noise
generated by digital circuitry. This gives more accurate ADC conversion results.

5.2 Clock Sources

The device has the following clock source options, selectable by Flash Fuse bits as illustrated in Table 5-1. The clock from
the selected source is input to the AVR clock generator, and routed to the appropriate modules.

Table 5-1. Device Clocking Options Select!"

System
Device Clocking Option Clock PLL Input CKSEL3..0
External crystal/ceramic resonator Ext Osc RC Osc 1111 - 1000
cPrI;/I;tZ;g;T-; gg;gizg::a?; r‘16MHz / PLL driven by external Ext OsG Ext OsG 0100
srl;lgtgtjiilggqi;gdreeg:gaﬁ:6MHz / PLL driven by external PLL /4 Ext Osc 0101
Reserved N/A N/A 0110
Reserved N/A N/A 0111
PLL output divided by 4: 16MHz PLL /4 RC Osc 0011
Calibrated internal RC oscillator RC Osc RC Osc 0010
PLL output divided by 4: 16MHz/PLL driven by external clock PLL /4 Ext Clk 0001
External clock Ext Clk RC Osc 0000

Notes: 1. For all fuses “1” means unprogrammed while “0” means programmed.

2. Ext Osc: External oscillator

3. RC Osc: Internal RC oscillator

4. Ext Clk: External clock input
The various choices for each clocking option is given in the following sections. When the CPU wakes up from power-down or
power-save, the selected clock source is used to time the start-up, ensuring stable oscillator operation before instruction
execution starts. When the CPU starts from reset, there is an additional delay allowing the power to reach a stable level
before starting normal operation. The watchdog oscillator is used for timing this real-time part of the start-up time. The
number of WDT oscillator cycles used for each time-out is shown in Table 5-2 on page 26. The frequency of the Watchdog
Oscillator is voltage dependent as shown in Section 27-31 “Watchdog Oscillator Frequency versus V" on page 294.

Table 5-2. Number of Watchdog Oscillator Cycles

Typ Time-out (V¢ = 5.0V) Typ Time-out (V¢ = 3.0V) Number of Cycles
4.1ms 4.3ms 4K (4,096)
65ms 69ms 64K (65,536)
26 ATmega16/32/64/M1/C1 [DATASHEET] Atmel.

76470-AVR-01/15

5.3 Default Clock Source

The device is shipped with CKSEL = “0010”, SUT = “10”, and CKDIV8 programmed. The default clock source setting is the
Internal RC Oscillator with longest start-up time and an initial system clock prescaling of 8. This default setting ensures that
all users can make their desired clock source setting using an in-system or parallel programmer.

5.4 Low Power Crystal Oscillator

XTAL1 and XTAL2 are input and output, respectively, of an inverting amplifier which can be configured for use as an on-chip
oscillator, as shown in Figure 5-2. Either a quartz crystal or a ceramic resonator may be used.

This crystal oscillator is a low power oscillator, with reduced voltage swing on the XTAL2 output. It gives the lowest power
consumption, but is not capable of driving other clock inputs.

C1 and C2 should always be equal for both crystals and resonators. The optimal value of the capacitors depends on the
crystal or resonator in use, the amount of stray capacitance, and the electromagnetic noise of the environment. Some initial
guidelines for choosing capacitors for use with crystals are given in Table 5-3. For ceramic resonators, the capacitor values
given by the manufacturer should be used. For more information on how to choose capacitors and other details on Oscillator
operation, refer to the multi-purpose oscillator application note.

Figure 5-2. Crystal Oscillator Connections

The Oscillator can operate in three different modes, each optimized for a specific frequency range. The operating mode is
selected by the fuses CKSEL3..1 as shown in Table 5-3.

Table 5-3. Crystal Oscillator Operating Modes

Recommended Range for Capacitors C1 and C2 for

CKSELS3..1 Frequency Range (MHz) Use with Crystals (pF)
100 04-09 -
101 0.9-3.0 12-22
110 3.0-8.0 12-22
111 8.0-16.0 12-22

Note: 1. This option should not be used with crystals, only with ceramic resonators.

ATmega16/32/64/M1/C1 [DATASHEET] 27
AtmeL 76470-AVR-01/15

The CKSELO Fuse together with the SUT1..0 Fuses select the start-up times as shown in Table 5-4.

Table 5-4. Start-up Times for the Oscillator Clock Selection

Start-up Time from Power- ~ Additional Delay from

CKSELO SUT1..0 down and Power-save Reset (V¢ = 5.0V) Recommended Usage

0 00 258 CK() 14CK + 4.1ms Ceramic resonator, fast rising
power

0 01 258 CK(" 14CK + 65ms Ceramic resonator, slowly rising
power

0 10 1K CK® 14CK Ceramic resonator, BOD enabled

0 1 1K CK®) 14CK + 4 1ms Ceramic resonator, fast rising
power

1 00 1K CK®@ 14CK + 65ms Ceramic resonator, slowly rising
power

1 01 16K CK 14CK Crystal Oscillator, BOD enabled

1 10 16K CK 14CK + 4.1ms Crystal Oscillator, fast rising
power

1 1" 16K CK 14CK + 65ms Crystal Oscillator, slowly rising
power

Notes: 1. These options should only be used when not operating close to the maximum frequency of the device, and
only if frequency stability at start-up is not important for the application. These options are not suitable for
crystals.

2. These options are intended for use with ceramic resonators and will ensure frequency stability at start-up. They
can also be used with crystals when not operating close to the maximum frequency of the device, and if fre-
quency stability at start-up is not important for the application.

5.5 Calibrated Internal RC Oscillator

By default, the Internal RC OScillator provides an approximate 8.0MHz clock. Though voltage and temperature dependent,
this clock can be very accurately calibrated by the user. The device is shipped with the CKDIV8 Fuse programmed. See
Section 5.10 “System Clock Prescaler” on page 32 for more details.

This clock may be selected as the system clock by programming the CKSEL Fuses as shown in Table 5-1 on page 26. If
selected, it will operate with no external components. during reset, hardware loads the pre-programmed calibration value
into the OSCCAL Register and thereby automatically calibrates the RC oscillator. The accuracy of this calibration is shown
as factory calibration in Table 26-1 on page 276.

By changing the OSCCAL register from SW, see Section 5.5.1 “Oscillator Calibration Register — OSCCAL"” on page 29, it is
possible to get a higher calibration accuracy than by using the factory calibration. The accuracy of this calibration is shown
as User calibration in Section 26.3 “Clock Characteristics” on page 276.

When this oscillator is used as the chip clock, the watchdog oscillator will still be used for the watchdog timer and for the
reset time-out. For more information on the pre-programmed calibration value, see the section.

Table 5-5. Internal Calibrated RC Oscillator Operating Modes(?

Frequency Range (MHz) CKSEL3..0
7.3-8.1 0010

Notes: 1. The device is shipped with this option selected.

2. If 8MHz frequency exceeds the specification of the device (depends on V), the CKDIV8 fuse can be pro-
grammed in order to divide the internal frequency by 8.

28 ATmega16/32/64/M1/C1 [DATASHEET]
76470-AVR-01/15 A t mel-

When this oscillator is selected, start-up times are determined by the SUT fuses as shown in Table 5-6 on page 29.

Table 5-6. Start-up times for the internal calibrated RC Oscillator clock selection

Start-up Time from Power-down and | Additional Delay from Reset

Power Conditions Power-save (Ve =5.0V)

BOD enabled 6 CK 14CKD 00

Fast rising power 6 CK 14CK + 4.1ms 01

Slowly rising power 6 CK 14CK + 65ms® 10
Reserved 11

Notes: 1. Ifthe RSTDISBL fuse is programmed, this start-up time will be increased to
14CK + 4.1 ms to ensure programming mode can be entered.

2. The device is shipped with this option selected.

5.5.1 Oscillator Calibration Register — OSCCAL

Bit 7 6 5 4 3 2 1 0
| CAL7 | CALG6 | CAL5 | CAL4 | CAL3 CAL2 CAL1 CALO | OSCCAL
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value Device Specific Calibration Value

« Bits 7..0 — CAL7..0: Oscillator Calibration Value

The oscillator calibration register is used to trim the calibrated internal RC oscillator to remove process variations from the
oscillator frequency. The factory-calibrated value is automatically written to this register during chip reset, giving an oscillator
frequency of 8.0MHz at 25°C. The application software can write this register to change the oscillator frequency. The
oscillator can be calibrated to any frequency in the range 7.3 - 8.1MHz within +1% accuracy. Calibration outside that range is
not guaranteed.

Note that this oscillator is used to time EEPROM and flash write accesses, and these write times will be affected accordingly.
If the EEPROM or flash are written, do not calibrate to more than 8.8MHz. Otherwise, the EEPROM or flash write may fail.

The CAL7 bit determines the range of operation for the oscillator. Setting this bit to 0 gives the lowest frequency range,
setting this bit to 1 gives the highest frequency range. The two frequency ranges are overlapping, in other words a setting of
OSCCAL = 0x7F gives a higher frequency than OSCCAL = 0x80.

The CALS6..0 bits are used to tune the frequency within the selected range. A setting of 0x00 gives the lowest frequency in
that range, and a setting of Ox7F gives the highest frequency in the range. Incrementing CAL6..0 by 1 will give a frequency
increment of less than 2% in the frequency range 7.3 - 8.1MHz.

5.6 PLL

5.6.1 Internal PLL
The internal PLL in the Atmel® ATmega16/32/64/M1/C1 generates a clock frequency that is 64x multiplied from its nominal
1MHz input. The source of the 1MHz PLL input clock can be:
e the output of the internal RC oscillator divided by 8
e the output of the crystal oscillator divided by 8
e the external clock divided by 8

See Figure 5-3 on page 30.

When the PLL is locked on the RC Oscillator, adjusting the RC Oscillator via OSCCAL Register, will also modify the PLL
clock output. However, even if the possibly divided RC Oscillator is taken to a higher frequency than 8MHz, the PLL output
clock frequency saturates at 70MHz (worst case) and remains oscillating at the maximum frequency. It should be noted that
the PLL in this case is not locked any more with its 1MHz source clock.

ATmega16/32/64/M1/C1 [DATASHEET] 29
AtmeL 76470-AVR-01/15

Therefore it is recommended not to take the OSCCAL adjustments to a higher frequency than 8MHz in order to keep the PLL
in the correct operating range.

The internal PLL is enabled only when the PLLE bit in the register PLLCSR is set. The bit PLOCK from the register PLLCSR
is set when PLL is locked.

Both internal 8MHz RC Oscillator, Crystal Oscillator and PLL are switched off in Power-down and Standby sleep
modes.01/15

Table 5-7. Start-up Times when the PLL is selected as system clock

Start-up Time from Power-down and Additional Delay from Reset
CKSEL3..0 SUT1..0 Power-save (Ve = 5.0V)
00 1K CK 14CK
0011 01 1K CK 14CK + 4ms
RC Osc 10 1K CK 14CK + 64ms
11 16K CK 14CK
00 1K CK 14CK
0101 01 1K CK 14CK + 4ms
Ext Osc 10 16K CK 14CK + 4ms
11 16K CK 14CK + 64ms
00 6 CK™M 14CK
0001 01 6 CK(" 14CK + 4ms
Ext Clk 10 6 CK™M 14CK + 64ms
11 Reserved

Note: 1. This value do not provide a proper restart; do not use PD in this clock scheme.

Figure 5-3. PLL Clocking System

OSCCAL CKSELS3..0 PLLE PLLF
=1 Lock PLOCK
»| Detector =
! Y
RC Oscillator | ¢ Divide PLL " Divide CLKp | .
8MHz by 8 64x by 2
Divide
by 4 _|_>
i CKsource
XTAL1 —l—»)
Oscillators >
XTAL2 —»=
30 ATmega16/32/64/M1/C1 [DATASHEET] /ItmeL

76470-AVR-01/15

5.6.2 PLL control and status register —- PLLCSR
Bit 7 6 5 4 3 2 1 0
$2929) | - | - | - | - | - PLLF | PLLE [PLOCK| PLLCSR
Read/Write R R R R R R/W R/W R
Initial Value 0 0 0 0 0 0 0/1 0
- Bit 7..3 — Res: Reserved Bits
These bits are reserved bits in the ATmega16/32/64/M1/C1 and always read as zero.
- Bit2 - PLLF: PLL Factor
The PLLF bit is used to select the division factor of the PLL.
If PLLF is set, the PLL output is 64MHz.
If PLLF is clear, the PLL output is 32MHz.
- Bit1-PLLE: PLL Enable
When the PLLE is set, the PLL is started and if not yet started the internal RC oscillator is started as PLL reference clock. If
PLL is selected as a system clock source the value for this bit is always 1.
- Bit 0 — PLOCK: PLL Lock Detector
When the PLOCK bit is set, the PLL is locked to the reference clock, and it is safe to enable CLKp, for Fast Peripherals.
After the PLL is enabled, it takes about 100us for the PLL to lock.
5.7 128 kHz Internal Oscillator
The 128 kHz internal oscillator is a low power Oscillator providing a clock of 128 kHz. The frequency is nominal at 3V and
25°C. This clock is used by the Watchdog Oscillator.
5.8 External Clock
To drive the device from an external clock source, XTAL1 should be driven as shown in Figure 5-4. To run the device on an
external clock, the CKSEL fuses must be programmed to “0000”.
Figure 5-4. External Clock Drive Configuration
NC —— XTAL2
EXTERNAL
CLOCK —— 1 XTAL1
SIGNAL
J_f GND
Table 5-8. External Clock Frequency
CKSEL3..0 Frequency Range
0000 0 - 16MHz
/It L ATmega16/32/64/M1/C1 [DATASHEET] 31
me 76470-AVR-01/15

5.9

5.10

32

When this clock source is selected, start-up times are determined by the SUT fzses as shown in Table 5-9.

Table 5-9. Start-up Times for the External Clock Selection

Start-up Time from Power-down and | Additional Delay from Reset

Power-save (Vec = 5.0V) Recommended Usage
00 6 CK 14CK BOD enabled
01 6 CK 14CK + 4.1ms Fast rising power
10 6 CK 14CK + 65ms Slowly rising power
11 Reserved

When applying an external clock, it is required to avoid sudden changes in the applied clock frequency to ensure stable
operation of the MCU. A variation in frequency of more than 2% from one clock cycle to the next can lead to unpredictable
behavior. It is required to ensure that the MCU is kept in reset during such changes in the clock frequency.

Note that the system clock prescaler can be used to implement run-time changes of the internal clock frequency while still
ensuring stable operation. Refer to Section 5.10 “System Clock Prescaler” on page 32 for details.

Clock Output Buffer

When the CKOUT fuse is programmed, the system Clock will be output on CLKO. This mode is suitable when chip clock is
used to drive other circuits on the system. The clock will be output also during reset and the normal operation of I/0 pin will
be overridden when the fuse is programmed. Any clock source, including internal RC oscillator, can be selected when CLKO
serves as clock output. If the system clock prescaler is used, it is the divided system clock that is output (CKOUT fuse
programmed).

System Clock Prescaler

The Atmel® ATmega16/32/64/M1/C1 system clock can be divided by setting the clock prescale register — CLKPR. This
feature can be used to decrease power consumption when the requirement for processing power is low. This can be used
with all clock source options, and it will affect the clock frequency of the CPU and all synchronous peripherals. clk,q, clkapc,
clkgpy, and clkg agy are divided by a factor as shown in Table 5-10.

When switching between prescaler settings, the system clock prescaler ensures that no glitches occurs in the clock system.
It also ensures that no intermediate frequency is higher than neither the clock frequency corresponding to the previous
setting, nor the clock frequency corresponding to the new setting. The ripple counter that implements the prescaler runs at
the frequency of the undivided clock, which may be faster than the CPU's clock frequency. Hence, it is not possible to
determine the state of the prescaler - even if it were readable, and the exact time it takes to switch from one clock division to
the other cannot be exactly predicted. From the time the CLKPS values are written, it takes between T1 + T2and T1+2* T2
before the new clock frequency is active. In this interval, 2 active clock edges are produced. Here, T1 is the previous clock
period, and T2 is the period corresponding to the new prescaler setting.

To avoid unintentional changes of clock frequency, a special write procedure must be followed to change the CLKPS bits:
1. Write the clock prescaler change enable (CLKPCE) bit to one and all other bits in CLKPR to zero.
2. Within four cycles, write the desired value to CLKPS while writing a zero to CLKPCE.

Interrupts must be disabled when changing prescaler setting to make sure the write procedure is not interrupted.

ATmega16/32/64/M1/C1 [DATASHEET]
76470-AVR-01/15 A t mel-

5.10.1 Clock Prescaler Register - CLKPR

Bit 7 6 5 4 3 2 1 0
|ckpce| - | - | - CLKPS3 | CLKPS2 | CLKPS1 | CLKPS0| CLKPR
Read/Write R/W R R R R/IW R/W RIW R/W
Initial Value 0 0 0 0 See Bit Description

« Bit 7 - CLKPCE: Clock Prescaler Change Enable

The CLKPCE bit must be written to logic one to enable change of the CLKPS bits. The CLKPCE bit is only updated when the
other bits in CLKPR are simultaneously written to zero. CLKPCE is cleared by hardware four cycles after it is written or when
CLKPS bits are written. Rewriting the CLKPCE bit within this time-out period does neither extend the time-out period, nor
clear the CLKPCE bit.

« Bits 3..0 - CLKPS3..0: Clock Prescaler Select Bits 3 -0

These bits define the division factor between the selected clock source and the internal system clock. These bits can be
written run-time to vary the clock frequency to suit the application requirements. As the divider divides the master clock input
to the MCU, the speed of all synchronous peripherals is reduced when a division factor is used. The division factors are
given in Table 5-10.

The CKDIV8 fuse determines the initial value of the CLKPS bits. If CKDIV8 is unprogrammed, the CLKPS bits will be reset to
“0000”. If CKDIV8 is programmed, CLKPS bits are reset to “0011”, giving a division factor of 8 at start up. This feature should
be used if the selected clock source has a higher frequency than the maximum frequency of the device at the present
operating conditions. Note that any value can be written to the CLKPS bits regardless of the CKDIV8 fuse setting. The
application software must ensure that a sufficient division factor is chosen if the selected clock source has a higher
frequency than the maximum frequency of the device at the present operating conditions. The device is shipped with the
CKDIV8 fuse programmed.

Table 5-10. Clock Prescaler Select

CLKPS3 CLKPS2 CLKPS1 CLKPSO0 Clock Division Factor

0 0 0 0 1

0 0 0 1 2

0 0 1 0 4

0 0 1 1 8

0 1 0 0 16

0 1 0 1 32

0 1 1 0 64

0 1 1 1 128

1 0 0 0 256

1 0 0 1 Reserved

1 0 1 0 Reserved

1 0 1 1 Reserved

1 1 0 0 Reserved

1 1 0 1 Reserved

1 1 1 0 Reserved

1 1 1 1 Reserved

/ItmeL ATmega16/32/64/M1/C1 [E)QICQAS\Z?OE/E 33

6.1

6.1.1

34

Power Management and Sleep Modes

Sleep modes enable the application to shut down unused modules in the MCU, thereby saving power. The AVR® provides
various sleep modes allowing the user to tailor the power consumption to the application’s requirements.

To enter any of the five sleep modes, the SE bit in SMCR must be written to logic one and a SLEEP instruction must be
executed. The SM2, SM1, and SMO bits in the SMCR Register select which sleep mode (Idle, ADC noise reduction, Power-
down, Power-save, or Standby) will be activated by the SLEEP instruction. See Table 6-1 for a summary. If an enabled
interrupt occurs while the MCU is in a sleep mode, the MCU wakes up. The MCU is then halted for four cycles in addition to
the start-up time, executes the interrupt routine, and resumes execution from the instruction following SLEEP. The contents
of the register file and SRAM are unaltered when the device wakes up from sleep. If a reset occurs during sleep mode, the
MCU wakes up and executes from the reset vector.

Figure 5-1 on page 25 presents the different clock systems in the Atmel® ATmega16/32/64/M1/C1, and their distribution. The
figure is helpful in selecting an appropriate sleep mode.

Sleep Mode Control Register

Sleep Mode Control Register —- SMCR

The Sleep Mode Control Register contains control bits for power management.

Bit 7 6 5 4 3 2 1 0
| - | - | - | - | SM2 | SM1 | SMo | SE | SMCR
Read/Write R R R R R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

- Bits 3..1 — SM2..0: Sleep Mode Select Bits 2, 1, and 0
These bits select between the five available sleep modes as shown in Table 6-1.

Table 6-1. Sleep Mode Select

0 0 0 Idle

0 0 1 ADC noise reduction
0 1 0 Power-down

0 1 1 Reserved

1 0 0 Reserved

1 0 1 Reserved

1 1 0 Standby™"

1 1 1 Reserved

Note: 1. Standby mode is only recommended for use with external crystals or resonators.

« Bit 1 - SE: Sleep Enable

The SE bit must be written to logic one to make the MCU enter the sleep mode when the SLEEP instruction is executed. To
avoid the MCU entering the sleep mode unless it is the programmer’s purpose, it is recommended to write the sleep enable
(SE) bit to one just before the execution of the SLEEP instruction and to clear it immediately after waking up.

ATmega16/32/64/M1/C1 [DATASHEET]
76470-AVR-01/15 A t mel-

6.2 Idle Mode

When the SM2..0 bits are written to 000, the SLEEP instruction makes the MCU enter Idle mode, stopping the CPU but
allowing SPI, UART, analog comparator, ADC, Timer/Counters, watchdog, and the interrupt system to continue operating.
This sleep mode basically halt clkepy and clkg asy, While allowing the other clocks to run.

Idle mode enables the MCU to wake up from external triggered interrupts as well as internal ones like the timer overflow and
UART transmit complete interrupts. If wake-up from the analog comparator interrupt is not required, the analog comparator
can be powered down by setting the ACD bit in the analog comparator control and status register — ACSR. This will reduce
power consumption in Idle mode. If the ADC is enabled, a conversion starts automatically when this mode is entered.

6.3 ADC noise reduction Mode

When the SM2..0 bits are written to 001, the SLEEP instruction makes the MCU enter ADC noise reduction mode, stopping
the CPU but allowing the ADC, the External Interrupts, Timer/Counter (if their clock source is external - TO or T1) and the
watchdog to continue operating (if enabled). This sleep mode basically halts clk,o, clkcpy, and clkg sy, While allowing the
other clocks to run.

This improves the noise environment for the ADC, enabling higher resolution measurements. If the ADC is enabled, a
conversion starts automatically when this mode is entered. Apart from the ADC conversion complete interrupt, only an
external reset, a watchdog reset, a brown-out reset, a Timer/Counter interrupt, an SPM/EEPROM ready interrupt, an
external level interrupt on INT3:0 can wake up the MCU from ADC noise reduction mode.

6.4 Power-down Mode

When the SM2..0 bits are written to 010, the SLEEP instruction makes the MCU enter power-down mode. In this mode, the
external oscillator is stopped, while the external interrupts and the watchdog continue operating (if enabled). Only an
external reset, a watchdog reset, a brown-out reset, a PSC interrupt, an external level interrupt on INT3:0 can wake up the
MCU. This sleep mode basically halts all generated clocks, allowing operation of asynchronous modules only.

Note that if a level triggered interrupt is used for wake-up from power-down mode, the changed level must be held for some
time to wake up the MCU. Refer to Section 10. “External Interrupts” on page 70 for details.

When waking up from power-down mode, there is a delay from the wake-up condition occurs until the wake-up becomes
effective. This allows the clock to restart and become stable after having been stopped. The wake-up period is defined by the
same CKSEL fuses that define the reset time-out period, as described in Section 5.2 “Clock Sources” on page 26.

6.5 Standby Mode

When the SM2..0 bits are 110 and an external crystal/resonator clock option is selected, the SLEEP instruction makes the
MCU enter Standby mode. This mode is identical to Power-down with the exception that the Oscillator is kept running. From
Standby mode, the device wakes up in six clock cycles.

Table 6-2. Active Clock Domains and Wake-up Sources in the Different Sleep Modes

Active Clock Domains Oscillators Wake-up Sources
©
] =
oy &
R 2 o
O w i 5
g m £
© =
S5 5 °
Sleep Mode 3 o
Idle X X X X X X X X X X
ADC Noise X X X X@) X X X X
Reduction
Power-down X@ X
Standby(" X X@ X
Notes: 1. Only recommended with external crystal or resonator selected as clock source.
2. Only level interrupt.
ATmega16/32/64/M1/C1 [DATASHEET 35
Atmel 9 [)

76470-AVR-01/15

6.6 Power Reduction Register

The power reduction register, PRR, provides a method to stop the clock to individual peripherals to reduce power
consumption. The current state of the peripheral is frozen and the 1/O registers can not be read or written. Resources used
by the peripheral when stopping the clock will remain occupied, hence the peripheral should in most cases be disabled
before stopping the clock. Waking up a module, which is done by clearing the bit in PRR, puts the module in the same state
as before shutdown.

A full predictable behavior of a peripheral is not guaranteed during and after a cycle of stopping and starting of its clock. So
its recommended to stop a peripheral before stopping its clock with PRR register.

Module shutdown can be used in Idle mode and Active mode to significantly reduce the overall power consumption. In all
other sleep modes, the clock is already stopped.

6.6.1 Power Reduction Register - PRR

Bit 7 6 5 4 3 2 1 0

[" TPRCAN T PRPSC | PRTIM1 | PRTIMO | PRSPI | PRLIN | PRADC | PRR
Read/Write R RW RW RW RW RW RIW RIW
Initial Value 0 0 0 0 0 0 0 0

- Bit 7 - Res: Reserved Bit
This bit is unused bit in the ATmega16/32/64/M1/C1, and will always read as zero.
- Bit 6 - PRCAN: Power Reduction CAN

Writing a logic one to this bit reduces the consumption of the CAN by stopping the clock to this module. When waking up the
CAN again, the CAN should be re initialized to ensure proper operation.

- Bit 5 - PRPSC: Power Reduction PSC

Writing a logic one to this bit reduces the consumption of the PSC by stopping the clock to this module. When waking up the
PSC again, the PSC should be re initialized to ensure proper operation.

« Bit 4 - PRTIM1: Power Reduction Timer/Counter1

Writing a logic one to this bit reduces the consumption of the Timer/Counter1 module. When the Timer/Counter1 is enabled,
operation will continue like before the setting of this bit.

« Bit 3 - PRTIMO: Power Reduction Timer/Counter0

Writing a logic one to this bit reduces the consumption of the Timer/Counter0 module. When the Timer/Counter0 is enabled,
operation will continue like before the setting of this bit.

« Bit 2 - PRSPI: Power Reduction Serial Peripheral Interface

Writing a logic one to this bit reduces the consumption of the serial peripheral interface by stopping the clock to this module.
When waking up the SPI again, the SPI should be re initialized to ensure proper operation.

« Bit 1 - PRLIN: Power Reduction LIN

Writing a logic one to this bit reduces the consumption of the UART controller by stopping the clock to this module. When
waking up the UART controller again, the UART controller should be re initialized to ensure proper operation.

- Bit 0- PRADC: Power Reduction ADC

Writing a logic one to this bit reduces the consumption of the ADC by stopping the clock to this module. The ADC must be
disabled before using this function. The analog comparator cannot use the ADC input MUX when the clock of ADC is
stopped.

36 ATmega16/32/64/M1/C1 [DATASHEET]
76470-AVR-01/15 A t mel-

6.7 Minimizing Power Consumption

There are several issues to consider when trying to minimize the power consumption in an AVR® controlled system. In
general, sleep modes should be used as much as possible, and the sleep mode should be selected so that as few as
possible of the device’s functions are operating. All functions not needed should be disabled. In particular, the following
modules may need special consideration when trying to achieve the lowest possible power consumption.

6.7.1 Analog to Digital Converter

If enabled, the ADC will be enabled in all sleep modes. To save power, the ADC should be disabled before entering any
sleep mode. When the ADC is turned off and on again, the next conversion will be an extended conversion. Refer to Section
18. “Analog to Digital Converter - ADC” on page 197 for details on ADC operation.

6.7.2 Analog Comparator

When entering Idle mode, the analog comparator should be disabled if not used. When entering ADC noise reduction mode,
the analog comparator should be disabled. In other sleep modes, the analog comparator is automatically disabled. However,
if the analog comparator is set up to use the internal voltage reference as input, the analog comparator should be disabled in
all sleep modes. Otherwise, the internal voltage reference will be enabled, independent of sleep mode. Refer to Section 20.
“Analog Comparator” on page 225 for details on how to configure the analog comparator.

6.7.3 Brown-out Detector

If the brown-out detector is not needed by the application, this module should be turned off. If the brown-out detector is
enabled by the BODLEVEL fuses, it will be enabled in all sleep modes, and hence, always consume power. In the deeper
sleep modes, this will contribute significantly to the total current consumption. Refer to Section 7.2.3 “Brown-out Detection”
on page 40 for details on how to configure the brown-out detector.

6.7.4 Internal Voltage Reference

The internal voltage reference will be enabled when needed by the brown-out detection, the analog comparator or the ADC.
If these modules are disabled as described in the sections above, the internal voltage reference will be disabled and it will
not be consuming power. When turned on again, the user must allow the reference to start up before the output is used. If
the reference is kept on in sleep mode, the output can be used immediately. Refer to Section 7.3 “Internal Voltage
Reference” on page 42 for details on the start-up time.

6.7.5 Watchdog Timer

If the watchdog timer is not needed in the application, the module should be turned off. If the watchdog timer is enabled, it
will be enabled in all sleep modes, and hence, always consume power. In the deeper sleep modes, this will contribute
significantly to the total current consumption. Refer to Section 7.4 “Watchdog Timer” on page 43 for details on how to
configure the watchdog timer.

6.7.6 Port Pins

When entering a sleep mode, all port pins should be configured to use minimum power. The most important is then to ensure
that no pins drive resistive loads. In sleep modes where both the 1/O clock (clk,,n) and the ADC clock (clkapc) are stopped,
the input buffers of the device will be disabled. This ensures that no power is consumed by the input logic when not needed.
In some cases, the input logic is needed for detecting wake-up conditions, and it will then be enabled. Refer to the section
Section 9. “I/O-Ports” on page 51 for details on which pins are enabled. If the input buffer is enabled and the input signal is
left floating or have an analog signal level close to V/2, the input buffer will use excessive power.

For analog input pins, the digital input buffer should be disabled at all times. An analog signal level close to V:/2 on an input
pin can cause significant current even in active mode. Digital input buffers can be disabled by writing to the digital input
disable registers (DIDR1 and DIDRO). Refer to “Digital Input Disable Register 1—- DIDR1” and “Digital Input Disable Register
0 — DIDRO0” on 232 and 214 for details.

6.7.7 On-chip Debug System

If the on-chip debug system is enabled by OCDEN Fuse and the chip enter sleep mode, the main clock source is enabled,
and hence, always consumes power. In the deeper sleep modes, this will contribute significantly to the total current
consumption.

ATmega16/32/64/M1/C1 [DATASHEET] 37
AtmeL 76470-AVR-01/15

7. System Control and Reset

7.1 Resetting the AVR

During reset, all I/O registers are set to their initial values, and the program starts execution from the reset Vector. The
instruction placed at the reset vector must be a JMP — Absolute Jump — instruction to the reset handling routine. If the
program never enables an interrupt source, the interrupt vectors are not used, and regular program code can be placed at
these locations. This is also the case if the reset vector is in the application section while the interrupt vectors are in the boot
section or vice versa. The circuit diagram in Figure 7-1 on page 38 shows the reset logic. Table 7-1 on page 39 defines the

electrical parameters of the reset circuitry.

The 1/0O ports of the AVR® are immediately reset to their initial state when a reset source goes active. This does not require
any clock source to be running. After all reset sources have gone inactive, a delay counter is invoked, stretching the internal
reset. This allows the power to reach a stable level before normal operation starts. The time-out period of the delay counter
is defined by the user through the SUT and CKSEL Fuses. The different selections for the delay period are presented in

Section 5.2 “Clock Sources” on page 26.

7.2 Reset Sources

The Atmel ATmega16/32/64/M1/C1 has four sources of reset:
e Power-on reset. The MCU is reset when the supply voltage is below the power-on reset threshold (Vpar).
e External reset. The MCU is reset when a low level is present on the RESET pin for longer than the minimum pulse

length.

e Watchdog reset. The MCU is reset when the watchdog timer period expires and the watchdog is enabled.
e Brown-out reset. The MCU is reset when the supply voltage V. is below the brown-out reset threshold (Vzo7) and the

brown-out detector is enabled.

Figure 7-1. Reset Logic

DATABUS

A
Y

MCU
Register

Status
(MCUSR)

PORF

| Power-on Reset
Circuit

vce

Brown-out
BODLEVEL [2.. 0] | Reset Circuit

BORF

[1] Pull-up Resistor
Spike

RESET [—# Filter

Reset Circuit

Y

EXTRF

WDRF

Watchdog
Timer

3
2/

i

Watchdog
Oscillator

Clock
Generator

CK

/

Delay Counters

INTERNAL
s @[RESET
— R
-
w
%]
Ll
4
o
w
=
zZ
o)
o)
o
TIMEOUT

CKSEL[3:0]

SUT[1:0]

38 ATmega16/32/64/M1/C1 [DATASHEET]
76470-AVR-01/15

Atmel

Table 7-1. Reset Characteristics

Parameter Symbol
Power-on reset threshold voltage (rising) - 1.1 1.4 1.7 \%
Power-on reset threshold voltage (falling)(") PoT 0.8 0.9 1.6 \Y
VCC max. start voltage to ensure internal power-on reset

; VPormAX 0.4 \
signal
VCC min. start voltage to ensure internal power-on reset

; VeormiN -0.1 \
signal
VCC rise rate to ensure power-on reset Veerr 0.01 Vims
RESET pin threshold voltage VRsT 0.1 Ve 0.9V¢c \
Minimum pulse width on RESET pin trsT 2.5 - - us

Note: 1. Before rising, the supply has to be between Vporyin @Nd Vporuax tO €nsure a reset.

7.2.1 Power-on Reset
A power-on reset (POR) pulse is generated by an on-chip detection circuit. The detection level is defined in Table 7-1. The
POR is activated whenever V is below the detection level. The POR circuit can be used to trigger the start-up Reset, as
well as to detect a failure in supply voltage.
A power-on reset (POR) circuit ensures that the device is reset from power-on. Reaching the power-on reset threshold
voltage invokes the delay counter, which determines how long the device is kept in RESET after V rise. The RESET signal
is activated again, without any delay, when V. decreases below the detection level.
Figure 7-2. MCU Start-up, RESET Tied to V¢
VCCRR
VCC |
1= VPORMAX
|
: VPORMIN
|
|
RESET '
| VRST
|
: trour
TIME-OUT :
i
INTERNAL
RESET
Figure 7-3. MCU Start-up, RESET Extended Externally
Vee '/': = Veor
RESET i /./ Vest
i : tTOUT
TIME-OUT i |
INTERNAL i
RESET !
/It L ATmega16/32/64/M1/C1 [DATASHEET] 39
me 76470-AVR-01/15

7.2.2 External Reset

An external reset is generated by a low level on the RESET pin. Reset pulses longer than the minimum pulse width (see
Table 7-1) will generate a reset, even if the clock is not running. Shorter pulses are not guaranteed to generate a reset. When
the applied signal reaches the Reset Threshold Voltage — Vgt — On its positive edge, the delay counter starts the MCU after
the Time-out period — tyo 1t —has expired.

Figure 7-4. External Reset during Operation
V

cC

RESET

TIME-OUT

INTERNAL
RESET

7.2.3 Brown-out Detection

ATmega16/32/64/M1/C1 has an on-chip brown-out detection (BOD) circuit for monitoring the V. level during operation by
comparing it to a fixed trigger level. The trigger level for the BOD can be selected by the BODLEVEL Fuses. The trigger level
has a hysteresis to ensure spike free brown-out detection. The hysteresis on the detection level should be interpreted as
VBor+ = Veot * Vuyst/2 and Vpor. = Vot — Vigyst/2.

Table 7-2. BODLEVEL Fuse Coding"®

BODLEVEL 2..0 Fuses Typ Vgor Unit

1M1 Disabled

110 4.5 \
011 44 \Y
100 4.3 \
010 4.2 \Y
001 2.8 \
101 2.7 \Y
000 2.6 \

Notes: 1. Vot may be below nominal minimum operating voltage for some devices. For devices where this is the case,
the device is tested down to V¢ = Vo1 during the production test. This guarantees that a brown-out reset will
occur before V¢ drops to a voltage where correct operation of the microcontroller is no longer guaranteed.
The test is performed using BODLEVEL = 010 for low operating voltage and BODLEVEL = 101 for high operat-
ing voltage.

2. Values are guidelines only.

Table 7-3. Brown-out Characteristics‘"

Parameter
Brown-out Detector Hysteresis ViysT 80 mV
Min Pulse Width on Brown-out Reset tsop 2 us

Note: 1. Values are guidelines only.

40 ATmega16/32/64/M1/C1 [DATASHEET]
76470-AVR-01/15 A t mel-

7.2.4

Atmel

When the BOD is enabled, and V¢ decreases to a value below the trigger level (Vgor. in Figure 7-5 on page 41), the brown-
out reset is immediately activated. When V. increases above the trigger level (Vggors in Figure 7-5 on page 41), the delay
counter starts the MCU after the Time-out period t;o1 has expired.

The BOD circuit will only detect a drop in V if the voltage stays below the trigger level for longer than tgp given in
Table 7-3.

Figure 7-5. Brown-out Reset during Operation

Vee — + ______________ L —

VI =y T~ Veor
BOT- B T
i i
RESET ' '
i i
1 1
1 1
1 1
1 1
1 1

: : tTOUT

TIME-OUT !]
i i
1 1
i i
INTERNAL - :
RESET ! L

1
1

Watchdog Reset

When the watchdog times out, it will generate a short reset pulse of one CK cycle duration. On the falling edge of this pulse,
the delay timer starts counting the time-out period t;or. Refer to Section 7.4 “Watchdog Timer” on page 43 for details on
operation of the watchdog timer.

Figure 7-6. Watchdog Reset during Operation
\Y;

CcC

RESET

WDT ﬂ
TIME-OUT |

1
1
i
RESET |
1
1
1
1

Time-OUT

INTERNAL
RESET

ATmega16/32/64/M1/C1 [DATASHEET] 41
76470-AVR-01/15

7.2.5 MCU Status Register - MCUSR

The MCU Status Register provides information on which reset source caused an MCU reset.

Bit 7 6 5 4 3 2 1 0
| - | - | - | - | WDRF BORF | EXTRF | PORF |MCUSR
Read/Write R R R R R/W R/W R/wW R/wW
Initial Value 0 0 0 0 See Bit Description

- Bit 3 - WDRF: Watchdog Reset Flag

This bit is set if a watchdog reset occurs. The bit is reset by a power-on reset, or by writing a logic zero to the flag.
- Bit 2 - BORF: Brown-out Reset Flag

This bit is set if a brown-out reset occurs. The bit is reset by a power-on reset, or by writing a logic zero to the flag.
- Bit 1 — EXTRF: External Reset Flag

This bit is set if an external reset occurs. The bit is reset by a power-on reset, or by writing a logic zero to the flag.
« Bit 0 — PORF: Power-on Reset Flag

This bit is set if a power-on reset occurs. The bit is reset only by writing a logic zero to the flag.

To make use of the reset flags to identify a reset condition, the user should read and then reset the MCUSR as early as
possible in the program. If the register is cleared before another reset occurs, the source of the reset can be found by
examining the reset flags.

7.3 Internal Voltage Reference

ATmega16/32/64/M1/C1 features an internal bandgap reference. This reference is used for brown-out detection, and it can
be used as an input to the analog comparators or the ADC. The Vrgr 2.56V reference to the ADC, DAC or analog
comparators is generated from the internal bandgap reference.

7.3.1 Voltage Reference Enable Signals and Start-up Time
The voltage reference has a start-up time that may influence the way it should be used. The start-up time is given in
Table 7-4. To save power, the reference is not always turned on. The reference is on during the following situations:
1. When the BOD is enabled (by programming the BODLEVEL [2..0] Fuse).
2. When the bandgap reference is connected to the analog comparator (by setting the ACBG bit in ACSR).
3. When the ADC is enabled.
4. When the DAC is enabled.
Thus, when the BOD is not enabled, after setting the ACBG bit or enabling the ADC or the DAC, the user must always allow
the reference to start up before the output from the analog comparator or ADC or DAC is used. To reduce power

consumption in power-down mode, the user can avoid the three conditions above to ensure that the reference is turned off
before entering power-down mode.

7.3.2 Voltage Reference Characteristics

Table 7-4. Internal Voltage Reference Characteristics'"

Parameter Symbol Condition

Bandgap reference voltage Ve 1.1 \%
Bandgap reference start-up time tag 40 us
Bandgap reference current consumption lga 15 MA

Note: 1. Values are guidelines only.

42 ATmega16/32/64/M1/C1 [DATASHEET]
76470-AVR-01/15 A t mel-

7.4 Watchdog Timer

ATmega16/32/64/M1/C1 has an enhanced watchdog timer (WDT). The main features are:
e Clocked from separate on-chip oscillator
e 3 operating modes
e Interrupt
e System reset
e Interrupt and system reset
e Selectable time-out period from 16ms to 8s
e Possible hardware fuse watchdog always on (WDTON) for fail-safe mode

Figure 7-7. Watchdog Timer

128kHz o Watchdog
Oscillator o Prescaler

“ Y| X X ¥ ¥ X X X ¥ ¥

S REEREEREEE

O O Of x| 3| = =] & v| ©

o| o of Z| §f gl &

WATCHDOG 83| 3| 2 2l g3 33l o

RESET ol o[° 8

fF Y Y Y VY VY VY Y Y

R
WDPO
WDP1
WDP2
WDP3

) [o<k
-

N

WDIF

—» INTERRUPT

WDIE

The watchdog timer (WDT) is a timer counting cycles of a separate on-chip 128 kHz oscillator. The WDT gives an interrupt or
a system reset when the counter reaches a given time-out value. In normal operation mode, it is required that the system
uses the WDR - Watchdog Timer Reset - instruction to restart the counter before the time-out value is reached. If the system
doesn't restart the counter, an interrupt or system reset will be issued.

In Interrupt mode, the WDT gives an interrupt when the timer expires. This interrupt can be used to wake the device from
sleep-modes, and also as a general system timer. One example is to limit the maximum time allowed for certain operations,
giving an interrupt when the operation has run longer than expected. In system reset mode, the WDT gives a reset when the
timer expires. This is typically used to prevent system hang-up in case of runaway code. The third mode, interrupt and
system reset mode, combines the other two modes by first giving an interrupt and then switch to system reset mode. This
mode will for instance allow a safe shutdown by saving critical parameters before a system reset.

The “Watchdog Timer Always On” (WDTON) fuse, if programmed, will force the watchdog timer to system reset mode. With
the fuse programmed the system reset mode bit (WDE) and Interrupt mode bit (WDIE) are locked to 1 and O respectively. To
further ensure program security, alterations to the watchdog set-up must follow timed sequences. The sequence for clearing
WDE and changing time-out configuration is as follows:
1. In the same operation, write a logic one to the watchdog change enable bit (WDCE) and WDE. A logic one must
be written to WDE regardless of the previous value of the WDE bit.

2. Within the next four clock cycles, write the WDE and watchdog prescaler bits (WDP) as desired, but with the
WDCE bit cleared. This must be done in one operation.

ATmega16/32/64/M1/C1 [DATASHEET] 43
AtmeL 76470-AVR-01/15

The following code example shows one assembly and one C function for turning off the Watchdog Timer. The example
assumes that interrupts are controlled (e.g. by disabling interrupts globally) so that no interrupts will occur during the
execution of these functions.

Assembly Code Example("

WDT_off:
; Turn off global interrupt
cli
; Reset Watchdog Timer
wdr
; Clear WDRF in MCUSR
in rl6, MCUSR

andi rl6, (Oxff & (O<<WDRF))

out MCUSR, rlé6

; Write logical one to WDCE and WDE
; Keep old prescaler setting to prevent unintentional time-out
1ds rl6, WDTCSR

ori rl6, (1<<WDCE) | (1<<WDE)
sts WDTCSR, rl6

; Turn off WDT

1di rl6, (O<<WDE)

sts WDTCSR, rl6

; Turn on global interrupt

sei

ret

C Code Example!"

void WDT_off (void)
{
__disable_interrupt ();
__watchdog_reset () ;
/* Clear WDRF in MCUSR */
MCUSR &= ~ (1<<WDRF) ;
/* Write logical one to WDCE and WDE */
/* Keep old prescaler setting to prevent unintentional time-out */
WDTCSR |= (1<<WDCE) | (1<<WDE);
/* Turn off WDT */
WDTCSR = 0x00;
__enable_interrupt();

Notes: 1. The example code assumes that the part specific header file is included.

2. If the watchdog is accidentally enabled, for example by a runaway pointer or brown-out condition, the device
will be reset and the watchdog timer will stay enabled. If the code is not set up to handle the watchdog, this
might lead to an eternal loop of time-out resets. To avoid this situation, the application software should always
clear the watchdog system reset flag (WDRF) and the WDE control bit in the initialization routine, even if the
watchdog is not in use.

44 ATmega16/32/64/M1/C1 [DATASHEET]
76470-AVR-01/15 Atmel

The following code example shows one assembly and one C function for changing the time-out value of the watchdog timer.

Assembly Code Example("

WDT_Prescaler_Change:
; Turn off global interrupt
cli
; Reset Watchdog Timer
wdr
; Start timed sequence
1lds rl6, WDTCSR

ori rl6, (1<<WDCE) | (1<<WDE)

sts WDTCSR, rl6

; —— Got four cycles to set the new values from here -

; Set new prescaler (time-out) value = 64K cycles (~0.5 s)
1di rl6, (1<<WDE) | (1<<WDP2) | (1<<WDPO)

sts WDTCSR, rl6

; —— Finished setting new values, used 2 cycles -

; Turn on global interrupt

sei

ret

C Code Example!"

void WDT_Prescaler_Change (void)

{
__disable_interrupt ();
__watchdog_reset () ;
/* Start timed sequence */

WDTCSR |= (1<<WDCE) | (1<<WDE);
/* Set new prescaler (time-out) value = 64K cycles (~0.5 s) */
WDTCSR = (1<<WDE) | (1<<WDP2) | (1<<WDPO);

__enable_interrupt () ;

Notes: 1. The example code assumes that the part specific header file is included.

2. The watchdog timer should be reset before any change of the WDP bits, since a change in the WDP bits can
result in a time-out when switching to a shorter time-out period;

7.4.1 Watchdog Timer Control Register - WDTCSR

Bit 7 6 5 4 3 2 1 0

| woiF | wbDIE | WDP3 | WDCE | WDE WDP2 | WDP1 | WDPO | WDTCSR
Read/Write R/W R/W R/W R/W R/W R/W RIW RIW
Initial Value 0 0 0 0 X 0 0 0

- Bit 7 - WDIF: Watchdog Interrupt Flag

This bit is set when a time-out occurs in the watchdog timer and the watchdog timer is configured for interrupt. WDIF is
cleared by hardware when executing the corresponding interrupt handling vector. Alternatively, WDIF is cleared by writing a
logic one to the flag. When the I-bit in SREG and WDIE are set, the watchdog time-out interrupt is executed.

- Bit 6 - WDIE: Watchdog Interrupt Enable

When this bit is written to one and the I-bit in the status register is set, the watchdog interrupt is enabled. If WDE is cleared in
combination with this setting, the watchdog timer is in interrupt mode, and the corresponding interrupt is executed if time-out
in the watchdog timer occurs.

ATmega16/32/64/M1/C1 [DATASHEET] 45
/ItmeL 76470-AVR-01/15

If WDE is set, the watchdog timer is in interrupt and system reset mode. The first time-out in the watchdog timer will set
WDIF. Executing the corresponding interrupt vector will clear WDIE and WDIF automatically by hardware (the watchdog
goes to system reset mode). This is useful for keeping the watchdog timer security while using the interrupt. To stay in
interrupt and system reset mode, WDIE must be set after each interrupt. This should however not be done within the interrupt
service routine itself, as this might compromise the safety-function of the watchdog system reset mode. If the interrupt is not
executed before the next time-out, a system reset will be applied.

Table 7-5. Watchdog Timer Configuration

WDTON(® Action on Time-out
1 0 0 Stopped None
1 0 1 Interrupt mode Interrupt
1 1 0 System reset mode Reset
1 1 1 Interrupt and system reset mode [T s o1 SRS (B
mode
0 X X System reset mode Reset

Note: 1. Forthe WDTON fuse “1” means unprogrammed while “0” means programmed.
« Bit4 - WDCE: Watchdog Change Enable

This bit is used in timed sequences for changing WDE and prescaler bits. To clear the WDE bit, and/or change the prescaler
bits, WDCE must be set.

Once written to one, hardware will clear WDCE after four clock cycles.
« Bit 3 - WDE: Watchdog System Reset Enable

WODE is overridden by WDRF in MCUSR. This means that WDE is always set when WDREF is set. To clear WDE, WDRF
must be cleared first. This feature ensures multiple resets during conditions causing failure, and a safe start-up after the
failure.

« Bit 5, 2..0 - WDP3..0: Watchdog Timer Prescaler 3,2, 1 and 0

The WDP3..0 bits determine the watchdog timer prescaling when the watchdog timer is running. The different prescaling
values and their corresponding time-out periods are shown in Table 7-6 on page 46.

Table 7-6. Watchdog Timer Prescale Select

Typical Time-out at

WDP3 WDP2 WDP1 WDPO Number of WDT Oscillator Cycles Vee = 5.0V
0 0 0 0 2K (2048) cycles 16ms
0 0 0 1 4K (4096) cycles 32ms
0 0 1 0 8K (8192) cycles 64ms
0 0 1 1 16K (16384) cycles 0.125s
0 1 0 0 32K (32768) cycles 0.25s
0 1 0 1 64K (65536) cycles 0.5s
0 1 1 0 128K (131072) cycles 1.0s
0 1 1 1 256K (262144) cycles 2.0s
1 0 0 0 512K (524288) cycles 4.0s
1 0 0 1 1024K (1048576) cycles 8.0s
1 0 1 0
1 0 1 1
1 1 0 0
7 7 0 7 Reserved
1 1 1 0
1 1 1 1
46 ATmega16/32/64/M1/C1 [DATASHEET] Atmel.

76470-AVR-01/15

8. Interrupts

This section describes the specifics of the interrupt handling as performed in ATmega16/32/64/M1/C1. For a general
explanation of the AVR interrupt handling, refer to Section 3.8 “Reset and Interrupt Handling” on page 16.

8.1 Interrupt Vectors in ATmega16/32/64/M1/C1

Table 8-1. Reset and Interrupt Vectors

Vector Program
No. Address Source Interrupt Definition
1 0x0000 RESET S:;e;r:::j Ipaltr:0 r;1)<')o‘v\v/eRr-:)enS ‘rjset, brown-out reset, watchdog reset,
2 0x0002 ANACOMP 0 Analog comparator 0
3 0x0004 ANACOMP 1 Analog comparator 1
4 0x0006 ANACOMP 2 Analog comparator 2
5 0x0008 ANACOMP 3 Analog comparator 3
6 0x000A PSC FAULT®) PSC fault
7 0x000C PSC EC® PSC end of cycle
8 0x000E INTO External interrupt request 0
9 0x0010 INT1 External interrupt request 1
10 0x0012 INT2 External interrupt request 2
11 0x0014 INT3 External interrupt request 3
12 0x0016 TIMER1 CAPT Timer/Counter1 capture event
13 0x0018 TIMER1 COMPA Timer/Counter1 compare match A
14 0x001A TIMER1 COMPB Timer/Counter1 compare match B
15 0x001C TIMER1 OVF Timer/Counter1 overflow
16 0x001E TIMERO COMPA Timer/Counter0 compare match A
17 0x0020 TIMERO COMPB Timer/Counter0 compare match B
18 0x0022 TIMERO OVF Timer/Counter0 overflow
19 0x0024 CAN INT CAN MOB, burst, general errors
20 0x0026 CAN TOVF CAN timer overflow
21 0x0028 LINTC LIN transfer complete
22 0x002A LIN ERR LIN error
23 0x002C PCINTO Pin change interrupt request 0
24 0x002E PCINT1 Pin change interrupt request 1
25 0x0030 PCINT2 Pin change interrupt request 2
26 0x0032 PCINT3 Pin change interrupt request 3
27 0x0034 SPI, STC SPI serial transfer complete
28 0x0036 ADC ADC conversion complete
29 0x0038 WDT Watchdog time-Out interrupt
30 0x003A EE READY EEPROM ready
31 0x003C SPM READY Store program memory ready
Notes: 1. When the BOOTRST fuse is programmed, the device will jump to the boot loader address at reset, see Sec-
tion 24. “Boot Loader Support — Read-while-write Self-Programming ATmega16/32/64/M1/C1” on page 241.
2. When the IVSEL bit in MCUCR is set, interrupt vectors will be moved to the start of the boot flash section. The
address of each interrupt vector will then be the address in this table added to the start address of the boot
flash section.
3. These vectors are not used by Atmel ATmega32/64C1.

ATmega16/32/64/M1/C1 [DATASHEET] 47
AtmeL 76470-AVR-01/15

Table 8-2 shows reset and Interrupt Vectors placement for the various combinations of BOOTRST and IVSEL settings. If the
program never enables an interrupt source, the interrupt vectors are not used, and regular program code can be placed at
these locations. This is also the case if the reset vector is in the application section while the interrupt vectors are in the boot
section or vice versa.

Table 8-2. Reset and Interrupt Vectors Placement in ATmega16/32/64/M1/C1"

BOOTRST IVSEL Reset Address Interrupt Vectors Start Address
1 0 0x000 0x001
1 1 0x000 Boot reset address + 0x002
0 0 Boot reset address 0x001
0 1 Boot reset address Boot reset address + 0x002

Note: 1. The boot reset address is shown in Table 24-4 on page 244. For the BOOTRST fuse “1” means unprogrammed
while “0” means programmed.

The most typical and general program setup for the Reset and Interrupt Vector Addresses in ATmega16/32/64/M1/C1 is:

Address Labels Code Comments

0x000 Jjmp RESET ; Reset Handler
0x002 jmp ANA_COMP_0 ; analog comparator 0 Handler
0x004 Jjmp ANA_COMP_1 ; analog comparator 1 Handler
0x006 Jjmp ANA_COMP_2 ; analog comparator 2 Handler
0x008 jmp ANA_COMP_3 ; analog comparator 3 Handler
0x00A Jjmp PSC_FAULT ; PSC Fault Handler
0x00C Jjmp PSC_EC ; PSC End of Cycle Handler
0x00E jmp EXT_INTO ; IRQO Handler
0x010 jmp EXT_INT1 ; IRQ1 Handler
0x012 Jjmp EXT_INT2 ; IRQ2 Handler
0x014 Jmp EXT_INT3 ; IRQ3 Handler
0x016 Jjmp TIM1_CAPT ; Timerl Capture Handler
0x018 Jjmp TIM1_COMPA ; Timerl Compare A Handler
0x01A jmp TIM1_COMPB ; Timerl Compare B Handler
0x01C jmp TIM1_OVF ; Timerl Overflow Handler
0x01E Jjmp TIMO_COMPA ; TimerO Compare A Handler
0x020 Jjmp TIMO_COMPB ; Timer0 Compare B Handler
0x022 jmp TIMO_OVF ; Timer0 Overflow Handler
0x024 Jjmp CAN_INT ; CAN MOB,Burst, General Errors Handler
0x026 jmp CAN_TOVF ; CAN Timer Overflow Handler
0x028 jmp LIN_TC ; LIN Transfer Complete Handler
0x02A Jjmp LIN_ERR ; LIN Error Handler
0x02C jmp PCINTO ; Pin Change Int Request 0 Handler
0x02E jmp PCINT1 ; Pin Change Int Request 1 Handler
0x030 Jjmp PCINT2 ; Pin Change Int Request 2 Handler
0x032 jmp PCINT3 ; Pin Change Int Request 3 Handler
0x034 jmp SPI_STC ; SPI Transfer Complete Handler
0x036 jmp ADC ; ADC Conversion Complete Handler
0x038 Jjmp WDT ; Watchdog Timer Handler
0x03A Jjmp EE_RDY ; EEPROM Ready Handler
0x03C Jjmp SPM_RDY ; Store Program Memory Ready Handler
4
Ox03E RESET: 1di rl6, high (RAMEND) ; Main program start
0x03F out SPH, rl6 ; Set Stack Pointer to top of RAM
0x040 1di rl6, low (RAMEND)
0x041 out SPL,rl6
0x042 sei ; Enable interrupts
0x043 <instr> xxx

48 ATmega16/32/64/M1/C1 [DATASHEET] Atmel.

76470-AVR-01/15

When the BOOTRST fuse is unprogrammed, the Boot section size set to 2K bytes and the IVSEL bit in the MCUCR register

is set before any interrupts are enabled, the most typical and general program setup for the reset and interrupt vector

addresses in ATmega16/32/64/M1/C1 is:
Labels Code

Address

0x000
0x001
0x002
0x003
0x004
0x005

’

RESET:

.org 0xC02

0xC02
0xC04

0xC3C

1di
out
1di
out
sei

rl6,high (RAMEND)
SPH, rl6
rl6, low (RAMEND)
SPL,rl6

<instr> xxx

jmp
jmp

jmp

ANA_COMP_0
ANA_COMP_1

SPM_RDY

Comments

’

;

7
7
7

’

Main program start
Set Stack Pointer to top of RAM

Enable interrupts

analog comparator 0 Handler
analog comparator 1 Handler

Store Program Memory Ready Handler

When the BOOTRST fuse is programmed and the boot section size set to 2Kbytes, the most typical and general program
setup for the reset and interrupt vector addresses in ATmega16/32/64/M1/C1 is:
Labels Code

Address
.org 0x002

0x002
0x004

0x03C

’

.org 0xCO00

0xCO00
0xC01
0xC02
0xCO03
0xC04
0xCO05

RESET:

Jmp
jmp

jmp

1di
out
1di
out
sei

ANA_COMP_0
ANA_COMP_1

SPM_RDY

rl6,high (RAMEND)
SPH, rl6
rl6, low (RAMEND)
SPL,rl6

<instr> xxx

Comments

’

’

’

analog comparator 0 Handler
analog comparator 1 Handler

Store Program Memory Ready Handler

Main program start
Set Stack Pointer to top of RAM

Enable interrupts

When the BOOTRST fuse is programmed, the boot section size set to 2Kbytes and the IVSEL bit in the MCUCR register is

set before any interrupts are enabled, the most typical and general program setup for the reset and interrupt vector

addresses in ATmega16/32/64/M1/C116/32 is:
Address

;

.org 0xCO0O0

0xCO00
0xC02
0xC04

0xC3C
;

0xC3E
0xC3F
0xC40
0xC41

0xC42
0xC43

Atmel

RESET:

Labels Code

jmp
Jmp
jmp

jmp

1di
out
1di
out
sei

RESET
ANA_COMP_0
ANA_COMP_1

SPM_RDY
rl6,high (RAMEND)
SPH,rl6

rl16, low (RAMEND)
SPL,rlé6

<instr> xxx

Comments

Reset handler

analog comparator 0 Handler

analog comparator 1 Handler

Store Program Memory Ready Handler
Main program start

Set Stack Pointer to top of RAM

Enable interrupts

ATmega16/32/64/M1/C1 [DATASHEET]
76470-AVR-01/15

49

8.1.1 Moving Interrupts Between Application and Boot Space

The MCU control register controls the placement of the interrupt vector table.

8.1.2 MCU Control Register —- MCUCR

Bit 7 6 5 4 3 2 1 0
|spips | - | - | PUD - = IVSEL IVCE | MCUCR

Read/Write RIW R R RIW R R RIW RIW

Initial Value 0 0 0 0 0 0 0 0

» Bit 1 - IVSEL: Interrupt Vector Select

When the IVSEL bit is cleared (zero), the Interrupt Vectors are placed at the start of the flash memory. When this bit is set
(one), the interrupt vectors are moved to the beginning of the boot loader section of the flash. The actual address of the start
of the boot flash section is determined by the BOOTSZ fuses. Refer to Section 24. “Boot Loader Support — Read-while-write
Self-Programming ATmega16/32/64/M1/C1” on page 241 for details. To avoid unintentional changes of Interrupt vector
tables, a special write procedure must be followed to change the IVSEL bit:

1. Write the interrupt vector change enable (IVCE) bit to one.
2. Within four cycles, write the desired value to IVSEL while writing a zero to IVCE.

Interrupts will automatically be disabled while this sequence is executed. Interrupts are disabled in the cycle IVCE is set, and
they remain disabled until after the instruction following the write to IVSEL. If IVSEL is not written, interrupts remain disabled
for four cycles. The I-bit in the status register is unaffected by the automatic disabling.

Note: If interrupt vectors are placed in the boot loader section and boot lock bit BLB02 is programmed, interrupts are
disabled while executing from the application section. If interrupt vectors are placed in the application section
and boot lock bit BLB12 is programed, interrupts are disabled while executing from the boot loader section.
Refer to Section 24. “Boot Loader Support — Read-while-write Self-Programming ATmega16/32/64/M1/C1” on
page 241 for details on boot lock bits.

- Bit 0 — IVCE: Interrupt Vector Change Enable

The IVCE bit must be written to logic one to enable change of the IVSEL bit. IVCE is cleared by hardware four cycles after it
is written or when IVSEL is written. Setting the IVCE bit will disable interrupts, as explained in the IVSEL description above.
See code example below.

Assembly Code Example

Move_interrupts:
; Enable change of Interrupt Vectors

1di rl6, (1<<IVCE)

out MCUCR, rlé6

; Move interrupts to Boot Flash section
1di rl6e, (1<<IVSEL)

out MCUCR, rlé6

ret

C Code Example

void Move_interrupts (void)

{
/* Enable change of Interrupt Vectors */
MCUCR = (1<<IVCE);
/* Move interrupts to Boot Flash section */
MCUCR = (1<<IVSEL);

50 ATmega16/32/64/M1/C1 [DATASHEET]
76470-AVR-01/15 Atmel

9. I1/0-Ports

9.1 Introduction

All AVR® ports have true read-modify-write functionality when used as general digital I/O ports. This means that the direction
of one port pin can be changed without unintentionally changing the direction of any other pin with the SBI and CBI
instructions. The same applies when changing drive value (if configured as output) or enabling/disabling of pull-up resistors
(if configured as input). Each output buffer has symmetrical drive characteristics with both high sink and source capability. All
port pins have individually selectable pull-up resistors with a supply-voltage invariant resistance. All I/O pins have protection
diodes to both V¢ and ground as indicated in Figure 9-1. Refer to Section 26. “Electrical Characteristics” on page 273 for a
complete list of parameters.

Figure 9-1. 1/0 Pin Equivalent Schematic

pu
Pxn

* Logic

See Figure
Coin "General Digital 1/0”
for Details
(=

All registers and bit references in this section are written in general form. A lower case “X” represents the numbering letter for
the port, and a lower case “n” represents the bit number. However, when using the register or bit defines in a program, the
precise form must be used. For example, PORTB3 for bit no. 3 in Port B, here documented generally as PORTxn. The

physical I/O registers and bit locations are listed in “Register Description for 1/0O-Ports”.

Three 1/0O memory address locations are allocated for each port, one each for the data register — PORTX, data direction
register — DDRX, and the port input pins — PINx. The port input pins I/O location is read only, while the data register and the
data direction register are read/write. However, writing a logic one to a bit in the PINx register, will result in a toggle in the
corresponding bit in the data register. In addition, the pull-up disable — PUD bit in MCUCR disables the pull-up function for all
pins in all ports when set.

Using the 1/O port as general digital I/O is described in “Ports as General Digital 1/0”. Most port pins are multiplexed with
alternate functions for the peripheral features on the device. How each alternate function interferes with the port pin is
described in Section 9.3 “Alternate Port Functions” on page 55. Refer to the individual module sections for a full description
of the alternate functions.

Note that enabling the alternate function of some of the port pins does not affect the use of the other pins in the port as
general digital 1/0.

ATmega16/32/64/M1/C1 [DATASHEET] 51
/ItmeL 76470-AVR-01/15

9.2 Ports as General Digital I1/0

The ports are bi-directional 1/0 ports with optional internal pull-ups. Figure 9-2 shows a functional description of one I/O-port
pin, here generically called Pxn.

Figure 9-2. General Digital /0"

0=

g 2
Pxn o
\I PORTxn E
<<
_ o
QiR WPx
I
RESET
p—— SLEEP WRx
AV RRx
Synchronizer
————————————————————— | RPx
! 1
1
! PINxn | |
b | —_ — 1
1 |— L Q J— Q :
1
1 1
1
:_ __________ S T CLKyo
PUD: PULL-UP DISABLE WDx: WRITE DDRx
SLEEP: SLEEP CONTROL RDx: READ DDRx
CLKo: 1/0 CLOCK WRx: WRITE PORTx v
RRx: READ PORTx REGISTER
RPx: READ PORTx PIN
WPx: WRITE PORTx REGISTER

Note: 1. WRx, WPx, WDx, RRx, RPx, and RDx are common to all pins within the same port. clk,5, SLEEP, and PUD
are common to all ports.

9.2.1 Configuring the Pin

Each port pin consists of three register bits: DDxn, PORTxn, and PINxn. As shown in Section 9.4 “Register Description for
I/O-Ports” on page 68, the DDxn bits are accessed at the DDRx I/O address, the PORTxn bits at the PORTx I/O address,
and the PINxn bits at the PINx I/O address.

The DDxn bit in the DDRXx register selects the direction of this pin. If DDxn is written logic one, Pxn is configured as an output
pin. If DDxn is written logic zero, Pxn is configured as an input pin.

If PORTxn is written logic one when the pin is configured as an input pin, the pull-up resistor is activated. To switch the pull-
up resistor off, PORTxn has to be written logic zero or the pin has to be configured as an output pin.

The port pins are tri-stated when reset condition becomes active, even if no clocks are running.

If PORTxn is written logic one when the pin is configured as an output pin, the port pin is driven high (one). If PORTxn is
written logic zero when the pin is configured as an output pin, the port pin is driven low (zero).

52 ATmega16/32/64/M1/C1 [DATASHEET]
76470-AVR-01/15 Atmel

9.2.2

9.2.3

9.24

Toggling the Pin

Writing a logic one to PINxn toggles the value of PORTxn, independent on the value of DDRxn. Note that the SBI instruction
can be used to toggle one single bit in a port.

Switching Between Input and Output

When switching between tri-state ({DDxn, PORTxn} = 0b00) and output high ({DDxn, PORTxn} = 0b11), an intermediate

state with either pull-up enabled {DDxn, PORTxn} = 0b01) or output low ({DDxn, PORTxn} = 0b10) must occur. Normally, the
pull-up enabled state is fully acceptable, as a high-impedant environment will not notice the difference between a strong high
driver and a pull-up. If this is not the case, the PUD bit in the MCUCR Register can be set to disable all pull-ups in all ports.

Switching between input with pull-up and output low generates the same problem. The user must use either the tri-state
({DDxn, PORTxn} = 0b00) or the output high state ({DDxn, PORTxn} = 0b11) as an intermediate step.

Table 9-1 summarizes the control signals for the pin value.

Table 9-1. Port Pin Configurations

DDxn PORTxn (in hlzggCR) 110 Pull-up Comment
Default configuration after reset.
Tri-state (Hi-Z)
Input Yes Pxn will source current if ext. pulled low.
Input No Tri-state (Hi-Z)
Output No Output low (sink)

0 0 X Input No

= a O O
PR e T I G
X X = o

Output No Output high (source)

Reading the Pin Value

Independent of the setting of data direction bit DDxn, the port pin can be read through the PINxn register bit. As shown in
Figure 9-2, the PINxn register bit and the preceding latch constitute a synchronizer. This is needed to avoid metastability if
the physical pin changes value near the edge of the internal clock, but it also introduces a delay. Figure 9-3 shows a timing
diagram of the synchronization when reading an externally applied pin value. The maximum and minimum propagation
delays are denoted t,g mac @and tog min respectively.

Figure 9-3. Synchronization when Reading an Externally Applied Pin Value

L

xxx X inr17,PINx X

1

1
SYSTEMCLK __ | | [

1

INSTRUCTIONS X XXX

SYNC LATCH

r17

1
i
1
!
PINxn i
1
1
1
1
1
1
1

|
|
i X oxFF
1
1
1
1
1
1
1
1

Consider the clock period starting shortly after the first falling edge of the system clock. The latch is closed when the clock is
low, and goes transparent when the clock is high, as indicated by the shaded region of the “SYNC LATCH?” signal. The signal
value is latched when the system clock goes low. It is clocked into the PINxn register at the succeeding positive clock edge.
As indicated by the two arrows tog nax @nd tog min, @ single signal transition on the pin will be delayed between 2 and 172
system clock period depending upon the time of assertion.

ATmega16/32/64/M1/C1 [DATASHEET] 53
Atmel ? [)

76470-AVR-01/15

When reading back a software assigned pin value, a nop instruction must be inserted as indicated in Figure 9-4. The out
instruction sets the “SYNC LATCH" signal at the positive edge of the clock. In this case, the delay t,4 through the
synchronizer is 1 system clock period.

Figure 9-4. Synchronization when Reading a Software Assigned Pin Value

SYSTEMCLK __| [

I R

1 1
1 1
| |
i i
r16 i OXFF !
1 1
1 1
1 1
INSTRUCTIONS X out PORT, r16):(nop)?(inr17, PINx X
1 1
SYNC LATCH [:
1 1
! :
PINxn !

: i

r17 l 0x00 i X oxFF
| T
: tpd i
—————————————)

The following code example shows how to set port B pins 0 and 1 high, 2 and 3 low, and define the port pins from 4 to 7 as
input with pull-ups assigned to port pins 6 and 7. The resulting pin values are read back again, but as previously discussed,
a nop instruction is included to be able to read back the value recently assigned to some of the pins.

Assembly Code Example("

; Define pull-ups and set outputs high
; Define directions for port pins

1di rl6, (1<<PB7) | (1<<PB6) | (1<<PB1) | (1<<PBO)

1di rl7, (1<<DDB3) | (1<<DDB2) | (1<<DDB1) | (1<<DDBO)
out PORTB, rl6

out DDRB, rl7

; Insert nop for synchronization

nop

; Read port pins

in rlé, PINB

C Code Example

unsigned char i;

/* Define pull-ups and set outputs high */

/* Define directions for port pins */

PORTB = (1<<PB7) | (1<<PB6) | (1<<PB1) | (1<<PBO) ;
DDRB = (1<<DDB3) | (1<<DDB2) | (1<<DDB1) | (1<<DDBO) ;
/* Insert nop for synchronization*/

_NOP () ;

/* Read port pins */

i = PINB;

Note: 1. For the assembly program, two temporary registers are used to minimize the time from pull-ups are set on pins
0, 1, 6, and 7, until the direction bits are correctly set, defining bit 2 and 3 as low and redefining bits 0 and 1 as
strong high drivers.

54 ATmega16/32/64/M1/C1 [DATASHEET]
76470-AVR-01/15 Atmel

9.2.5 Digital Input Enable and Sleep Modes

As shown in Figure 9-2, the digital input signal can be clamped to ground at the input of the schmitt-trigger. The signal
denoted SLEEP in the figure, is set by the MCU sleep controller in power-down mode, power-save mode, and standby mode
to avoid high power consumption if some input signals are left floating, or have an analog signal level close to V/2.

SLEEP is overridden for port pins enabled as external interrupt pins. If the external interrupt request is not enabled, SLEEP
is active also for these pins. SLEEP is also overridden by various other alternate functions as described in Section 9.3
“Alternate Port Functions” on page 55.

If a logic high level (“one”) is present on an asynchronous external interrupt pin configured as “Interrupt on Rising Edge,
Falling Edge, or Any Logic Change on Pin” while the external interrupt is not enabled, the corresponding external interrupt
flag will be set when resuming from the above mentioned sleep modes, as the clamping in these sleep modes produces the
requested logic change.

9.3 Alternate Port Functions

Most port pins have alternate functions in addition to being general digital 1/0Os. Figure 9-5 shows how the port pin control
signals from the simplified Figure 9-2 can be overridden by alternate functions. The overriding signals may not be present in
all port pins, but the figure serves as a generic description applicable to all port pins in the AVR® microcontroller family.

ATmega16/32/64/M1/C1 [DATASHEET] 55
/ItmeL 76470-AVR-01/15

Figure 9-5. Alternate Port Functions'"

PUOExn i
1 f—— PUOVXN
PUD
0
DDOExn
1 f——— ppovxn
0 Q D[
DDxn
[] Q LR
I WDx
RESET

PVOExn
1p—— PVOVxn
.
0 Q D 2
<C
PORTxn K
_ a
DIEOExn Q o R PTOExn
|
DIEOVxn
°<| RESET WRx
SLEEP RRx
Synchronizer
e I | RPx
1
1
q L SET q — -
I —p Q D Q ‘:—V
' PINxn |
1
) X _ —
| |—'- clr @ 1— cr?| !
1
1
1
'_________: _______ J CLKj0
- Dixn
~— A|Oxn
PUOExXn: Pxn PULL-UP OVERRIDE ENABLE PUD: PULL-UP DISABLE v
PUOVxXn: Pxn PULL-UP OVERRIDE VALUE WDx: WRITE DDRx
DDOExn: Pxn DATA DIRECTION OVERRIDE ENABLE RDx: READ DDRx
DDOVxn: Pxn DATA DIRECTION OVERRIDE VALUE RRx: READ PORTx REGISTER
PVOExn: Pxn PORT VALUE OVERRIDE ENABLE WRx: WRITE PORTx
PVOVxn: Pxn PORT VALUE OVERRIDE VALUE RPx: READ PORTx PIN
DIEOExn: Pxn DIGITAL INPUT ENABLE OVERRIDE ENABLE WPx: WRITE PINx
DIEOVxn: Pxn DIGITAL INPUT ENABLE OVERRIDE VALUE CLK: o I/0 CLOCK
SLEEP: SLEEP CONTROL Dixn: DIGITAL INPUT PIN n ON PORTX
PTOExn: Pxn, PORT TOGGLE OVERRIDE ENABLE AlOxn: ANALOG INPUT/OUTPUT PIN n ON PORTX

Note: 1. WRx, WPx, WDx, RRx, RPx, and RDx are common to all pins within the same port. clk,5, SLEEP, and PUD
are common to all ports. All other signals are unique for each pin.

56 ATmega16/32/64/M1/C1 [DATASHEET]
76470-AVR-01/15 Atmel

Table 9-2 summarizes the function of the overriding signals. The pin and port indexes from Figure 9-5 on page 56 are not
shown in the succeeding tables. The overriding signals are generated internally in the modules having the alternate function.

Table 9-2.

Signal Name

PUCE

PUOV

DDOE

DDOV

PVOE

PVOV

PTOE

DIEOE

DIEOV

DI

AIO

Full Name

Pull-up override enable

Pull-up override value

Data direction override
enable

Data direction override
value

Port value override
enable

Port value override value

Port toggle override
enable

Digital input enable
override enable

Digital input enable

override value

Digital Input

Analog input/output

Generic Description of Overriding Signals for Alternate Functions

Description

If this signal is set, the pull-up enable is controlled by the PUOV signal. If
this signal is cleared, the pull-up is enabled when {DDxn, PORTxn, PUD} =
0b010.

If PUOE is set, the pull-up is enabled/disabled when PUOV is set/cleared,
regardless of the setting of the DDxn, PORTxn, and PUD register bits.

If this signal is set, the output driver enable is controlled by the DDOV
signal. If this signal is cleared, the output driver is enabled by the DDxn
register bit.

If DDOE is set, the output driver is enabled/disabled when DDOV is
set/cleared, regardless of the setting of the DDxn register bit.

If this signal is set and the output driver is enabled, the port value is
controlled by the PVOV signal. If PVOE is cleared, and the output driver is
enabled, the port value is controlled by the PORTxn register bit.

If PVOE is set, the port value is set to PVOV, regardless of the setting of the
PORTXxn register bit.

If PTOE is set, the PORTxn register bit is inverted.

If this bit is set, the digital input enable is controlled by the DIEOV signal. If
this signal is cleared, the digital input enable is determined by MCU state
(normal mode, sleep mode).

If DIEOE is set, the digital Input is enabled/disabled when DIEOV is
set/cleared, regardless of the MCU state (normal mode, sleep mode).

This is the digital input to alternate functions. In the figure, the signal is
connected to the output of the schmitt trigger but before the synchronizer.
Unless the digital input is used as a clock source, the module with the
alternate function will use its own synchronizer.

This is the analog input/output to/from alternate functions. The signal is
connected directly to the pad, and can be used bi-directionally.

The following subsections shortly describe the alternate functions for each port, and relate the overriding signals to the
alternate function. Refer to the alternate function description for further details.

9.3.1 MCU Control Register - MCUCR
Bit 7 6 5 4 3 2 1 0
[sPPS | - | - | PUD = = IVSEL | IVCE | mMcucr
Read/MWrite R/W R R R/W R R R/W R/W
Initial Value 0 0 0 0 0 0 0 0

- Bit 4 — PUD: Pull-up Disable

When this bit is written to one, the pull-ups in the I/O ports are disabled even if the DDxn and PORTxn registers are
configured to enable the pull-ups ({DDxn, PORTxn} = 0b01).

Atmel

ATmega16/32/64/M1/C1 [DATASHEET]
76470-AVR-01/15

57

9.3.2 Alternate Functions of Port B

The Port B pins with alternate functions are shown in Table 9-3.

Table 9-3. Port B Pins Alternate Functions

Port Pin Alternate Functions

PSCOUTOB (PSC output 0B)

ADC4 (Analog Input Channel 4)

SCK (SPI Bus Serial Clock)

PCINT7 (Pin Change Interrupt 7)

ADC7 (Analog Input Channel 7)

PB6 PSCOUT1B (PSC output 1B)

PCINT6 (Pin Change Interrupt 6)

ADCS6 (Analog Input Channel 6)

INT2 (External Interrupt 2)

PB5 ACMPN1 (analog comparator 1 Negative Input)

PB7

AMP2- (Analog Differential Amplicator 2 Negative Input)
PCINT5 (Pin Change Interrupt 5)
AMPO+ (Analog Differential Amplifier O Positive Input)

PB4
PCINT4 (Pin Change Interrupt 4)
563 AMPO- (Analog Differential Amplifier 0 Negative Input)
PCINT3 (Pin Change Interrupt 3)
ADCS5 (Analog Input Channel5)
INT1 (External Interrupt 1)
PB2

ACMPNO (analog comparator 0 Negative Input)
PCINT2 (Pin Change Interrupt 2)

MOSI (SPI Master Out Slave In)

PB1 PSCOUT2B (PSC output 2B)

PCINT1 (Pin Change Interrupt 1)

MISO (SPI Master In Slave Out)

PBO PSCOUT2A (PSC output 2A)

PCINTO (Pin Change Interrupt 0)

The alternate pin configuration is as follows:

- ADC4/PSCOUTOB/SCK/PCINT7 - Bit 7
PSCOUTOB, output 0B of PSC.

ADC4, analog to digital converter, input channel 4.

SCK, master clock output, slave clock input pin for SPI channel. When the SPI is enabled as a slave, this pin is configured as
an input regardless of the setting of DDB7. When the SPI is enabled as a master, the data direction of this pin is controlled
by DDB7. When the pin is forced to be an input, the pull-up can still be controlled by the PORTB?7 bit.

PCINT7, pin change interrupt 7.

- ADC7/PSCOUT1B/PCINT6 — Bit 6

ADCY7, analog to digital converter, input channel 7.
PSCOUT1B, output 1B of PSC.

PCINT®, pin change interrupt 6.

58 ATmega16/32/64/M1/C1 [DATASHEET]
76470-AVR-01/15 A t mel-

« ADCG6/INT2/ACMPN1/AMP2-/PCINT5 - Bit 5
ADCSG, analog to digital converter, input channel 6.
INT2, external interrupt source 2. This pin can serve as an External Interrupt source to the MCU.

ACMPN1, analog comparator 1 negative input. Configure the port pin as input with the internal pull-up switched off to avoid
the digital port function from interfering with the function of the analog comparator.

PCINTS5, pin change interrupt 5.

- APMO0+/PCINT4 - Bit 4

AMPO+, analog differential amplifier O positive input channel.
PCINT4, pin change interrupt 4.

- AMPO-/PCINT3 - Bit 3

AMPO-, analog differential amplifier 0 negative input channel. Configure the port pin as input with the internal pull-up
switched off to avoid the digital port function from interfering with the function of the analog amplifier.

PCINTS, pin change interrupt 3.

. ADC5/INT1/ACMPNO/PCINT2 - Bit 2

ADCS5, analog to digital converter, input channel 5.

INT1, external interrupt source 1. This pin can serve as an external interrupt source to the MCU.

ACMPNQO, analog comparator 0 negative input. Configure the port pin as input with the internal pull-up switched off to avoid
the digital port function from interfering with the function of the analog comparator.

PCINT2, pin change interrupt 2.
+ PCINT1/MOSI/PSCOUT2B - Bit 1

MOSI: SPI master data output, slave data input for SPI channel. When the SPI is enabled as a slave, this pin is configured
as an input regardless of the setting of DDB1 When the SPI is enabled as a master, the data direction of this pin is controlled
by DDB1. When the pin is forced to be an input, the pull-up can still be controlled by the PORTB1 and PUD bits.

PSCOUT2B, output 2B of PSC.
PCINT1, pin change interrupt 1.
« PCINTO/MISO/PSCOUT2A - Bit 0

MISO, master data input, slave data output pin for SPI channel. When the SPI is enabled as a master, this pin is configured
as an input regardless of the setting of DDB0. When the SPI is enabled as a slave, the data direction of this pin is controlled
by DDBO0. When the pin is forced to be an input, the pull-up can still be controlled by the PORTBO and PUD bits.

PSCOUT2A, output 2A of PSC.
PCINTO, pin change interrupt 0.

ATmega16/32/64/M1/C1 [DATASHEET] 59
/ItmeL 76470-AVR-01/15

Table 9-4 and Table 9-5 relates the alternate functions of Port B to the overriding signals shown in Figure 9-5 on page 56.

Table 9-4. Overriding Signals for Alternate Functions in PB7..PB4

PB7/ADC4/ PB6/ADC7/ PB5/ADC6/
PSCOUTOB/SCK/ PSCOUT1B/ INT2/ACMPN?1/ PB4/AMPO+/
Signal Name PCINT7 PCINT6 AMP2-/PCINT5 PCINT4
PUOE SPE x MSTR x SPIPS 0 0 0
PUOV PB7 x PUD x SPIPS 0 0 0
DDOE SFiE 2 nggg:nxofplps * PSCen11 0 0
DDOV PSCen01 1 0 0
PVOE SPE x MSTR x SPIPS PSCen11 0 0
PSCout01 x SPIPS + PSCout01 x
PVOV PSCen01 x SPIPS PSCOUT11 0 0
+ PSCout01 x PSCen01 x SPIPS
DIEOE ADC4D ADC7D ADCBD + In2en AMPOND
DIEOV 0 0 In2en 0
DI SCKin x SPIPS x ireset ICP1B INT2
AIO ADC4 ADC7 ADC6 AMPO+

Table 9-5. Overriding Signals for Alternate Functions in PB3..PB0

PB1/MOSV/ PBO/MISO/
PB3/AMPO-/ PB2/ADC5/INT1/ PSCOUT2B/ PSCOUT2A/
Signal Name PCINT3 ACMPNO/PCINT2 PCINT1 PCINTO

PUOE 0 0 — —
PUOV 0 0 — —
DDOE 0 0 — —
DDOV 0 0 — —
PVOE 0 0 — —
PVOV 0 0 — —
DIEOE AMPOND ADC5D + Inten 0 0
DIEOV 0 In1en 0 0

5 i MOSI_IN x SPIPS x MISO_IN x SPIPS x

ireset ireset

AIO AMPO- ADC5 — =

60 ATmega16/32/64/M1/C1 [DATASHEET] Atmel

76470-AVR-01/15

9.3.3 Alternate Functions of Port C

The Port C pins with alternate functions are shown in Table 9-6.

Table 9-6. Port C Pins Alternate Functions

Port Pin Alternate Function

D2A (DAC output)

PC7 AMP2+ (Analog Differential Amplifier 2 Positive Input)
PCINT15 (Pin Change Interrupt 15)

ADC10 (Analog Input Channel 10)

PC6 ACMP1 (analog comparator 1 Positive Input)
PCINT14 (Pin Change Interrupt 14)

ADC9 (Analog Input Channel 9)

AMP1+ (Analog Differential Amplifier 1 Input Channel)
ACMP3 (Analog Comparator 3 Positive Input)
PCINT13 (Pin Change Interrupt 13)

ADCS8 (Analog Input Channel 8)

AMP1- (Analog Differential Amplifier 1 Input Channel)
ACMPN3 (Analog Comparator 3 Negative Input)
PCINT12 (Pin Change Interrupt 12)

T1 (Timer 1 clock input)

RXCAN (CAN Rx Data)

ICP1B (Timer 1 Input Capture Alternate Input)
PCINT11 (Pin Change Interrupt 11)

TO (Timer 0 clock input)

PC2 TXCAN (CAN Tx Data)

PCINT10 (Pin Change Interrupt 10)

PSCIN1 (PSC 1 Digital Input)

OC1B (Timer 1 Output Compare B)

PC5

PC4

PC3

PC1
SS_A (Alternate SPI Slave Select)
PCINT9 (Pin Change Interrupt 9)
PSCOUT1A (PSC output 2A)
PCO INT3 (External Interrupt 3)
PCINTS8 (Pin Change Interrupt 8)
Note: On the engineering samples (Parts marked AT90PWM324), the ACMPNS3 alternate function is not located on

PCA4. It is located on PE2.
The alternate pin configuration is as follows:
« D2A/AMP2+/PCINT15 - Bit 7
D2A, digital to analog output

AMP2+, analog differential amplifier 2 positive input. Configure the port pin as input with the internal pull-up switched off to
avoid the digital port function from interfering with the function of the amplifier.

PCINT15, pin change interrupt 15.

ATmega16/32/64/M1/C1 [DATASHEET] 61
AtmeL 76470-AVR-01/15

+ ADC10/ACMP1/PCINT14 - Bit 6
ADC10, analog to digital converter, input channel 10.

ACMP1, analog comparator 1 positive input. Configure the port pin as input with the internal pull-up switched off to avoid the
digital port function from interfering with the function of the analog comparator.

PCINT14, pin change interrupt 14.
- ADC9/ACMP3/AMP1+/PCINT13 — Bit 5
ADC9, analog to digital converter, input channel 9.

ACMP3, analog comparator 3 positive input. Configure the port pin as input with the internal pull-up switched off to avoid the
digital port function from interfering with the function of the analog comparator.

AMP1+, analog differential amplifier 1 positive input channel. Configure the port pin as input with the internal pull-up
switched off to avoid the digital port function from interfering with the function of the analog ampilifier.

PCINT13, pin change interrupt 13.
- ADC8/AMP1-/ACMPN3/PCINT12 - Bit 4
ADCS8, analog to digital converter, input channel 8.

AMP1-, analog differential amplifier 1 negative input channel. Configure the port pin as input with the internal pull-up
switched off to avoid the digital port function from interfering with the function of the analog ampilifier.

ACMPNS3, analog comparator 3 negative input. Configure the port pin as input with the internal pull-up switched off to avoid
the digital port function from interfering with the function of the analog comparator.

PCINT12, pin change interrupt 12.

« PCINT11/T1/RXCAN/ICP1B - Bit 3
T1, Timer/Counter1 counter source.
RXCAN, CAN Rx data.

ICP1B, input capture pin: The PC3 pin can act as an input capture pin for Timer/Counter1.
PCINT11, pin change interrupt 11.

« PCINT10/TO/TXCAN - Bit 2

TO, Timer/Counter0 counter source.
TXCAN, CAN Tx data.

PCINT10, pin change interrupt 10.

« PCINT9/PSCIN1/0C1B/SS_A - Bit 1
PCSIN1, PSC 1 digital input.

OC1B, output compare match B output: This pin can serve as an external output for the Timer/Counter1 output compare B.
The pin has to be configured as an output (DDC1 set “one”) to serve this function. This pin is also the output pin for the PWM
mode timer function.

@_A: Slave port select input. When the SPI is enabled as a slave, this pin is configured as an input regardless of the setting
of DDDO. As a slave, the SPI is activated when this pin is driven low. When the SPI is enabled as a master, the data direction
of this pin is controlled by DDDO0. When the pin is forced to be an input, the pull-up can still be controlled by the PORTDO bit.

PCINT9, pin change interrupt 9.

- PCINT8/PSCOUT1A/INT3 - Bit 0

PSCOUT1A, output 1A of PSC.

INT3, external interrupt source 3: This pin can serve as an external interrupt source to the MCU.
PCINTS, pin change interrupt 8.

62 ATmega6/32/64/M1/C1 [DATASHEET]
76470-AVR-01/15 A t mel-

Table 9-7 and Table 9-8 relate the alternate functions of port C to the overriding signals shown in Figure 9-5 on page 56.

Table 9-7. Overriding Signals for Alternate Functions in PC7..PC4

PC6/ADC10/ PC5/ADCY/ PC4/ADC8/
PC7/D2A/AMP2+/ ACMP1/ AMP1+/ACMP3/ AMP1-/ACMPN3/

Signal Name PCINT15 PCINT14 PCINT13 PCINT12

PUOE 0 0 0

PUOV 0 0 0

DDOE DAEN 0 0

DDOV 0 0 0

PVOE 0 0 0 -

PVOV 0 0 0 -

DIEOE DAEN ADC10D ADC9D ADC8D

DIEOV 0 0 0 0

DI
ADC8 Amp1-
AlO - ADC10 Amp1 ADC9 Amp1+
ACMPN3

Table 9-8. Overriding Signals for Alternate Functions in PC3..PC0

PC1/PSCIN1/ PCO/INT3/
PC3/T1/RXCAN/ PC2/TO/TXCAN/ OC1B/SS_A/ PSCOUT1A/
Signal Name ICP1B/PCINT11 PCINT10 PCINT9 PCINT8
PUOE 0 0 0 0
PUOV 0 0 0 0
DDOE 0 PSCen10
DDOV 1 1 0 1
PVOE OC1Ben PSCen10
PVOV OC1B PSCout10
DIEOE In3en
DIEOV In3en
DI T TO PSSSC_T INT3
AlO

ATmega16/32/64/M1/C1 [DATASHEET] 63
Atmel 76470-AVR—01/15

9.3.4 Alternate Functions of Port D

The Port D pins with alternate functions are shown in Table 9-9.

Table 9-9. Port D Pins Alternate Functions

Port Pin Alternate Function

ACMPO (Analog Comparator 0 Positive Input)

PD7
PCINT23 (Pin Change Interrupt 23)
ADC3 (Analog Input Channel 3)
5 ACMPN2 (Analog Comparator 2 Negative Input)

INTO (External Interrupt 0)
PCINT22 (Pin Change Interrupt 22)
ADC2 (Analog Input Channel 2)
PD5 ACMP2 (Analog Comparator 2 Positive Input)
PCINT21 (Pin Change Interrupt 21)
ADC1 (Analog Input Channel 1)
RXD/RXLIN (LIN/UART Rx Data)
PD4 ICP1A (Timer 1 Input Capture)
SCK_A (Programming and Alternate SPI Clock)
PCINT20 (Pin Change Interrupt 20)
TXD/TXLIN (LIN/UART Tx Data)
OCOA (Timer 0 Output Compare A)
PD3 SS (SPI Slave Select)
MOSI_A (Programming and Alternate SPI Master Out Slave In)
PCINT19 (Pin Change Interrupt 19)
PSCIN2 (PSC Digital Input 2)
OC1A (Timer 1 Output Compare A)
MISO_A (Programming and Alternate Master In SPI Slave Out)
PCINT18 (Pin Change Interrupt 18)
PSCINO (PSC Digital Input 0)
PD1 CLKO (System Clock Output)
PCINT17 (Pin Change Interrupt 17)
PSCOUTOA (PSC Output 0A)
PCINT16 (Pin Change Interrupt 16)

PD2

PDO

The alternate pin configuration is as follows:
« ACMPO/PCINT23 - Bit 7

ACMPO, analog comparator 0 positive input. Configure the port pin as input with the internal pull-up switched off to avoid the
digital port function from interfering with the function of the analog comparator.

PCINT23, pin change interrupt 23.
« ADC3/ACMPN2/INTO/PCINT22 — Bit 6
ADCS3, analog to digital converter, input channel 3.

ACMPNZ2, analog comparator 2 negative input. Configure the port pin as input with the internal pull-up switched off to avoid
the digital port function from interfering with the function of the analog comparator.

INTO, external interrupt source 0. This pin can serve as an external interrupt source to the MCU.
PCINT22, pin change interrupt 23.

64 ATmega6/32/64/M1/C1 [DATASHEET]
76470-AVR-01/15 A t mel-

+« ADC2/ACMP2/PCINT21 - Bit 5
ADC2, analog to digital converter, input channel 2.

ACMP2, analog comparator 1 positive input. Configure the port pin as input with the internal pull-up switched off to avoid the
digital port function from interfering with the function of the analog comparator.

PCINT21, pin change interrupt 21.
« PCINT20/ADC1/RXD/RXLIN/ICP1/SCK_A - Bit 4
ADC1, analog to digital converter, input channel 1.

RXD/RXLIN, LIN/UART receive pin. Receive data (data input pin for the LIN/UART). When the LIN/UART receiver is
enabled this pin is configured as an input regardless of the value of DDRD4. When the UART forces this pin to be an input,
a logical one in PORTD4 will turn on the internal pull-up.

ICP1, input capture pin1: This pin can act as an input capture pin for Timer/Counter1.

SCK_A: Master clock output, slave clock input pin for SPI channel. When the SPI is enabled as a slave, this pin is configured
as an input regardless of the setting of DDD4. When the SPI is enabled as a master, the data direction of this pin is
controlled by DDD4. When the pin is forced to be an input, the pull-up can still be controlled by the PORTD4 bit.

PCINT20, pin change interrupt 20.
+ PCINT19/TXD/TXLIN/OCOA/SS/MOSI_A, Bit 3

TXD/TXLIN, LIN/UART transmit pin. Data output pin for the LIN/UART. When the LIN/UART Transmitter is enabled, this pin
is configured as an output regardless of the value of DDD3.

OCOA, output compare match A output: This pin can serve as an external output for the Timer/CounterQ output compare A.
The pin has to be configured as an output (DDD3 set “one”) to serve this function. The OCOA pin is also the output pin for the
PWM mode

SS: Slave port select input. When the SPI is enabled as a slave, this pin is configured as an input regardless of the setting of
DDD3. As a slave, the SPI is activated when this pin is driven low. When the SPI is enabled as a master, the data direction
of this pin is controlled by DDD3. When the pin is forced to be an input, the pull-up can still be controlled by the PORTD3 bit.

MOSI_A: SPI master data output, slave data input for SPI channel. When the SPI is enabled as a slave, this pin is configured
as an input regardless of the setting of DDD3 When the SPI is enabled as a master, the data direction of this pin is controlled
by DDD3. When the pin is forced to be an input, the pull-up can still be controlled by the PORTD3 bit.

PCINT19, pin change Interrupt 19.
- PCINT18/PSCIN2/OC1A/MISO_A, Bit 2
PCSIN2, PSC digital input 2.

OC1A, output compare match A output: This pin can serve as an external output for the Timer/Counter1 output compare A.
The pin has to be configured as an output (DDD2 set “one”) to serve this function. The OC1A pin is also the output pin for the
PWM mode timer function.

MISO_A: Master data input, slave data output pin for SPI channel. When the SPI is enabled as a master, this pin is
configured as an input regardless of the setting of DDD2. When the SPI is enabled as a slave, the data direction of this pin is
controlled by DDD2. When the pin is forced to be an input, the pull-up can still be controlled by the PORTD2 bit.

PCINT18, pin change interrupt 18.
« PCINT17/PSCINO/CLKO - Bit 1
PCSINO, PSC digital input 0.

CLKO, divided system clock: The divided system clock can be output on this pin. The divided system clock will be output if
the CKOUT fuse is programmed, regardless of the PORTD1 and DDD1 settings. It will also be output during reset.

PCINT17, pin change interrupt 17.
- PCINT16/PSCOUTOA - Bit 0
PSCOUTOA: Output 0 of PSC 0.
PCINT16, pin change interrupt 16.

ATmega16/32/64/M1/C1 [DATASHEET] 65
AtmeL 76470-AVR-01/15

Table 9-10 and Table 9-11 relates the alternate functions of Port D to the overriding signals shown in Figure 9-5 on page 56.

Table 9-10. Overriding Signals for Alternate Functions PD7..PD4

PD7/ PD6/ADC3/ PD4/ADC1/RXD/
ACMPO/ ACMPN2/INTO/ PD5/ADC2/ RXLIN/ICP1A/
Signal Name PCINT23 PCINT22 ACMP2/PCINT21 SCK_A/PCINT20
PUOE 0 0 0 RXEN+ SPE -
MSTR x SPIPS
PUOV 0 0 0 PD4 x PUD
+ X
DDOV 0 0 0 0
PVOE 0 0 0 SPE x MSTR x SPIPS
PVOV 0 0 0 _
DIEOE ACMPOD ADC3D + In0en ADC2D ADC1D
DIEOV 0 InOen 0 0
DI - INTO ICP1A
AIO ACOMPO A’é'iA%E'M Aégﬁiz ADC1

Table 9-11. Overriding Signals for Alternate Functions in PD3..PD0

PD3/TXD/TXLIN/ PD2/PSCIN2/ PD1/PSCINO/
OCOA/SS/MOSI_A/ OC1A/MISO_A/ CLKO/ PDO/PSCOUTOA/
Signal Name PCINT19 PCINT18 PCINT17 XCK/PCINT16
TXEN + SPE x SPE x
FURE MSTR x SPIPS - C MSTR x SPIPS
TXEN x SPE x MSTR x —
FLeR SPIPS x PD3 x PUD - v B 3 LD
TXEN + SPE x PSCen00 + SPE x
ploials MSTR x SPIPS - v MSTR x SPIPS
DDOV TXEN 0 0 PSCen00
TXEN + OCOen + SPE x
PVOE RS, - 0 PSCen00 + UMSEL
TXEN x TXD + TXEN x
PVOV (OCOen x OCO + OCOen x _ 0 -
SPIPS x MOSI)
DIEOE 0 0 0 0
DIEOV 0 0 0 0
ss
= MOSI_Ain
AIO
66 ATmegal6/32/64/M1/C1 [DATASHEET
g [] Atmel

76470-AVR-01/15

9.3.5 Alternate Functions of Port E

The Port E pins with alternate functions are shown in Table 9-12.

Table 9-12. Port E Pins Alternate Functions

Port Pin Alternate Function

XTAL2 (XTAL Output)

PE2 ADCO (Analog Input Channel 0)
PCINT26 (Pin Change Interrupt 26)
XTAL1 (XTAL Input)

PE1 OCOB (Timer 0 Output Compare B)
PCINT25 (Pin Change Interrupt 25)
RESET# (Reset Input)

PEO OCD (On Chip Debug I/0)
PCINT24 (Pin Change Interrupt 24)

Note: On the engineering samples (Parts marked AT90PWM324), the ACMPN3 alternate function is not located on
PC4. It is located on PE2.

The alternate pin configuration is as follows:
« PCINT26/XTAL2/ADCO — Bit 2

XTAL2: Chip clock oscillator pin 2. Used as clock pin for crystal oscillator or low-frequency crystal oscillator. When used as a
clock pin, the pin can not be used as an 1/O pin.

ADCO, analog to digital converter, input channel 0.
PCINT26, pin change interrupt 26.
« PCINT25/XTAL1/0COB — Bit 1

XTAL1: Chip clock oscillator pin 1. Used for all chip clock sources except internal calibrated RC oscillator. When used as a
clock pin, the pin can not be used as an I/O pin.

OCOB, output compare Match B output: This pin can serve as an external output for the Timer/Counter0 output compare B.
The pin has to be configured as an output (DDE1 set “one”) to serve this function. This pin is also the output pin for the PWM
mode timer function.

PCINT25, pin change interrupt 25.
+ PCINT24/RESET/OCD - Bit 0

RESET, reset pin: When the RSTDISBL Fuse is programmed, this pin functions as a normal I/O pin, and the part will have to
rely on power-on reset and brown-out reset as its reset sources. When the RSTDISBL Fuse is unprogrammed, the reset
circuitry is connected to the pin, and the pin can not be used as an 1/O pin.

If PEO is used as a reset pin, DDEO, PORTEO and PINEO will all read 0.
PCINT24, pin change interrupt 24.

ATmega16/32/64/M1/C1 [DATASHEET] 67
AtmeL 76470-AVR-01/15

Table 9-13 relates the alternate functions of Port E to the overriding signals shown in Figure 9-5 on page 56.

Table 9-13. Overriding Signals for Alternate Functions in PE2..PEO

PE2/ADCO/XTAL2/ PE1/XTAL1/0C0B/ PEO/RESET/
Signal Name PCINT26 PCINT25 OCD/PCINT24
PUOE 0 0 0
PUOV 0 0 0
DDOE 0 0 0
DDOV 0 0 0
PVOE 0 OCOBen 0
PVOV 0 OCO0B 0
DIEOE ADCOD 0 0
DIEOV 0 0 0
DI
Osc Output .
AlIO Osc / Clock input
ADCO

9.4 Register Description for I/0O-Ports

9.4.1 Port B Data Register - PORTB

Bit 7 6 5 4 3 2 1 0

| PORTB7 | PORTB6 | PORTBS5 | PORTB4 | PORTB3 | PORTB2 | PORTB1 | PORTBO | PORTB
Read/Write R/W R/W RIW R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

9.4.2 Port B Data Direction Register - DDRB

Bit 7 6 5 4 3 2 1 0

| ppB7 | DDB6 | DDB5 | DDB4 | DDB3 | DDB2 | DDB1 DDBO | DDRB
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

9.4.3 Port B Input Pins Address — PINB

Bit 7 6 5 4 3 2 1 0

[PINB7 T PINB6 | PINB5 | PINB4 | PINB3 | PINB2 | PINB1 | PINBO | PINB
ReadWrite ~ RW RW RW RW RW RW RW RW
Initial Value ~ N/A N/A N/A N/A N/A N/A N/A N/A

9.4.4 Port C Data Register - PORTC

Bit 7 6 5 4 3 2 1 0
| PORTC7 | PORTC6 | PORTC5 | PORTC4 | PORTC3 | PORTC2 | PORTC1 | PORTCO | PORTC
Read/Write R/W RIW RIW RIW RIW RIW RIW RIW
Initial Value 0 0 0 0 0 0 0 0
68 ATmega16/32/64/M1/C1 [DATASHEET] Atmel

76470-AVR-01/15

9.4.5 Port C Data Direction Register - DDRC
Bit 7 6 5 4 3 2 1 0
| DDC7 | DDC6 | DDC5 | DDC4 | DDC3 DDC2 DDC1 DDCO | DDRC
Read/Write R/IW R/W R/W R/W R/W R/W R/W R/IW
Initial Value 0 0 0 0 0 0 0 0
9.4.6 Port C Input Pins Address — PINC
Bit 7 6 5 4 3 2 1 0
| PINC7 | PINC6 | PINC5 | PINC4 | PINC3 | PINC2 | PINC1 PINCO | PINC
Read/Write RIW RIW RIW RIW RIW RIW RIW RIW
Initial Value N/A N/A N/A N/A N/A N/A N/A N/A
9.4.7 Port D Data Register —- PORTD
Bit 7 6 5 4 3 2 1 0
| PORTD7 | PORTD6 | PORTDS5 | PORTD4 | PORTD3 | PORTD2 | PORTD1 | PORTDO | PORTD
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0
9.4.8 Port D Data Direction Register - DDRD
Bit 7 6 5 4 3 2 1 0
| DDD7 | DDD6 | DDD5 | DDD4 | DDD3 DDD2 DDD1 DDDO | DDRD
Read/Write RIW R/W R/W R/IW R/W R/W RIW R/W
Initial Value 0 0 0 0 0 0 0 0
9.4.9 Port D Input Pins Address — PIND
Bit 7 6 5 4 3 2 1 0
| PIND7 | PIND6 | PIND5 | PIND4 | PIND3 | PIND2 | PIND1 PINDO | PIND
Read/Write R/W RIW R/IW R/IW R/IW R/IW RIW RIW
Initial Value N/A N/A N/A N/A N/A N/A N/A N/A
9.4.10 Port E Data Register - PORTE
Bit 7 6 5 4 3 2 1 0
- | - | - | - | - [PORTE2]PORTE1 | PORTE0] PORTE
Read/Write R R R R R RIW RIW RIW
Initial Value 0 0 0 0 0 0 0 0
9.4.11 Port E Data Direction Register — DDRE
Bit 7 6 5 4 3 2 1 0
| - | - | -] -] - | DDE2 | DDE1 | DDEO | DDRE
Read/Write R R R R R RIW R/W R/W
Initial Value 0 0 0 0 0 0 0 0
9.4.12 Port E Input Pins Address — PINE
Bit 7 6 5 4 3 2 1 0
[- | - | - 1 -] - | PINE2 | PINET | PINEQ | PINE
Read/Write R R R R R R/IW RIW R/W
Initial Value 0 0 0 0 0 N/A N/A N/A
ATmega16/32/64/M1/C1 [DATASHEET] 69
Atmel

76470-AVR-01/15

10. External Interrupts

The external interrupts are triggered by the INT3:0 pins or any of the PCINT23..0 pins. Observe that, if enabled, the
interrupts will trigger even if the INT3:0 or PCINT23..0 pins are configured as outputs. This feature provides a way of
generating a software interrupt. The pin change interrupt PCI2 will trigger if any enabled PCINT23..16 pin toggles. The pin
change interrupt PCI1 will trigger if any enabled PCINT14..8 pin toggles. The pin change interrupt PCIO will trigger if any
enabled PCINT?7..0 pin toggles. The PCMSK3, PCMSK2, PCMSK1 and PCMSKO registers control which pins contribute to
the pin change interrupts. Pin change interrupts on PCINT26..0 are detected asynchronously. This implies that these
interrupts can be used for waking the part also from sleep modes other than Idle mode.

The INT3:0 interrupts can be triggered by a falling or rising edge or a low level. This is set up as indicated in the specification
for the external interrupt control register A — EICRA. When the INT3:0 interrupts are enabled and are configured as level
triggered, the interrupts will trigger as long as the pin is held low. Note that recognition of falling or rising edge interrupts on
INT3:0 requires the presence of an 1/O clock, described in Section 5.1 “Clock Systems and their Distribution” on page 25.
Low level interrupt on INT3:0 is detected asynchronously. This implies that this interrupt can be used for waking the part also
from sleep modes other than Idle mode. The 1/O clock is halted in all sleep modes except Idle mode.

Note that if a level triggered interrupt is used for wake-up from power-down, the required level must be held long enough for
the MCU to complete the wake-up to trigger the level interrupt. If the level disappears before the end of the Start-up Time,
the MCU will still wake up, but no interrupt will be generated. The start-up time is defined by the SUT and CKSEL Fuses as
described in Section 5.1 “Clock Systems and their Distribution” on page 25.

10.1 Pin Change Interrupt Timing

An example of timing of a pin change interrupt is shown in Figure 10-1

Figure 10-1. Timing of a Pin Change Interrupts

0
\—) pcint_sync pcint_set/flag
. pin_lat pin_sync pcint_in[i] M
PCINTIi] D Q D Q 7 . D Q D Q D QfF— PCIF,
pin = (interrupt flag)
> > > >

LE 7
PCINTIi] bit l_ l_ |_
clk clk - L

(of PCMSKy)

| 1 1 1 1 //
PCINTI[i] pin ! [1 1 "/
—_—T 1 1 1 1 p
I 1 1 1 1
pin_lat 1 1 1 | 4
- —_—T 11 1 1 1 p
| | | 1 1 1
pin_sync | : | | | | /7
— ' | | |
peint_in[i] . |] . . L
I ™ T T 7/
[1 1 1
pcint_sync ! I I | | |)
T T I | ™ T 7/
1 1l 1
pcint_set/flag : : | : | : 7/
1 1
1 1

70 ATmega16/32/64/M1/C1 [DATASHEET]
76470-AVR-01/15 Atmel

10.2 External Interrupt Control Register A — EICRA

The External Interrupt Control Register A contains control bits for interrupt sense control.
Bit 7 6 5 4 3 2 1 0

| 1sc31 | I1sC30 | ISC21 | I1SC20 | ISC11 | ISC10 | ISCO1 | ISCO0 | EICRA
Read/Write ~ R/W RIW RIW R/W RIW RIW RIW RIW
Initial Value 0 0 0 0 0 0 0 0

+ Bit7..0-1SC31,ISC30 - ISC01, ISCO0: Interrupt Sense Control 0 Bit 1 and Bit 0

The external interrupts 3 - 0 are activated by the external pins INT3:0 if the SREG I-flag and the corresponding interrupt
mask in the EIMSK is set. The level and edges on the external pins that activate the interrupt are defined in Table 10-1.
Edges on INT3..INTO are registered asynchronously. The value on the INT3:0 pins are sampled before detecting edges. If
edge or toggle interrupt is selected, pulses that last longer than one clock period will generate an interrupt. Shorter pulses
are not guaranteed to generate an interrupt. Observe that CPU clock frequency can be lower than XTAL frequency if the
XTAL divider is enabled. If low level interrupt is selected, the low level must be held until the completion of the currently
executing instruction to generate an interrupt. If enabled, a level triggered interrupt will generate an interrupt request as long
as the pin is held low.

Table 10-1. Interrupt Sense Control™

ISCn1 Description
0 0 The low level of INTn generates an interrupt request.
0 1 Any logical change on INTn generates an interrupt request.
1 0 The falling edge between two samples of INTn generates an interrupt request.
1 1 The rising edge between two samples of INTn generates an interrupt request.

Note: 1. n=3,2,10r0.
When changing the ISCn1/ISCn0 bits, the interrupt must be disabled by clearing its interrupt enable bit in the
EIMSK register. Otherwise an interrupt can occur when the bits are changed.

10.2.1 External Interrupt Mask Register — EIMSK

Bit 7 6 5 4 3 2 1 0

| - | - | - | - | INT INT2 INT1 INTO | EIMSK
Read/Write R R R R R R RIW RIW
Initial Value 0 0 0 0 0 0 0 0

- Bit 7..4 — Res: Reserved Bits
These bits are unused bits in the ATmega16/32/64/M1/C1, and will always read as zero.
< Bit 3..0 — INT3 - 0: External Interrupt Request 3:0 Enable

When an INT3 — INTO bit is written to one and the I-bit in the status register (SREG) is set (one), the corresponding external
pin interrupt is enabled. The interrupt sense control bits in the external interrupt control register A - EICRA defines whether

the external interrupt is activated on rising or falling edge or level sensed. Activity on any of these pins will trigger an interrupt
request even if the pin is enabled as an output. This provides a way of generating a software interrupt.

ATmega16/32/64/M1/C1 [DATASHEET] 71
AtmeL 76470-AVR-01/15

10.2.2 External Interrupt Flag Register — EIFR

Bit 7 6 5 4 3 2 1 0
| - | - | - | - [INTF3 | INTF2 | INTF1 INTFO | EIFR

Read/Write R R R R RIW R/W R/IW R/IW

Initial Value 0 0 0 0 0 0 0 0

- Bit 7..4 — Res: Reserved Bits
These bits are unused bits in the ATmega16/32/64/M1/C1, and will always read as zero.
« Bit 3..0 - INTF3 - INTFO: External Interrupt Flag 3 - 0

When an edge or logic change on the INT3:0 pin triggers an interrupt request, INTF3:0 becomes set (one). If the I-bit in
SREG and the corresponding interrupt enable bit INT3:0 in EIMSK, are set (one), the MCU will jump to the interrupt vector.
The flag is cleared when the interrupt routine is executed. Alternatively, the flag can be cleared by writing a logical one to it.
These flags are always cleared when INT3:0 are configured as a level interrupt.

10.2.3 Pin Change Interrupt Control Register - PCICR

Bit 7 6 5 4 3 2 1 0
|l - | - | - | - | PCIES | PCIE2 | PCIE1 | PCIEO | PCICR

Read/Write R R R R R RIW RIW RIW

Initial Value 0 0 0 0 0 0 0 0

- Bit 7..4 - Res: Reserved Bits
These bits are unused bits in the ATmega16/32/64/M1/C1, and will always read as zero.
« Bit 3 - PCIE3: Pin Change Interrupt Enable 3

When the PCIE3 bit is set (one) and the I-bit in the status register (SREG) is set (one), pin change interrupt 3 is enabled. Any
change on any enabled PCINT26..24 pin will cause an interrupt. The corresponding interrupt of pin change interrupt request
is executed from the PCI3 interrupt vector. PCINT26..24 pins are enabled individually by the PCMSKS3 register.

- Bit 2 - PCIE2: Pin Change Interrupt Enable 2

When the PCIE2 bit is set (one) and the I-bit in the status register (SREG) is set (one), pin change interrupt 2 is enabled. Any
change on any enabled PCINT23..16 pin will cause an interrupt. The corresponding interrupt of pin change interrupt request
is executed from the PCI2 interrupt vector. PCINT23..16 pins are enabled individually by the PCMSK2 register.

- Bit 1 - PCIE1: Pin Change Interrupt Enable 1

When the PCIE1 bit is set (one) and the I-bit in the status register (SREG) is set (one), pin change interrupt 1 is enabled. Any
change on any enabled PCINT15..8 pin will cause an interrupt. The corresponding interrupt of pin change interrupt request is
executed from the PCI1 interrupt vector. PCINT15..8 pins are enabled individually by the PCMSK1 register.

« Bit 0 - PCIEO: Pin Change Interrupt Enable 0

When the PCIEO bit is set (one) and the I-bit in the status register (SREG) is set (one), pin change interrupt 0 is enabled. Any
change on any enabled PCINT7..0 pin will cause an interrupt. The corresponding interrupt of pin change interrupt request is
executed from the PCIO interrupt vector. PCINT7..0 pins are enabled individually by the PCMSKO register.

72 ATmega16/32/64/M1/C1 [DATASHEET]
76470-AVR-01/15 A t mel-

10.2.4

10.2.5

10.2.6

Pin Change Interrupt Flag Register - PCIFR

Bit 7 6 5 4 3 2 1 0

| - | - | - | - | PCIF3 | PCIF2 | PCIF1 | PCIF0O | PCIFR
Read/Write R R R R R RIW RIW RIW
Initial Value 0 0 0 0 0 0 0 0

- Bit 7..4 - Res: Reserved Bits
These bits are unused bits in the ATmega16/32/64/M1/C1, and will always read as zero.
« Bit 3 - PCIF3: Pin Change Interrupt Flag 3

When a logic change on any PCINT26..24 pin triggers an interrupt request, PCIF3 becomes set (one). If the I-bit in SREG
and the PCIE3 bit in PCICR are set (one), the MCU will jump to the corresponding interrupt vector. The flag is cleared when
the interrupt routine is executed. Alternatively, the flag can be cleared by writing a logical one to it.

- Bit 2 - PCIF2: Pin Change Interrupt Flag 2

When a logic change on any PCINT23..16 pin triggers an interrupt request, PCIF2 becomes set (one). If the I-bit in SREG
and the PCIE2 bit in PCICR are set (one), the MCU will jump to the corresponding Interrupt vector. The flag is cleared when
the interrupt routine is executed. Alternatively, the flag can be cleared by writing a logical one to it.

- Bit 1 - PCIF1: Pin Change Interrupt Flag 1

When a logic change on any PCINT15..8 pin triggers an interrupt request, PCIF1 becomes set (one). If the I-bit in SREG and
the PCIE1 bit in PCICR are set (one), the MCU will jump to the corresponding Interrupt vector. The flag is cleared when the
interrupt routine is executed. Alternatively, the flag can be cleared by writing a logical one to it.

« Bit 0 - PCIFO: Pin Change Interrupt Flag 0

When a logic change on any PCINT7..0 pin triggers an interrupt request, PCIFO becomes set (one). If the I-bit in SREG and
the PCIEO bit in PCICR are set (one), the MCU will jump to the corresponding Interrupt vector. The flag is cleared when the
interrupt routine is executed. Alternatively, the flag can be cleared by writing a logical one to it.

Pin Change Mask Register 3 — PCMSK3

Bit 7 6 5 4 3 2 1 0

I | - | - | - | - PCINT26 | PCINT25 | PCINT24 | PCMSK3
Read/Write ~ R/W R/W R/W RIW R/W RIW RIW R/W
Initial Value 0 0 0 0 0 0 0 0

« Bit 7..3 — Res: Reserved Bit
These bits are unused bits in the ATmega16/32/64/M1/C1, and will always read as zero.
- Bit2..0 - PCINT26..24: Pin Change Enable Mask 26..24

Each PCINT26..24-bit selects whether pin change interrupt is enabled on the corresponding I/O pin. If PCINT26..24 is set
and the PCIE3 bit in PCICR is set, pin change interrupt is enabled on the corresponding I/O pin. If PCINT23..24 is cleared,
pin change interrupt on the corresponding |/O pin is disabled.

Pin Change Mask Register 2 - PCMSK2

Bit 7 6 5 4 3 2 1 0

| PCINT23 | PCINT22 | PCINT21 | PCINT20 | PCINT19 | PCINT18 | PCINT17 | PCINT16 | PCMSK2
Read/Write ~ R/W R/W R/W R/W R/IW R/W R/W RIW
Initial Value 0 0 0 0 0 0 0 0

« Bit 7..0 - PCINT23..16: Pin Change Enable Mask 23..16

Each PCINT23..16-bit selects whether pin change interrupt is enabled on the corresponding I/O pin. If PCINT23..16 is set
and the PCIE2 bit in PCICR is set, pin change interrupt is enabled on the corresponding I/O pin. If PCINT23..16 is cleared,
pin change interrupt on the corresponding I/O pin is disabled.

ATmega16/32/64/M1/C1 [DATASHEET] 73
Atmel ? [)

76470-AVR-01/15

10.2.7 Pin Change Mask Register 1 — PCMSK1

Bit 7 6 5 4 3 2 1 0
[PCINT15TPCINT14TPCINT13TPCINT12] PCINT11 | PCINT10 | PCINT9 | PCINT8 | PCMSK1

Read/Write R RW RW RW RW RW RW RW

Initial Value 0 0 0 0 0 0 0 0

« Bit 7 — Res: Reserved Bit
This bit is an unused bit in the ATmega16/32/64/M1/C1, and will always read as zero.
« Bit7..0 - PCINT15..8: Pin Change Enable Mask 15..8

Each PCINT15..8-bit selects whether pin change interrupt is enabled on the corresponding 1/O pin. If PCINT15..8 is set and
the PCIE1 bit in PCICR is set, pin change interrupt is enabled on the corresponding I/O pin. If PCINT15..8 is cleared, pin
change interrupt on the corresponding I/O pin is disabled.

10.2.8 Pin Change Mask Register 0 — PCMSKO0

Bit 7 6 5 4 3 2 1 0
| PCINT7 | PCINT6 | PCINT5 | PCINT4 | PCINT3 | PCINT2 | PCINT1 | PCINTO | PCMSKO
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

- Bit 7..0 — PCINT7..0: Pin Change Enable Mask 7..0

Each PCINT7..0 bit selects whether pin change interrupt is enabled on the corresponding I/O pin. If PCINT7..0 is set and the
PCIEO bit in PCICR is set, pin change interrupt is enabled on the corresponding I/O pin. If PCINT7..0 is cleared, pin change
interrupt on the corresponding /O pin is disabled.

74 ATmega16/32/64/M1/C1 [DATASHEET]
76470-AVR-01/15 Atmel

11. Timer/Counter0 and Timer/Counter1 Prescalers

Timer/Counter1 and Timer/CounterQ share the same prescaler module, but the Timer/Counters can have different prescaler
settings. The description below applies to both Timer/Counter1 and Timer/CounterO.

11.1 Internal Clock Source

The Timer/Counter can be clocked directly by the system clock (by setting the CSn2:0 = 1). This provides the fastest
operation, with a maximum Timer/Counter clock frequency equal to system clock frequency (fc k 0)- Alternatively, one of
four taps from the prescaler can be used as a clock source. The prescaled clock has a frequency of either f¢, 1,0/8,

foLk 110/64, ok 110/256, or foik 10/1024.

11.2 Prescaler Reset

The prescaler is free running, i.e., operates independently of the clock select logic of the Timer/Counter, and it is shared by
Timer/Counter1 and Timer/Counter0. Since the prescaler is not affected by the Timer/Counter’s clock select, the state of the
prescaler will have implications for situations where a prescaled clock is used. One example of prescaling artifacts occurs
when the timer is enabled and clocked by the prescaler (6 > CSn2:0 > 1). The number of system clock cycles from when the
timer is enabled to the first count occurs can be from 1 to N+1 system clock cycles, where N equals the prescaler divisor (8,
64, 256, or 1024).

It is possible to use the prescaler reset for synchronizing the Timer/Counter to program execution. However, care must be
taken if the other Timer/Counter that shares the same prescaler also uses prescaling. A prescaler reset will affect the
prescaler period for all Timer/Counters it is connected to.

11.3 External Clock Source

An external clock source applied to the Tn pin can be used as Timer/Counter clock (clky4/clkyg). The Tn pin is sampled once
every system clock cycle by the pin synchronization logic. The synchronized (sampled) signal is then passed through the
edge detector. Figure 11-1 shows a functional equivalent block diagram of the Tn/TO synchronization and edge detector
logic. The registers are clocked at the positive edge of the internal system clock (clk,g). The latch is transparent in the high
period of the internal system clock.

The edge detector generates one clky4/clk pulse for each positive (CSn2:0 = 7) or negative (CSn2:0 = 6) edge it detects.

Figure 11-1. Tn Pin Sampling

Tn D Q D Q D Q Tn_sync
™ (to Clock
Select Logic)
[—T |

C|k|/o A L

Synchronization Edge Detector

The synchronization and edge detector logic introduces a delay of 2.5 to 3.5 system clock cycles from an edge has been
applied to the Tn/TO pin to the counter is updated.

Enabling and disabling of the clock input must be done when Tn/T0O has been stable for at least one system clock cycle,
otherwise it is a risk that a false Timer/Counter clock pulse is generated.

Each half period of the external clock applied must be longer than one system clock cycle to ensure correct sampling. The
external clock must be guaranteed to have less than half the system clock frequency (feyci < far 110/2) given a 50/50% duty
cycle. Since the edge detector uses sampling, the maximum frequency of an external clock it can detect is half the sampling
frequency (Nyquist sampling theorem). However, due to variation of the system clock frequency and duty cycle caused by
Oscillator source (crystal, resonator, and capacitors) tolerances, it is recommended that maximum frequency of an external
clock source is less than fy, ,0/2.5.

An external clock source can not be prescaled.

ATmega16/32/64/M1/C1 [DATASHEET] 75
AtmeL 76470-AVR-01/15

Figure 11-2. Prescaler for Timer/Counter0 and Timer/Counter1("

clk;o - 10-bit T/C Prescaler
Clear
‘ 2 2 2 3
S < g g
O x NS
PSRSYNC o o
FCTTTTTTTTTTA
TO — Synchronization *
1 1
FTTTTTTTTTTT L o
T1 — Synchronization 0 0
1 1
\ R \ \ Yy v \ | B A A Yy A
CS10 —» CS00 —»
CS11 — CS01 —
CS12 —— CS02 —
Timer/Counter1 Clock Source Timer/Counter0 Clock Source
clkrq clkrg

Note: 1. The synchronization logic on the input pins (Tn) is shown in Figure 11-1.

11.3.1 General Timer/Counter Control Register - GTCCR

Bit 7 6 5 4 3 2 1 0
| TSM | ICPSELA1 | - | - | - | - - PSRSYNC | GTCCR
Read/Write R/W R/W R R R R R R/W
Initial Value 0 0 0 0 0 0 0 0

« Bit 7 - TSM: Timer/Counter Synchronization Mode

Writing the TSM bit to one activates the Timer/Counter synchronization mode. In this mode, the value that is written to the
PSRSYNC bit is kept, hence keeping the corresponding prescaler reset signals asserted. This ensures that the
corresponding Timer/Counters are halted and can be configured to the same value without the risk of one of them advancing
during configuration. When the TSM bit is written to zero, the PSRSYNC bit is cleared by hardware, and the Timer/Counters
start counting simultaneously.

« Bit6 — ICPSEL1: Timer 1 Input Capture Selection

Timer 1 capture function has two possible inputs ICP1A (PD4) and ICP1B (PC3). The selection is made thanks to ICPSEL1
bit as described in Table 11-1.

Table 11-1. ICPSELA1

ICPSEL1 Description
0 Select ICP1A as trigger for timer 1 input capture
1 Select ICP1B as trigger for timer 1 input capture

- Bit 0 — PSRSYNC: Prescaler Reset

When this bit is one, Timer/Counter1 and Timer/Counter0 prescaler will be Reset. This bit is normally cleared immediately by
hardware, except if the TSM bit is set. Note that Timer/Counter1 and Timer/CounterQ share the same prescaler and a reset
of this prescaler will affect both timers.

76 ATmega16/32/64/M1/C1 [DATASHEET]
76470-AVR-01/15 A t mel-

12. 8-bit Timer/Counter0 with PWM

Timer/Counter0 is a general purpose 8-bit Timer/Counter module, with two independent Output Compare Units, and with
PWM support. It allows accurate program execution timing (event management) and wave generation. The main features
are:

Two independent output compare units

Double buffered output compare registers

Clear timer on compare match (auto reload)

Glitch free, phase correct pulse width modulator (PWM)

Variable PWM period

Frequency generator

Three independent interrupt sources (TOV0, OCFOA, and OCFOB)

12.1 Overview

A simplified block diagram of the 8-bit Timer/Counter is shown in Figure 12-1. For the actual placement of I/O pins, refer to
Section 2.3 “Pin Descriptions” on page 9. CPU accessible I/O registers, including I/O bits and 1/O pins, are shown in bold.
The device-specific I/O Register and bit locations are listed in Section 12.8 “8-bit Timer/Counter Register Description” on
page 86.

The PRTIMO bit in Section 6.6 “Power Reduction Register” on page 36 must be written to zero to enable Timer/Counter0
module.

Figure 12-1. 8-bit Timer/Counter Block Diagram

» TOVn (Int. Req.)
Count
Cl Clock Select
- ea.r Control Logic
Direction
Edge - Tn
__ clky Detector |

A
TOP BOTTOM

Yyvy /_ _\

(from Prescaler)

A Timer/Counter 4 1
TCNTn |
e ‘I [=0 |
+ ; + — OCnA (Int. Req.)
]
' _ | Waveform .
= Q o Gen\:aration > OCnA
<—>| OCRnx I 4]
Fixed
@ TOP
a Value —— OCnB (Int. Req.)
<
= .| Waveform _
<D(= "] Generation > OCnB
<—>| OCRnx |
<—>| TCCRnA | | TCCRnB
) ¢ b
Y
ATmega16/32/64/M1/C1 [DATASHEET 77
Atmel 9 [1

76470-AVR-01/15

12.1.1

12.1.2

12.2

12.3

78

Definitions

Many register and bit references in this section are written in general form. A lower case “n” replaces the Timer/Counter
number, in this case 0. A lower case “x” replaces the output compare unit, in this case compare unit A or compare unit B.
However, when using the register or bit defines in a program, the precise form must be used, i.e., TCNTO for accessing
Timer/CounterO counter value and so on.

The definitions in Table 12-1 are also used extensively throughout the document.

Table 12-1. Definitions

Definitions
BOTTOM The counter reaches the BOTTOM when it becomes 0x00.
MAX The counter reaches its MAXimum when it becomes OxFF (decimal 255).
The counter reaches the TOP when it becomes equal to the highest value in the count
TOP sequence. The TOP value can be assigned to be the fixed value OxFF (MAX) or the value

stored in the OCROA Register. The assignment is dependent on the mode of operation.

Registers

The Timer/Counter (TCNTO) and output compare registers (OCROA and OCROB) are 8-bit registers. Interrupt request
(abbreviated to int.req. in the figure) signals are all visible in the timer interrupt flag register (TIFRO). All interrupts are
individually masked with the timer interrupt mask register (TIMSKO). TIFRO and TIMSKO are not shown in the figure.

The Timer/Counter can be clocked internally, via the prescaler, or by an external clock source on the TO pin. The clock select
logic block controls which clock source and edge the Timer/Counter uses to increment (or decrement) its value. The
Timer/Counter is inactive when no clock source is selected. The output from the Clock Select logic is referred to as the timer
clock (clkyg).

The double buffered Output Compare Registers (OCROA and OCROB) are compared with the Timer/Counter value at all
times. The result of the compare can be used by the waveform generator to generate a PWM or variable frequency output on
the output compare pins (OCOA and OCOB). See Section 13.6.3 “Using the Output Compare Unit” on page 101 for details.
The compare match event will also set the Compare Flag (OCFOA or OCFO0B) which can be used to generate an output
compare interrupt request.

Timer/Counter Clock Sources

The Timer/Counter can be clocked by an internal or an external clock source. The clock source is selected by the clock
select logic which is controlled by the clock select (CS02:0) bits located in the Timer/Counter control register (TCCROB). For
details on clock sources and prescaler, see Section 11. “Timer/Counter0 and Timer/Counter1 Prescalers” on page 75.

Counter Unit

The main part of the 8-bit Timer/Counter is the programmable bi-directional counter unit. Figure 12-2 shows a block diagram
of the counter and its surroundings.

Figure 12-2. Counter Unit Block Diagram

TOVn
DATA BUS - (nt Rea)
t Clock Select
- count Edge -~
TCNTn - clear Control Logic |- clkr, =~ Detector n

__ direction

- (from Prescaler)

bottom T T top
ATmega16/32/64/M1/C1 [DATASHEET
; [! Atmel

76470-AVR-01/15

Signal description (internal signals):

e count Increment or decrement TCNTO by 1.

e direction Select between increment and decrement.

e clear Clear TCNTO (set all bits to zero).

e clkTn Timer/Counter clock, referred to as clkTO0 in the following.
e top Signalize that TCNTO has reached maximum value.

e bottom Signalize that TCNTO has reached minimum value (zero).

Depending of the mode of operation used, the counter is cleared, incremented, or decremented at each timer clock (clky).

clkry can be generated from an external or internal clock source, selected by the clock select bits (CS02:0). When no clock
source is selected (CS02:0 = 0) the timer is stopped. However, the TCNTO value can be accessed by the CPU, regardless of
whether clk, is present or not. A CPU write overrides (has priority over) all counter clear or count operations.

The counting sequence is determined by the setting of the WGMO01 and WGMOO bits located in the Timer/Counter control
register (TCCROA) and the WGMO2 bit located in the Timer/Counter control register B (TCCROB). There are close
connections between how the counter behaves (counts) and how waveforms are generated on the output compare outputs
OCOA and OCOB. For more details about advanced counting sequences and waveform generation, see Section 12.6
“Modes of Operation” on page 81.

The Timer/Counter overflow flag (TOVO0) is set according to the mode of operation selected by the WGMO02:0 bits. TOVO can
be used for generating a CPU interrupt.

12.4 Output Compare Unit

The 8-bit comparator continuously compares TCNTO with the output compare registers (OCROA and OCROB). Whenever
TCNTO equals OCROA or OCROB, the comparator signals a match. A match will set the output compare flag (OCFOA or
OCFO0B) at the next timer clock cycle. If the corresponding interrupt is enabled, the output compare flag generates an output
compare interrupt. The output compare flag is automatically cleared when the interrupt is executed. Alternatively, the flag
can be cleared by software by writing a logical one to its I/O bit location. The waveform generator uses the match signal to
generate an output according to operating mode set by the WGMO02:0 bits and compare output mode (COMO0x1:0) bits. The
max and bottom signals are used by the waveform generator for handling the special cases of the extreme values in some
modes of operation (Section 12.6 “Modes of Operation” on page 81).

Figure 12-3 shows a block diagram of the output compare unit.

Figure 12-3. Output Compare Unit, Block Diagram
DATA BUS

OCRnNx TCNTn
| = (8-bit Comparator) |
OCFnx (Int. Req.)
\
Top ——»
Bottom ———— Waveform Generator 1 OCnx

FOCn ———

!

WGMn1:0 COMnx1:0

ATmega16/32/64/M1/C1 [DATASHEET] 79
Atmel 76470-AVR—01/15

The OCROXx registers are double buffered when using any of the pulse width modulation (PWM) modes. For the normal and
clear timer on compare (CTC) modes of operation, the double buffering is disabled. The double buffering synchronizes the

update of the OCROx compare registers to either top or bottom of the counting sequence. The synchronization prevents the
occurrence of odd-length, non-symmetrical PWM pulses, thereby making the output glitch-free.

The OCROXx register access may seem complex, but this is not case. When the double buffering is enabled, the CPU has
access to the OCROx buffer register, and if double buffering is disabled the CPU will access the OCROx directly.

12.4.1 Force Output Compare

In non-PWM waveform generation modes, the match output of the comparator can be forced by writing a one to the force
output compare (FOCOXx) bit. Forcing compare match will not set the OCFOx flag or reload/clear the timer, but the OCOx pin
will be updated as if a real compare match had occurred (the COMO0x1:0 bits settings define whether the OCOx pin is set,
cleared or toggled).

12.4.2 Compare Match Blocking by TCNTO Write

All CPU write operations to the TCNTO register will block any compare match that occur in the next timer clock cycle, even
when the timer is stopped. This feature allows OCROx to be initialized to the same value as TCNTO without triggering an
interrupt when the Timer/Counter clock is enabled.

12.4.3 Using the Output Compare Unit

Since writing TCNTO in any mode of operation will block all compare matches for one timer clock cycle, there are risks
involved when changing TCNTO when using the output compare unit, independently of whether the Timer/Counter is running
or not. If the value written to TCNTO equals the OCROXx value, the compare match will be missed, resulting in incorrect
waveform generation. Similarly, do not write the TCNTO value equal to BOTTOM when the counter is downcounting.

The setup of the OCOx should be performed before setting the data direction register for the port pin to output. The easiest
way of setting the OCOx value is to use the force output compare (FOCOx) strobe bits in normal mode. The OCOx registers
keep their values even when changing between waveform generation modes.

Be aware that the COMOx1:0 bits are not double buffered together with the compare value. Changing the COMO0x1:0 bits will
take effect immediately.

12.5 Compare Match Output Unit

The compare output mode (COMOx1:0) bits have two functions. The waveform generator uses the COMO0x1:0 bits for
defining the output compare (OCOx) state at the next compare match. Also, the COMO0x1:0 bits control the OCOx pin output
source. Figure 12-4 shows a simplified schematic of the logic affected by the COMOx1:0 bit setting. The 1/O registers, /0
bits, and I/O pins in the figure are shown in bold. Only the parts of the general I/O port control registers (DDR and PORT)
that are affected by the COMOx1:0 bits are shown. When referring to the OCOx state, the reference is for the internal OCOx
register, not the OCOx pin. If a system reset occur, the OCOx register is reset to “0”.

80 ATmega16/32/64/M1/C1 [DATASHEET]
76470-AVR-01/15 A t mel-

12.5.1

Figure 12-4. Compare Match Output Unit, Schematic

—

COMnx1
COMnx0 Waveform
Generator D Q
FOCn
— 1
OCnx
OCnx Pin
A 0
» D Qr—
(%)
-
o PORT
<
2
)
» D Q
Y DDR
clkyo

The general I/O port function is overridden by the output compare (OCOx) from the waveform generator if either of the
COMOx1:0 bits are set. However, the OCOx pin direction (input or output) is still controlled by the data direction register
(DDR) for the port pin. The data direction register bit for the OCOx pin (DDR_OCO0x) must be set as output before the OC0x
value is visible on the pin. The port override function is independent of the waveform generation mode.

The design of the output compare pin logic allows initialization of the OCOx state before the output is enabled. Note that
some COMOx1:0 bit settings are reserved for certain modes of operation. See Section 12.8 “8-bit Timer/Counter Register
Description” on page 86.

Compare Output Mode and Waveform Generation

The waveform generator uses the COMOx1:0 bits differently in normal, CTC, and PWM modes. For all modes, setting the
COMOx1:0 = 0 tells the waveform generator that no action on the OCOx register is to be performed on the next compare
match. For compare output actions in the non-PWM modes refer to Table 12-2 on page 87. For fast PWM mode, refer to
Table 12-3 on page 87, and for phase correct PWM refer to Table 12-4 on page 87.

A change of the COMO0x1:0 bits state will have effect at the first compare match after the bits are written. For non-PWM
modes, the action can be forced to have immediate effect by using the FOCOx strobe bits.

12.6 Modes of Operation
The mode of operation, i.e., the behavior of the Timer/Counter and the output compare pins, is defined by the combination of
the waveform generation mode (WGMO02:0) and compare output mode (COMOx1:0) bits. The compare output mode bits do
not affect the counting sequence, while the waveform generation mode bits do. The COMO0x1:0 bits control whether the
PWM output generated should be inverted or not (inverted or non-inverted PWM). For non-PWM modes the COMOx1:0 bits
control whether the output should be set, cleared, or toggled at a compare match (see Section 12.5 “Compare Match Output
Unit” on page 80).
For detailed timing information refer to Section 12.7 “Timer/Counter Timing Diagrams” on page 85.
ATmega16/32/64/M1/C1 [DATASHEET 81
Atmel 9 []

76470-AVR-01/15

12.6.1 Normal Mode

The simplest mode of operation is the normal mode (WGMO02:0 = 0). In this mode the counting direction is always up
(incrementing), and no counter clear is performed. The counter simply overruns when it passes its maximum 8-bit value
(TOP = OxFF) and then restarts from the bottom (0x00). In normal operation the Timer/Counter overflow flag (TOVO0) will be
set in the same timer clock cycle as the TCNTO becomes zero. The TOVO flag in this case behaves like a ninth bit, except
that it is only set, not cleared. However, combined with the timer overflow interrupt that automatically clears the TOVO Flag,
the timer resolution can be increased by software. There are no special cases to consider in the Normal mode, a new
counter value can be written anytime.

The output compare unit can be used to generate interrupts at some given time. Using the output compare to generate
waveforms in normal mode is not recommended, since this will occupy too much of the CPU time.

12.6.2 Clear Timer on Compare Match (CTC) Mode

In clear timer on compare or CTC mode (WGMO02:0 = 2), the OCROA register is used to manipulate the counter resolution. In
CTC mode the counter is cleared to zero when the counter value (TCNTO0) matches the OCROA. The OCROA defines the top
value for the counter, hence also its resolution. This mode allows greater control of the compare match output frequency. It
also simplifies the operation of counting external events.

The timing diagram for the CTC mode is shown in Figure 12-5. The counter value (TCNTO) increases until a compare match
occurs between TCNTO and OCROA, and then counter (TCNTO) is cleared.

Figure 12-5. CTC Mode, Timing Diagram

OCnx Interrupt

1
1
1
1
1
4
[
1
4
A
1
1
1
1
1
1
1
1
1
1
1
1
]
4
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

] : or T Y Fiag Set
1 1 1 1 1 1 1
| | | 1 1 1 1
\j \j \j I _
1 1 1 1
_ _ Yy oo
1 1 1
Yy
TCNTn
Y Y I |
OCnx ‘ COMnx1:0 = 1
(Toggle) (nx)
Period | L 2 3 4 |

An interrupt can be generated each time the counter value reaches the TOP value by using the OCFOA flag. If the interrupt
is enabled, the interrupt handler routine can be used for updating the TOP value. However, changing TOP to a value close to
BOTTOM when the counter is running with none or a low prescaler value must be done with care since the CTC mode does
not have the double buffering feature. If the new value written to OCROA is lower than the current value of TCNTO, the
counter will miss the compare match. The counter will then have to count to its maximum value (0xFF) and wrap around
starting at 0x00 before the compare match can occur.

For generating a waveform output in CTC mode, the OCOA output can be set to toggle its logical level on each compare
match by setting the compare output mode bits to toggle mode (COMOA1:0 = 1). The OCOA value will not be visible on the
port pin unless the data direction for the pin is set to output. The waveform generated will have a maximum frequency of fo,
= fu vo/2 when OCROA is set to zero (0x00). The waveform frequency is defined by the following equation:

f _ Jei 10
OCnx = 2.N-(1+ OCRnx)

The N variable represents the prescale factor (1, 8, 64, 256, or 1024).

As for the Normal mode of operation, the TOVO0 Flag is set in the same timer clock cycle that the counter counts from MAX to
0x00.

82 ATmega16/32/64/M1/C1 [DATASHEET]
76470-AVR-01/15 A t mel-

12.6.3 Fast PWM Mode

The fast pulse width modulation or fast PWM mode (WGMO02:0 = 3 or 7) provides a high frequency PWM waveform
generation option. The fast PWM differs from the other PWM option by its single-slope operation. The counter counts from
BOTTOM to TOP then restarts from BOTTOM. TOP is defined as OxFF when WGM2:0 = 3, and OCROA when WGM2:0 = 7.
In non-inverting compare output mode, the output compare (OCOx) is cleared on the compare match between TCNTO and
OCROx, and set at BOTTOM. In inverting compare output mode, the output is set on compare match and cleared at
BOTTOM. Due to the single-slope operation, the operating frequency of the fast PWM mode can be twice as high as the
phase correct PWM mode that use dual-slope operation. This high frequency makes the fast PWM mode well suited for
power regulation, rectification, and DAC applications. High frequency allows physically small sized external components
(coils, capacitors), and therefore reduces total system cost.

In fast PWM mode, the counter is incremented until the counter value matches the TOP value. The counter is then cleared at
the following timer clock cycle. The timing diagram for the fast PWM mode is shown in Figure 12-6. The TCNTO value is in
the timing diagram shown as a histogram for illustrating the single-slope operation. The diagram includes non-inverted and
inverted PWM outputs. The small horizontal line marks on the TCNTO slopes represent compare matches between OCROx
and TCNTO.

Figure 12-6. Fast PWM Mode, Timing Diagram

OCRnNX Interrupt

Flag Set
__ OCRnx Update and
:r -E i' _E ? i_ TOVn Interrupt Flag Set
1 1 1 1 1 1
\ v ovy v oy v v
TCNTn
Y Y Y Y Y
OCnx J (COMnx1:0 = 2)
OCnx l_l | | | | l_l (COMnx1:0 = 3)
Period | 1 2 3 4 5 6 7

The Timer/Counter overflow flag (TOVO0) is set each time the counter reaches TOP. If the interrupt is enabled, the interrupt
handler routine can be used for updating the compare value.

In fast PWM mode, the compare unit allows generation of PWM waveforms on the OCOx pins. Setting the COMO0x1:0 bits to
two will produce a non-inverted PWM and an inverted PWM output can be generated by setting the COMO0x1:0 to three:
Setting the COMOA1:0 bits to one allows the OCOA pin to toggle on compare matches if the WGMO02 bit is set. This option is
not available for the OCOB pin (see Table 12-6 on page 88). The actual OCOx value will only be visible on the port pin if the
data direction for the port pin is set as output. The PWM waveform is generated by setting (or clearing) the OCOx register at
the compare match between OCROx and TCNTO, and clearing (or setting) the OCOx register at the timer clock cycle the
counter is cleared (changes from TOP to BOTTOM).

The PWM frequency for the output can be calculated by the following equation:

_ fclk_I/O
fOCnxPWM - N - 256

The N variable represents the prescale factor (1, 8, 64, 256, or 1024).

The extreme values for the OCROA register represents special cases when generating a PWM waveform output in the fast
PWM mode. If the OCROA is set equal to BOTTOM, the output will be a narrow spike for each MAX+1 timer clock cycle.
Setting the OCROA equal to MAX will result in a constantly high or low output (depending on the polarity of the output set by
the COMOAT1:0 bits.)

ATmega16/32/64/M1/C1 [DATASHEET] 83
Atmel ? [)

76470-AVR-01/15

A frequency (with 50% duty cycle) waveform output in fast PWM mode can be achieved by setting OCOx to toggle its logical
level on each compare match (COMOx1:0 = 1). The waveform generated will have a maximum frequency of fogq = oy 10/2
when OCROA is set to zero. This feature is similar to the OCOA toggle in CTC mode, except the double buffer feature of the
output compare unit is enabled in the fast PWM mode.

12.6.4 Phase Correct PWM Mode

The phase correct PWM mode (WGMO02:0 = 1 or 5) provides a high resolution phase correct PWM waveform generation
option. The phase correct PWM mode is based on a dual-slope operation. The counter counts repeatedly from BOTTOM to
TOP and then from TOP to BOTTOM. TOP is defined as OxFF when WGM2:0 = 1, and OCROA when WGM2:0 = 5. In non-
inverting Compare Output mode, the Output Compare (OCO0x) is cleared on the compare match between TCNTO and
OCROx while upcounting, and set on the compare match while downcounting. In inverting output compare mode, the
operation is inverted. The dual-slope operation has lower maximum operation frequency than single slope operation.
However, due to the symmetric feature of the dual-slope PWM modes, these modes are preferred for motor control
applications.

In phase correct PWM mode the counter is incremented until the counter value matches TOP. When the counter reaches
TOP, it changes the count direction. The TCNTO value will be equal to TOP for one timer clock cycle. The timing diagram for
the phase correct PWM mode is shown on Figure 12-7. The TCNTO value is in the timing diagram shown as a histogram for
illustrating the dual-slope operation. The diagram includes non-inverted and inverted PWM outputs. The small horizontal line
marks on the TCNTO slopes represent compare matches between OCROx and TCNTO.

Figure 12-7. Phase Correct PWM Mode, Timing Diagram

OCnx Interrupt

l l Flag Set

OCRnx Update

TOVn Interrupt
Flag Set

et
-
et
-
-

-
et}

TCNTn

OCnx |_| |_| |_ (COMnx1:0 = 2)
[1] [1

OCnx

Period e e 2 e 3

|_ (COMnx1:0 = 3)

The Timer/Counter overflow flag (TOVO0) is set each time the counter reaches BOTTOM. The interrupt flag can be used to
generate an interrupt each time the counter reaches the BOTTOM value.

In phase correct PWM mode, the compare unit allows generation of PWM waveforms on the OCOx pins. Setting the
COMOx1:0 bits to two will produce a non-inverted PWM. An inverted PWM output can be generated by setting the
COMOx1:0 to three: Setting the COMOAO bits to one allows the OCOA pin to toggle on compare matches if the WGMO02 bit is
set. This option is not available for the OCOB pin (see Table 12-7 on page 88). The actual OCOx value will only be visible on
the port pin if the data direction for the port pin is set as output. The PWM waveform is generated by clearing (or setting) the
OCOx register at the compare match between OCROx and TCNTO when the counter increments, and setting (or clearing) the
OCOx register at compare match between OCROx and TCNTO when the counter decrements. The PWM frequency for the
output when using phase correct PWM can be calculated by the following equation:

_ fclk_I/O
fOCnxPCPWM - N-510

The N variable represents the prescale factor (1, 8, 64, 256, or 1024).

84 ATmega16/32/64/M1/C1 [DATASHEET]
76470-AVR-01/15 A t mel-

The extreme values for the OCROA register represent special cases when generating a PWM waveform output in the phase
correct PWM mode. If the OCROA is set equal to BOTTOM, the output will be continuously low and if set equal to MAX the
output will be continuously high for non-inverted PWM mode. For inverted PWM the output will have the opposite logic
values.

At the very start of period 2 in Figure 12-7 OCnx has a transition from high to low even though there is no compare match.
The point of this transition is to guarantee symmetry around BOTTOM. There are two cases that give a transition without
compare match.
e OCRnx changes its value from MAX, like in Figure 12-7. When the OCROA value is MAX the OCn pin value is the
same as the result of a down-counting compare match. To ensure symmetry around BOTTOM the OCnx value at
MAX must correspond to the result of an up-counting compare match.

e The timer starts counting from a value higher than the one in OCRnx, and for that reason misses the compare match
and hence the OCnx change that would have happened on the way up.

12.7 Timer/Counter Timing Diagrams

The Timer/Counter is a synchronous design and the timer clock (clky) is therefore shown as a clock enable signal in the
following figures. The figures include information on when interrupt flags are set. Figure 12-8 contains timing data for basic
Timer/Counter operation. The figure shows the count sequence close to the MAX value in all modes other than phase
correct PWM mode.

Figure 12-8. Timer/Counter Timing Diagram, no Prescaling

clkyo |

clkry,
(clkyo/1)

1 1
: :
1 1
1 1
1 1
1 1
1 1
1 1
TCNTn ix MAX - 1 X MAX
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1

BOTTOM BOTTOM + 1

st

TOVn

et ISP B

Figure 12-9 shows the same timing data, but with the prescaler enabled.

Figure 12-9. Timer/Counter Timing Diagram, with Prescaler (f ,0/8)

clkyo ||l|||||||||||||||I|||||||||||||||I|||||||||||||||I|||||||||||||

(clky0/8)
TCNTn :y MAX -1 X MAX X BOTTOM X BOTTOM + 1
o | g g
ATmega16/32/64/M1/C1 [DATASHEET 85
Atmel : []

76470-AVR-01/15

Figure 12-10 shows the setting of OCFOB in all modes and OCFOA in all modes except CTC mode and PWM mode, where
OCROA is TOP.

Figure 12-10.Timer/Counter Timing Diagram, Setting of OCFOx, with Prescaler (f ,,0/8)

clkyo ||

1 1 1
clkry,
(clkyo/8)
= i i i
TCNTn ix OCRnx -1 X OCRnNx X OCRnx + 1 X OCRnx + 2
| | | |
1 1 1
OCRnNx H H OCRnx Value H
1 1 1
1 1 : 1
1 1 1
1 1 1
OCFnx i i i
1 1 :
1 I 1

Figure 12-11 shows the setting of OCFOA and the clearing of TCNTO in CTC mode and fast PWM mode where OCROA is
TOP.

Figure 12-11.Timer/Counter Timing Diagram, Clear Timer on Compare Match mode, with Prescaler (f;, ;,0/8)

clkyo ||

clkry
(clkyo/8)
TCNTn I I I I
(CTC) :x TOP -1 X TOP X BOTTOM X BOTTOM + 1
OCRnNx i i TOP i
OCFnx i i i
12.8 8-bit Timer/Counter Register Description
12.8.1 Timer/Counter Control Register A— TCCROA
Bit 7 6 5 4 3 2 1 0
| cOMoA1 | COMOAOQ | COMOB1 | COMOBO | — - | WGMO01 | WGMO0 | TCCROA
Read/Write R/W RIW R/W R/W R R R/W R/W
Initial Value 0 0 0 0 0 0 0 0

« Bits 7:6 — COMO0A1:0: Compare Match Output A Mode

These bits control the Output Compare pin (OCOA) behavior. If one or both of the COMO0A1:0 bits are set, the OCOA output
overrides the normal port functionality of the 1/0 pin it is connected to. However, note that the data direction register (DDR)
bit corresponding to the OCOA pin must be set in order to enable the output driver.

When OCOA is connected to the pin, the function of the COMOA1:0 bits depends on the WGMO02:0 bit setting. Table 12-2 on
page 87 shows the COMOA1:0 bit functionality when the WGMO02:0 bits are set to a normal or CTC mode (non-PWM).

86 ATmega16/32/64/M1/C1 [DATASHEET]
76470-AVR-01/15 Atmel

Table 12-2. Compare Output Mode, non-PWM Mode

COMOA1 COMOAO Description

0 0 Normal port operation, OCOA disconnected.
Toggle OCOA on compare match
Clear OCOA on compare match

= A O
—_ O =

Set OCOA on compare match

Table 12-3 shows the COMOA1:0 bit functionality when the WGMO01:0 bits are set to fast PWM mode.

Table 12-3. Compare Output Mode, Fast PWM Mode'"

COMOA1 COMOAO Description
0 0 Normal port operation, OCOA disconnected.
0 1 WGMO02 = 0: Normal port operation, OCOA disconnected.
WGMO02 = 1: Toggle OCOA on compare match.
1 0 Clear OCOA on compare match, set OCOA at TOP
1 1 Set OCOA on compare match, clear OCOA at TOP

Note: 1. A special case occurs when OCROA equals TOP and COMOAA1 is set. In this case, the compare match is
ignored, but the set or clear is done at TOP. See Section 12.6.3 “Fast PWM Mode” on page 83 for more details.

Table 12-4 shows the COMOA1:0 bit functionality when the WGMO02:0 bits are set to phase correct PWM mode.

Table 12-4. Compare Output Mode, Phase Correct PWM Mode'"

COMOA1 COMOAO Description

0 0 Normal port operation, OCOA disconnected.

0 1 WGMO2 = 0: Normal port operation, OCOA cisconnected.
WGMO02 = 1: Toggle OCOA on compare match.

1 0 Clear OCOA on compare match when up-counting. Set OCOA on compare match
when down-counting.

1 1 Set OCOA on compare match when up-counting. Clear OCOA on compare match
when down-counting.

Note: 1. A special case occurs when OCROA equals TOP and COMOAA1 is set. In this case, the compare match is
ignored, but the set or clear is done at TOP. See Section 13.8.4 “Phase Correct PWM Mode” on page 105 for
more details.

« Bits 5:4 - COM0B1:0: Compare Match Output B Mode

These bits control the output compare pin (OCO0B) behavior. If one or both of the COMOB1:0 bits are set, the OCOB output
overrides the normal port functionality of the I/O pin it is connected to. However, note that the data direction register (DDR)
bit corresponding to the OCOB pin must be set in order to enable the output driver.

When OCOB is connected to the pin, the function of the COMOB1:0 bits depends on the WGMO02:0 bit setting. Table 12-5
shows the COMOB1:0 bit functionality when the WGMO02:0 bits are set to a normal or CTC mode (non-PWM).

Table 12-5. Compare Output Mode, non-PWM Mode

COMoOB1 COMO0BO Description
0 0 Normal port operation, OCOB disconnected.
0 1 Toggle OCOB on compare match
1 0 Clear OCOB on compare match
1 1 Set OCOB on compare match

ATmega16/32/64/M1/C1 [DATASHEET] 87
AtmeL 76470-AVR-01/15

Table 12-6 shows the COMO0B1:0 bit functionality when the WGMO02:0 bits are set to fast PWM mode.

Table 12-6. Compare Output Mode, Fast PWM Mode'"

COMO0B1 COMO0BO Description
0 0 Normal port operation, OCOB disconnected.
0 1 Reserved
1 0 Clear OCOB on compare match, set OCOB at TOP
1 1 Set OCOB on compare match, clear OCOB at TOP
Note: 1. A special case occurs when OCROB equals TOP and COMOB1 is set. In this case, the compare match is

ignored, but the set or clear is done at TOP. See Section 12.6.3 “Fast PWM Mode” on page 83 for more details.
Table 12-7 shows the COMOB1:0 bit functionality when the WGMO02:0 bits are set to phase correct PWM mode.

Table 12-7. Compare Output Mode, Phase Correct PWM Mode'"

COMO0B1 COMO0BO Description
0 0 Normal port operation, OCOB disconnected.
0 1 Reserved
1 0 Clear OCOB on compare match when up-counting. Set OCOB on compare match

when down-counting.

Set OCOB on compare match when up-counting. Clear OCOB on compare match

L L when down-counting.

Note: 1. A special case occurs when OCROB equals TOP and COMOBA1 is set. In this case, the compare match is
ignored, but the set or clear is done at TOP. See Section 12.6.4 “Phase Correct PWM Mode” on page 84 for
more details.

« Bits 3, 2 — Res: Reserved Bits
These bits are reserved bits in the ATmega16/32/64/M1/C1 and will always read as zero.
- Bits 1:0 - WGMO01:0: Waveform Generation Mode

Combined with the WGMO02 bit found in the TCCROB register, these bits control the counting sequence of the counter, the
source for maximum (TOP) counter value, and what type of waveform generation to be used, see Table 12-8. Modes of
operation supported by the Timer/Counter unit are: Normal mode (counter), clear timer on compare match (CTC) mode, and
two types of pulse width modulation (PWM) modes (see Section 12.6 “Modes of Operation” on page 81).

Table 12-8. Waveform Generation Mode Bit Description

Timer/Counter Update of TOV Flag
Mode WGMo02 WGMo1 WGMO00 Mode of Operation TOP OCRXx at Set on2
0 0 0 0 Normal OxFF Immediate MAX
1 0 0 1 PWM, phase correct OxFF TOP BOTTOM
2 0 1 0 CTC OCRA Immediate MAX
3 0 1 1 Fast PWM OxFF TOP MAX
4 1 0 0 Reserved - - -
5 1 0 1 PWM, phase correct OCRA TOP BOTTOM
6 1 1 0 Reserved - - -
7 1 1 1 Fast PWM OCRA TOP TOP
Notes: 1. MAX = OxFF
2. BOTTOM = 0x00
88 ATmega16/32/64/M1/C1 [DATASHEET] Atmel.

76470-AVR-01/15

12.8.2 Timer/Counter Control Register B— TCCROB

Bit 7 6 5 4 3 2 1 0

| FOCoA | FocoB | - | - | WGM02 | CS02 | CS01 | CS00 | TCCRoB
Read/Write w w R R R/W RW — RW RW
Initial Value 0 0 0 0 0 0 0 0

« Bit 7 - FOCOA: Force Output Compare A
The FOCOA bit is only active when the WGM bits specify a non-PWM mode.

However, for ensuring compatibility with future devices, this bit must be set to zero when TCCROB is written when operating
in PWM mode. When writing a logical one to the FOCOA bit, an immediate compare match is forced on the waveform
generation unit. The OCOA output is changed according to its COMO0A1:0 bits setting. Note that the FOCOA bit is
implemented as a strobe. Therefore it is the value present in the COMOA1:0 bits that determines the effect of the forced
compare.

A FOCOA strobe will not generate any interrupt, nor will it clear the timer in CTC mode using OCROA as TOP.
The FOCOA bit is always read as zero.

- Bit 6 - FOCOB: Force Output Compare B

The FOCOB bit is only active when the WGM bits specify a non-PWM mode.

However, for ensuring compatibility with future devices, this bit must be set to zero when TCCROB is written when operating
in PWM mode. When writing a logical one to the FOCOB bit, an immediate compare match is forced on the waveform
generation unit. The OCOB output is changed according to its COMO0B1:0 bits setting. Note that the FOCOB bit is
implemented as a strobe. Therefore it is the value present in the COMOB1:0 bits that determines the effect of the forced
compare.

A FOCOB strobe will not generate any interrupt, nor will it clear the timer in CTC mode using OCROB as TOP.
The FOCOB bit is always read as zero.

+ Bits 5:4 — Res: Reserved Bits

These bits are reserved bits in the ATmega16/32/64/M1/C1 and will always read as zero.

- Bit 3 - WGMO02: Waveform Generation Mode

See the description in Section 12.8.1 “Timer/Counter Control Register A — TCCROA” on page 86.

« Bits 2:0 — CS02:0: Clock Select

The three clock select bits select the clock source to be used by the Timer/Counter.

Table 12-9. Clock Select Bit Description
CS02 CSo01 CS00 Description

0 0 0 No clock source (Timer/Counter stopped)

0 0 1 clk;;o/(no prescaling)

0 1 0 clk;,o/8 (from prescaler)

0 1 1 clk;,o/64 (from prescaler)

1 0 0 clk;,o/256 (from prescaler)

1 0 1 clk;0/1024 (from prescaler)

1 1 0 External clock source on TO pin. Clock on falling edge.
1 1 1 External clock source on TO pin. Clock on rising edge.

If external pin modes are used for the Timer/CounterQ, transitions on the TO pin will clock the counter even if the pin is
configured as an output. This feature allows software control of the counting.

ATmega16/32/64/M1/C1 [DATASHEET] 89
AtmeL 76470-AVR-01/15

12.8.3 Timer/Counter Register - TCNTO

Bit 7 6 5 4 3 2 1 0

| TCNTO[7:0]] TCnTo
Read/Write R/W RIW R/W R/W RIW RIW RIW RIW
Initial Value 0 0 0 0 0 0 0 0

The Timer/Counter register gives direct access, both for read and write operations, to the Timer/Counter unit 8-bit counter.
Writing to the TCNTO register blocks (removes) the compare match on the following timer clock. Modifying the counter
(TCNTO) while the counter is running, introduces a risk of missing a compare match between TCNTO and the OCROx
registers.

12.8.4 Output Compare Register A— OCROA

Bit 7 6 5 4 3 2 1 0

| OCROA[7:0] | ocroa
Read/Write R/W RIW R/W R/W RIW RIW RIW RIW
Initial Value 0 0 0 0 0 0 0 0

The output compare register A contains an 8-bit value that is continuously compared with the counter value (TCNTO). A
match can be used to generate an output compare interrupt, or to generate a waveform output on the OCOA pin.

12.8.5 Output Compare Register B — OCR0OB

Bit 7 6 5 4 3 2 1 0

[OCROB[7:0]] ocroB
Read/Write RIW RIW RIW RIW RIW RIW RIW RIW
Initial Value 0 0 0 0 0 0 0 0

The output compare register B contains an 8-bit value that is continuously compared with the counter value (TCNTO). A
match can be used to generate an output compare interrupt, or to generate a waveform output on the OCOB pin.

12.8.6 Timer/Counter Interrupt Mask Register — TIMSKO

Bit 7 6 5 4 3 2 1 0

| - | - | - | - | - [OCIEOB | OCIEOA | TOIEO | TIMSKO
Read/Write R R R R R R/W RIW R/W
Initial Value 0 0 0 0 0 0 0 0

- Bits 7..3 — Res: Reserved Bits
These bits are reserved bits in the ATmega16/32/64/M1/C1 and will always read as zero.
« Bit 2 - OCIEOB: Timer/Counter Output Compare Match B Interrupt Enable

When the OCIEOB bit is written to one, and the I-bit in the status register is set, the Timer/Counter compare match B interrupt
is enabled. The corresponding interrupt is executed if a compare match in Timer/Counter occurs, i.e., when the OCFOB bit is
set in the Timer/Counter interrupt flag register — TIFRO.

« Bit 1 - OCIEOA: Timer/Counter0 Output Compare Match A Interrupt Enable

When the OCIEOA bit is written to one, and the I-bit in the status register is set, the Timer/Counter0 compare match A
interrupt is enabled. The corresponding interrupt is executed if a compare match in Timer/Counter0 occurs, i.e., when the
OCFOA bit is set in the Timer/Counter 0 interrupt flag register — TIFRO.

« Bit 0 — TOIEO: Timer/Counter0 Overflow Interrupt Enable

When the TOIEO bit is written to one, and the I-bit in the status register is set, the Timer/Counter0 Overflow interrupt is
enabled. The corresponding interrupt is executed if an overflow in Timer/Counter0 occurs, i.e., when the TOVO bit is set in
the Timer/Counter 0O interrupt flag register — TIFRO.

90 ATmega16/32/64/M1/C1 [DATASHEET]
76470-AVR-01/15 A t mel-

12.8.7 Timer/Counter 0 Interrupt Flag Register — TIFRO

Bit 7 6 5 4 3 2 1 0

| - | - | - | - | - | OCFOB | OCFOA | TOVO | TIFRO
Read/Write R R R R R RIW RIW RIW
Initial Value 0 0 0 0 0 0 0 0

« Bits 7..3 — Res: Reserved Bits
These bits are reserved bits in the ATmega16/32/64/M1/C1 and will always read as zero.
« Bit 2 - OCFOB: Timer/Counter 0 Output Compare B Match Flag

The OCFOB bit is set when a compare match occurs between the Timer/Counter and the data in OCROB — output compare
Register0 B. OCFOB is cleared by hardware when executing the corresponding interrupt handling vector. Alternatively,
OCFOB is cleared by writing a logic one to the flag. When the I-bit in SREG, OCIEOB (Timer/Counter compare B match
interrupt enable), and OCFOB are set, the Timer/Counter compare match interrupt is executed.

- Bit 1 - OCFOA: Timer/Counter 0 Output Compare A Match Flag

The OCFOA bit is set when a compare match occurs between the Timer/Counter0 and the data in OCROA — output compare
Register0. OCFOA is cleared by hardware when executing the corresponding interrupt handling vector. Alternatively, OCFOA
is cleared by writing a logic one to the flag. When the I-bit in SREG, OCIEOA (Timer/Counter0 compare match interrupt
enable), and OCFOA are set, the Timer/CounterO compare match interrupt is executed.

» Bit 0 — TOVO: Timer/Counter0 Overflow Flag

The bit TOVO is set when an overflow occurs in Timer/Counter0. TOVO is cleared by hardware when executing the
corresponding interrupt handling vector. Alternatively, TOVO is cleared by writing a logic one to the flag. When the SREG |-
bit, TOIEO (Timer/Counter0 Overflow Interrupt Enable), and TOVO are set, the Timer/Counter0 Overflow interrupt is
executed.

The setting of this flag is dependent of the WGMO02:0 bit setting. Refer to Table 12-8, “Waveform Generation Mode Bit
Description” on page 88.

ATmega16/32/64/M1/C1 [DATASHEET] 91
/ItmeL 76470-AVR-01/15

13. 16-bit Timer/Counter1 with PWM

The 16-bit Timer/Counter unit allows accurate program execution timing (event management), wave generation, and signal
timing measurement. The main features are:

e True 16-bit design (i.e., allows 16-bit PWM)

Two independent output compare units

Double buffered output compare registers

One input capture unit

Input capture noise canceler

Retriggering function by external signal (ICP1A or ICP1B)
Clear timer on compare match (auto reload)

Glitch-free, phase correct pulse width modulator (PWM)
Variable PWM period

Frequency generator

External event counter

Four independent interrupt sources (TOV1, OCF1A, OCF1B, and ICF1)

13.1 Overview

Most register and bit references in this section are written in general form. A lower case “n” replaces the Timer/Counter

number, and a lower case “x” replaces the output compare unit channel. However, when using the register or bit defines in a
program, the precise form must be used, i.e., TCNT1 for accessing Timer/Counter1 counter value and so on.

A simplified block diagram of the 16-bit Timer/Counter is shown in Figure 13-1. For the actual placement of I/O pins, refer to
Section 1.1 “Pin Descriptions” on page 5. CPU accessible I/O registers, including 1/O bits and I/O pins, are shown in bold.
The device-specific 1/O register and bit locations are listed in Section 13.10 “16-bit Timer/Counter Register Description” on

page 110.
The PRTIM1 bit in Section 6.6 “Power Reduction Register” on page 36 must be written to zero to enable Timer/Counter1
module.

92 ATmega16/32/64/M1/C1 [DATASHEET] Atmel.

76470-AVR-01/15

Figure 13-1. 16-bit Timer/Counter Block Diagram("

» TOVn (Int. Req.)
Count
Clock Select
.Clea.r Control Logic
Direction Edge
clkyy, ™1 Detector i
A J B —————
RTG TopP BOTTOM (from Prescaler)
YyYvy / \
A Timer/Counter 4 4
TCNTn |
L = [[=0}
* ; + ’—> OCnA (Int. Req.)
1
1
- ; - Wavefo'rm »| ocna
: Generation
s OCRnA o
%) : Fixed
=) 1 TOP OCnB (Int. Req.)
SE] : Value
= _ 1 | Waveform -
E’: - 1 "] Generation > OCnB
1
1
i
] OCRnB | i
: AC1ICE ICPSEL1
1 ICFn (Int. Req.)
1 -«— ICPnA
1 0
| 1 Edge Noise
| IC?” | H Detector Canceler
O e T 4 {|~—{icPnB
| TCCRNA | | TCCRnB | Analog Comparator 1
‘ t Interrupt
—

Note: 1. Referto Table on page 5 for Timer/Counter 1 pin placement and description.

13.1.1 Registers

The Timer/Counter (TCNTn), output compare registers (OCRnx), and input capture register (ICRn) are all 16-bit registers.
Special procedures must be followed when accessing the 16-bit registers. These procedures are described in Section 13.2
“Accessing 16-bit Registers” on page 94. The Timer/Counter control registers (TCCRnx) are 8-bit registers and have no CPU
access restrictions. Interrupt requests (abbreviated to Int.Req. in the figure) signals are all visible in the timer interrupt flag
register (TIFRn). All interrupts are individually masked with the timer interrupt mask register (TIMSKn). TIFRn and TIMSKn
are not shown in the figure.

The Timer/Counter can be clocked internally, via the prescaler, or by an external clock source on the Tn pin. The clock select
logic block controls which clock source and edge the Timer/Counter uses to increment (or decrement) its value. The
Timer/Counter is inactive when no clock source is selected. The output from the clock select logic is referred to as the timer
clock (clky,).

The double buffered output compare registers (OCRnx) are compared with the Timer/Counter value at all time. The result of
the compare can be used by the waveform generator to generate a PWM or variable frequency output on the output
compare pin (OCnx). See Section 13.6 “Output Compare Units” on page 99 The compare match event will also set the
compare match flag (OCFnx) which can be used to generate an output compare interrupt request.

ATmega16/32/64/M1/C1 [DATASHEET] 93
AtmeL 76470-AVR-01/15

13.1.2

13.2

94

The input capture register can capture the Timer/Counter value at a given external (edge triggered) event on either the input
capture pin (ICPn). The input capture unit includes a digital filtering unit (noise canceler) for reducing the chance of capturing
noise spikes. The TOP value, or maximum Timer/Counter value, can in some modes of operation be defined by either the
OCRDNA register, the ICRn register, or by a set of fixed values. When using OCRnA as TOP value in a PWM mode, the
OCRNA register can not be used for generating a PWM output. However, the TOP value will in this case be double buffered
allowing the TOP value to be changed in run time. If a fixed TOP value is required, the ICRn register can be used as an
alternative, freeing the OCRNA to be used as PWM output.

Definitions

The following definitions are used extensively throughout the section:
BOTTOM The counter reaches the BOTTOM when it becomes 0x0000.
MAX The counter reaches its MAXimum when it becomes OxFFFF (decimal 65535)

TOP The counter reaches the TOP when it becomes equal to the highest value in the count sequence. The TOP
value can be assigned to be one of the fixed values: 0x00FF, 0x01FF, or 0xO3FF, or to the value stored in the
OCRNA or ICRn register. The assignment is dependent of the mode of operation.

Accessing 16-bit Registers

The TCNTn, OCRnx, and ICRn are 16-bit registers that can be accessed by the AVR CPU via the 8-bit data bus. The 16-bit
register must be byte accessed using two read or write operations. Each 16-bit timer has a single 8-bit register for temporary
storing of the high byte of the 16-bit access. The same temporary register is shared between all 16-bit registers within each
16-bit timer. Accessing the low byte triggers the 16-bit read or write operation. When the low byte of a 16-bit register is
written by the CPU, the high byte stored in the temporary register, and the low byte written are both copied into the 16-bit
register in the same clock cycle. When the low byte of a 16-bit register is read by the CPU, the high byte of the 16-bit register
is copied into the temporary register in the same clock cycle as the low byte is read.

Not all 16-bit accesses uses the temporary register for the high byte. Reading the OCRnx 16-bit registers does not involve
using the temporary register. To do a 16-bit write, the high byte must be written before the low byte. For a 16-bit read, the low
byte must be read before the high byte.

The following code examples show how to access the 16-bit Timer Registers assuming that no interrupts updates the
temporary register. The same principle can be used directly for accessing the OCRnx and ICRn Registers. Note that when
using “C”, the compiler handles the 16-bit access.

Assembly Code Examples("

; Set TCNTn to 0xO01FF

1di rl7,0x01
1di rle, OxXFF
out TCNTNH, r17
out TCNTNL, rl6

; Read TCNTNn into rl7:rlé6
in rl6, TCNTNL
in rl7, TCNTNnH

C Code Examples™"

unsigned int i;

/* Set TCNTNn to O0xO0lFF */
TCNTn = Ox1FF;

/* Read TCNTn into i */

i = TCNTn;

Note: 1. The example code assumes that the part specific header file is included.
For I/O registers located in extended 1/0 map, “IN”, “OUT”, “SBIS”, “SBIC”, “CBI”, and “SBI” instructions must
be replaced with instructions that allow access to extended I/O. Typically “LDS” and “STS” combined with
“SBRS”, “SBRC”, “SBR”, and “CBR”.

ATmega16/32/64/M1/C1 [DATASHEET]
76470-AVR-01/15 A t mel-

The assembly code example returns the TCNTn value in the r17:r16 register pair.

It is important to notice that accessing 16-bit registers are atomic operations. If an interrupt occurs between the two
instructions accessing the 16-bit register, and the interrupt code updates the temporary register by accessing the same or
any other of the 16-bit timer registers, then the result of the access outside the interrupt will be corrupted. Therefore, when

both the main code and the interrupt code update the temporary register, the main code must disable the interrupts during
the 16-bit access.

The following code examples show how to do an atomic read of the TCNTn Register contents. Reading any of the OCRnx or
ICRn registers can be done by using the same principle.

Assembly Code Example("

TIM16_ReadTCNTN:
; Save global interrupt flag

in rl8, SREG

; Disable interrupts

cli

; Read TCNTN into rl7:rlé6

in rl6, TCNTNL

in rl7, TCNTNH

; Restore global interrupt flag
out SREG, rl8

ret

C Code Example!"

unsigned int TIM16_ReadTICNTN(wvoid)
{
unsigned char sreg;
unsigned int i;
/* Save global interrupt flag */
sreg = SREG;
/* Disable interrupts */
_CLI();
/* Read TCNTn into i */
i = TCNTNn;
/* Restore global interrupt flag */
SREG = sreg;
return i;

Note: 1. The example code assumes that the part specific header file is included.
For I/O registers located in extended 1/0 map, “IN”, “OUT”, “SBIS”, “SBIC”, “CBI”, and “SBI” instructions must
be replaced with instructions that allow access to extended 1/O. Typically “LDS” and “STS” combined with
“SBRS”, “SBRC”, “SBR”, and “CBR”.

The assembly code example returns the TCNTn value in the r17:r16 register pair.

ATmega16/32/64/M1/C1 [DATASHEET] 95
/ItmeL 76470-AVR-01/15

The following code examples show how to do an atomic write of the TCNTn register contents. Writing any of the OCRnx or
ICRnN Registers can be done by using the same principle.

Assembly Code Example("

TIM16_WriteTCNTN:
; Save global interrupt flag

in rl8, SREG

; Disable interrupts

cli

; Set TCNTn to rl7:rl6

out TCNTNH, r17

out TCNTNL, rl6

; Restore global interrupt flag
out SREG, rl8

ret

C Code Example!"

void TIM16_WriteTCNTN(unsigned int i)
{
unsigned char sreg;
unsigned int i;
/* Save global interrupt flag */
sreg = SREG;
/* Disable interrupts */
_CLI();
/* Set TCNTn to i */
TCNTN = 1i;
/* Restore global interrupt flag */
SREG = sreg;

Note: 1. The example code assumes that the part specific header file is included.
For 1/O registers located in extended 1/0 map, “IN”, “OUT”, “SBIS”, “SBIC”, “CBI”, and “SBI” instructions must
be replaced with instructions that allow access to extended I/O. Typically “LDS” and “STS” combined with
“SBRS”, “SBRC”, “SBR”, and “CBR".

The assembly code example requires that the r17:r16 register pair contains the value to be written to TCNTn.

13.2.1 Reusing the Temporary High Byte Register

If writing to more than one 16-bit register where the high byte is the same for all registers written, then the high byte only
needs to be written once. However, note that the same rule of atomic operation described previously also applies in this
case.

13.3 Timer/Counter Clock Sources

The Timer/Counter can be clocked by an internal or an external clock source. The clock source is selected by the clock
select logic which is controlled by the Clock Select (CSn2:0) bits located in the Timer/Counter Control Register B(TCCRnB).
For details on clock sources and prescaler, see Section 11. “Timer/Counter0 and Timer/Counter1 Prescalers” on page 75.

96 ATmega16/32/64/M1/C1 [DATASHEET]
76470-AVR-01/15 Atmel

13.4 Counter Unit

The main part of the 16-bit Timer/Counter is the programmable 16-bit bi-directional counter unit. Figure 13-2 shows a block
diagram of the counter and its surroundings.

Figure 13-2. Counter Unit Block Diagram
DATA BUS (8-bit)

et -
t TOVn
| TEMP (8-bit) | (Int. Req.)
t Clock Select
Count
- Edge -
| TCNTnH (8-bit) | TCNTnNL (8-bit) | Clear ‘ ek, 1 Detector | Tn
-t Control Logic |-

__ Direction

RTGT TTOP TBOTTOM

TCNTnH (16-bit Counter) (From Prescaler)

Signal description (internal signals):

Count Increment or decrement TCNTn by 1.

Direction Select between increment and decrement.

Clear Clear TCNTn (set all bits to zero).

clkry Timer/Counter clock.

TOP Signalize that TCNTn has reached maximum value.

BOTTOM Signalize that TCNTn has reached minimum value (zero).

RTG An external event (ICP1A or ICP1B) asks for a TOP like action.

The 16-bit counter is mapped into two 8-bit I/O memory locations: Counter High (TCNTnH) containing the upper eight bits of
the counter, and Counter Low (TCNTnL) containing the lower eight bits. The TCNTnH Register can only be indirectly
accessed by the CPU. When the CPU does an access to the TCNTnH I/O location, the CPU accesses the high byte
temporary register (TEMP). The temporary register is updated with the TCNTnH value when the TCNTnL is read, and
TCNTnH is updated with the temporary register value when TCNTnL is written. This allows the CPU to read or write the
entire 16-bit counter value within one clock cycle via the 8-bit data bus. It is important to notice that there are special cases
of writing to the TCNTn register when the counter is counting that will give unpredictable results. The special cases are
described in the sections where they are of importance.

Depending on the mode of operation used, the counter is cleared, incremented, or decremented at each fimer clock (clk+,).
The clky, can be generated from an external or internal clock source, selected by the Clock Select bits (CSn2:0). When no
clock source is selected (CSn2:0 = 0) the timer is stopped. However, the TCNTn value can be accessed by the CPU,
independent of whether clky, is present or not. A CPU write overrides (has priority over) all counter clear or count operations.

The counting sequence is determined by the setting of the Waveform Generation mode bits (WGMn3:0) located in the
Timer/Counter Control Registers A and B (TCCRnA and TCCRnB). There are close connections between how the counter
behaves (counts) and how waveforms are generated on the output compare outputs OCnx. For more details about
advanced counting sequences and waveform generation, see Section 13. “16-bit Timer/Counter1 with PWM” on page 92.

The Timer/Counter overflow flag (TOVn) is set according to the mode of operation selected by the WGMn3:0 bits. TOVn can
be used for generating a CPU interrupt.

ATmega16/32/64/M1/C1 [DATASHEET] 97
AtmeL 76470-AVR-01/15

13.5

98

Input Capture Unit

The Timer/Counter incorporates an input capture unit that can capture external events and give them a time-stamp
indicating time of occurrence. The external signal indicating an event, or multiple events, can be applied via the ICPn pin or
alternatively, via the analog-comparator unit. The time-stamps can then be used to calculate frequency, duty-cycle, and
other features of the signal applied. Alternatively the time-stamps can be used for creating a log of the events.

The input capture unit is illustrated by the block diagram shown in Figure 13-3. The elements of the block diagram that are
not directly a part of the input capture unit are gray shaded. The small “n” in register and bit names indicates the
Timer/Counter number.

Figure 13-3. Input Capture Unit Block Diagram
DATA BUS (8-bit)

| TEMP (8-bit) |
| ICRnH (8-bit) | ICRnL (8-bit) | | TCNTnH (8-bit) | TCNTnL (8-bit)
WRITE ICRn (16-bit Register) TCNTn (16-bit Counter)

f} |

Analog Comparator 1 Interrupt

ICPSEL1 AC1ICE ICNC ICES
ICPnA - l l
Noise . Edge _
Canceler "| Detector > ICFn (Int. Req.)
ICPnB

When a change of the logic level (an event) occurs on the Input Capture pin (ICPn), alternatively on the analog comparator
output (ACO), and this change confirms to the setting of the edge detector, a capture will be triggered. When a capture is
triggered, the 16-bit value of the counter (TCNTn) is written to the Input Capture Register (ICRn). The Input Capture Flag
(ICFn) is set at the same system clock as the TCNTn value is copied into ICRn register. If enabled (ICIEn = 1), the input
capture flag generates an input capture interrupt. The ICFn flag is automatically cleared when the interrupt is executed.
Alternatively the ICFn Flag can be cleared by software by writing a logical one to its 1/O bit location.

Y

Reading the 16-bit value in the Input Capture Register (ICRn) is done by first reading the low byte (ICRnL) and then the high
byte (ICRnH). When the low byte is read the high byte is copied into the high byte temporary register (TEMP). When the
CPU reads the ICRnH I/O location it will access the TEMP register.

The ICRn register can only be written when using a waveform generation mode that utilizes the ICRn register for defining the
counter’s TOP value. In these cases the Waveform Generation mode (WGMn3:0) bits must be set before the TOP value can
be written to the ICRn register. When writing the ICRn register the high byte must be written to the ICRnH 1/O location before
the low byte is written to ICRnL.

For more information on how to access the 16-bit registers refer to Section 13.2 “Accessing 16-bit Registers” on page 94.

The ICF1 output can be used to retrigger the timer counter. It has the same effect than the TOP signal.

ATmega16/32/64/M1/C1 [DATASHEET]
76470-AVR-01/15 A t mel-

13.5.1 Input Capture Trigger Source

The trigger sources for the input capture unit are the Input Capture pin (ICP1A and ICP1B).

Be aware that changing trigger source can trigger a capture. The input capture flag must therefore be cleared after the
change.

The Input Capture pin (ICPn) IS sampled using the same technique as for the Tn pin (Figure 11-1 on page 75). The edge
detector is also identical. However, when the noise canceler is enabled, additional logic is inserted before the edge detector,
which increases the delay by four system clock cycles. Note that the input of the noise canceler and edge detector is always
enabled unless the Timer/Counter is set in a Waveform Generation mode that uses ICRn to define TOP.

An input capture can be triggered by software by controlling the port of the ICPn pin.

13.5.2 Noise Canceler

The noise canceler improves noise immunity by using a simple digital filtering scheme. The noise canceler input is monitored
over four samples, and all four must be equal for changing the output that in turn is used by the edge detector.

The noise canceler is enabled by setting the Input Capture Noise Canceler (ICNCn) bit in Timer/Counter Control Register B
(TCCRnNB). When enabled the noise canceler introduces additional four system clock cycles of delay from a change applied
to the input, to the update of the ICRn register. The noise canceler uses the system clock and is therefore not affected by the
prescaler.

13.5.3 Using the Input Capture Unit

The main challenge when using the input capture unit is to assign enough processor capacity for handling the incoming
events. The time between two events is critical. If the processor has not read the captured value in the ICRn register before
the next event occurs, the ICRn will be overwritten with a new value. In this case the result of the capture will be incorrect.

When using the input capture interrupt, the ICRn register should be read as early in the interrupt handler routine as possible.
Even though the input capture interrupt has relatively high priority, the maximum interrupt response time is dependent on the
maximum number of clock cycles it takes to handle any of the other interrupt requests.

Using the input capture unit in any mode of operation when the TOP value (resolution) is actively changed during operation,
is not recommended.

Measurement of an external signal’s duty cycle requires that the trigger edge is changed after each capture. Changing the
edge sensing must be done as early as possible after the ICRn register has been read. After a change of the edge, the input
capture flag (ICFn) must be cleared by software (writing a logical one to the 1/O bit location). For measuring frequency only,
the clearing of the ICFn flag is not required (if an interrupt handler is used).

13.5.4 Using the Input Capture Unit as TCNT1 Retrigger Input

TCNT1 counts from BOTTOM to TOP. The TOP value can be a fixed value, ICR1, or OCR1A. When enabled the retrigger
input forces to reach the TOP value. It means that ICF1 output is ored with the TOP signal.

13.6 Output Compare Units

The 16-bit comparator continuously compares TCNTn with the Output Compare Register (OCRnx). If TCNT equals OCRnx
the comparator signals a match. A match will set the Output Compare Flag (OCFnx) at the next timer clock cycle. If enabled
(OCIEnx = 1), the output compare flag generates an output compare interrupt. The OCFnx flag is automatically cleared
when the interrupt is executed. Alternatively the OCFnx flag can be cleared by software by writing a logical one to its 1/0O bit
location. The waveform generator uses the match signal to generate an output according to operating mode set by the
Waveform Generation mode (WGMn3:0) bits and Compare Output mode (COMnx1:0) bits. The TOP and BOTTOM signals
are used by the waveform generator for handling the special cases of the extreme values in some modes of operation (see
Section 13. “16-bit Timer/Counter1 with PWM” on page 92)

A special feature of output compare unit A allows it to define the Timer/Counter TOP value (i.e., counter resolution). In
addition to the counter resolution, the TOP value defines the period time for waveforms generated by the waveform
generator.

Figure 13-4 shows a block diagram of the output compare unit. The small “n” in the register and bit names indicates the
device number (n = n for Timer/Counter n), and the “x” indicates output compare unit (x). The elements of the block diagram
that are not directly a part of the output compare unit are gray shaded.

ATmega16/32/64/M1/C1 [DATASHEET] 99
AtmeL 76470-AVR-01/15

Figure 13-4. Output Compare Unit, Block Diagram
DATA BUS (8-bit)

- -
A A \ t A
| TEMP (8-bit)
| OCRnxH Buf. (8-bit) | OCRnNxL Buf. (8-bit) | | TCNTnH (8-bit) | TCNTnL (8-bit) |
OCRnx Buffer (16-bit Register) TCNTn (16-bit Counter)
I ‘
¥
OCRnxH (8-bit) | OCRnNXL (8-bit) |
OCRnNx (16-bit Register)
{ } N 7
| = (16-bit Comparator)
¢—» OCFnx (Int. Req.)
Y
TOP ———
Waveform Generator »1 OCnx

BOTTOM ————»

WGMn3:0 COMnx1:0

The OCRnx register is double buffered when using any of the twelve Pulse Width Modulation (PWM) modes. For the normal
and Clear Timer on Compare (CTC) modes of operation, the double buffering is disabled. The double buffering synchronizes
the update of the OCRnx compare register to either TOP or BOTTOM of the counting sequence. The synchronization
prevents the occurrence of odd-length, non-symmetrical PWM pulses, thereby making the output glitch-free.

The OCRnNXx register access may seem complex, but this is not case. When the double buffering is enabled, the CPU has
access to the OCRnx buffer register, and if double buffering is disabled the CPU will access the OCRnx directly. The content
of the OCR1x (buffer or compare) register is only changed by a write operation (the Timer/Counter does not update this
register automatically as the TCNT1 and ICR1 register). Therefore OCR1x is not read via the high byte temporary register
(TEMP). However, it is a good practice to read the low byte first as when accessing other 16-bit registers. Writing the OCRnx
registers must be done via the TEMP register since the compare of all 16 bits is done continuously. The high byte (OCRnxH)
has to be written first. When the high byte I/O location is written by the CPU, the TEMP register will be updated by the value
written. Then when the low byte (OCRnxL) is written to the lower eight bits, the high byte will be copied into the upper 8-bits
of either the OCRnx buffer or OCRnx compare register in the same system clock cycle.

For more information of how to access the 16-bit registers refer to Section 13.2 “Accessing 16-bit Registers” on page 94.

13.6.1 Force Output Compare

In non-PWM waveform generation modes, the match output of the comparator can be forced by writing a one to the Force
Output Compare (FOCnx) bit. Forcing compare match will not set the OCFnx Flag or reload/clear the timer, but the OCnx pin
will be updated as if a real compare match had occurred (the COMn1:0 bits settings define whether the OCnx pin is set,
cleared or toggled).

13.6.2 Compare Match Blocking by TCNTn Write

All CPU writes to the TCNTn register will block any compare match that occurs in the next timer clock cycle, even when the
timer is stopped. This feature allows OCRnx to be initialized to the same value as TCNTn without triggering an interrupt
when the Timer/Counter clock is enabled.

100 ATmega16/32/64/M1/C1 [DATASHEET]
76470-AVR-01/15 A t mel-

13.6.3 Using the Output Compare Unit

Since writing TCNTn in any mode of operation will block all compare matches for one timer clock cycle, there are risks
involved when changing TCNTn when using any of the output compare channels, independent of whether the Timer/Counter
is running or not. If the value written to TCNTn equals the OCRnx value, the compare match will be missed, resulting in
incorrect waveform generation. Do not write the TCNTn equal to TOP in PWM modes with variable TOP values. The
compare match for the TOP will be ignored and the counter will continue to OxFFFF. Similarly, do not write the TCNTn value
equal to BOTTOM when the counter is downcounting.

The setup of the OCnx should be performed before setting the data direction register for the port pin to output. The easiest
way of setting the OCnx value is to use the force output compare (FOCnx) strobe bits in normal mode. The OCnx register
keeps its value even when changing between waveform generation modes.

Be aware that the COMnx1:0 bits are not double buffered together with the compare value. Changing the COMnx1:0 bits will
take effect immediately.

13.7 Compare Match Output Unit

The Compare Output mode (COMnx1:0) bits have two functions. The waveform generator uses the COMnx1:0 bits for
defining the output compare (OCnx) state at the next compare match. Secondly the COMnx1:0 bits control the OCnx pin
output source. Figure 13-5 shows a simplified schematic of the logic affected by the COMnx1:0 bit setting. The 1/O registers,
I/0 bits, and /O pins in the figure are shown in bold. Only the parts of the general I/O port control registers (DDR and PORT)
that are affected by the COMnx1:0 bits are shown. When referring to the OCnx state, the reference is for the internal OCnx
register, not the OCnx pin. If a system reset occur, the OCnx register is reset to “0”.

Figure 13-5. Compare Match Output Unit, Schematic

—D

COMnx1
COMnx0 Waveform D Q
FOChx Generator
1
OCnx
OCnx Pin
A 0
» D Q
2
m PORT
z
a
» D Q
Y DDR
C|k|/o

The general 1/O port function is overridden by the output compare (OCnx) from the waveform generator if either of the
COMnx1:0 bits are set. However, the OCnx pin direction (input or output) is still controlled by the Data Direction Register
(DDR) for the port pin. The data direction register bit for the OCnx pin (DDR_OCnx) must be set as output before the OCnx
value is visible on the pin. The port override function is generally independent of the waveform generation mode, but there
are some exceptions. Refer to Table 13-1, Table 13-2 and Table 13-3 on page 111 for details.

The design of the Output Compare pin logic allows initialization of the OCnx state before the output is enabled. Note that
some COMnx1:0 bit settings are reserved for certain modes of operation. See Section 13.10 “16-bit Timer/Counter Register
Description” on page 110.

The COMnx1:0 bits have no effect on the input capture unit.

ATmega16/32/64/M1/C1 [DATASHEET] 101
AtmeL 76470-AVR-01/15

13.7.1 Compare Output Mode and Waveform Generation

The waveform generator uses the COMnx1:0 bits differently in normal, CTC, and PWM modes. For all modes, setting the
COMnNx1:0 = 0 tells the waveform generator that no action on the OCnx register is to be performed on the next compare
match. For compare output actions in the non-PWM modes refer to Table 13-1 on page 110. For fast PWM mode refer to
Table 13-2 on page 110, and for phase correct and phase and frequency correct PWM refer to Table 13-3 on page 111.

A change of the COMnx1:0 bits state will have effect at the first compare match after the bits are written. For non-PWM
modes, the action can be forced to have immediate effect by using the FOCnx strobe bits.

13.8 Modes of Operation

The mode of operation, i.e., the behavior of the Timer/Counter and the output compare pins, is defined by the combination of
the Waveform Generation mode (WGMn3:0) and Compare Output mode (COMnx1:0) bits. The Compare Output mode bits
do not affect the counting sequence, while the waveform generation mode bits do. The COMnx1:0 bits control whether the
PWM output generated should be inverted or not (inverted or non-inverted PWM). For non-PWM modes the COMnx1:0 bits
control whether the output should be set, cleared or toggle at a compare match (see Section 13.7 “Compare Match Output
Unit” on page 101). For detailed timing information refer to Section 13.9 “Timer/Counter Timing Diagrams” on page 108.

13.8.1 Normal Mode

The simplest mode of operation is the Normal mode (WGMn3:0 = 0). In this mode the counting direction is always up
(incrementing), and no counter clear is performed. The counter simply overruns when it passes its maximum 16-bit value
(MAX = OxFFFF) and then restarts from the BOTTOM (0x0000). In normal operation the Timer/Counter Overflow Flag
(TOVn) will be set in the same timer clock cycle as the TCNTn becomes zero. The TOVn flag in this case behaves like a 17th
bit, except that it is only set, not cleared. However, combined with the timer overflow interrupt that automatically clears the
TOVn flag, the timer resolution can be increased by software. There are no special cases to consider in the normal mode, a
new counter value can be written anytime.

The input capture unit is easy to use in normal mode. However, observe that the maximum interval between the external
events must not exceed the resolution of the counter. If the interval between events are too long, the timer overflow interrupt
or the prescaler must be used to extend the resolution for the capture unit.

The output compare units can be used to generate interrupts at some given time. Using the output compare to generate
waveforms in normal mode is not recommended, since this will occupy too much of the CPU time.

13.8.2 Clear Timer on Compare Match (CTC) Mode

In Clear Timer on Compare or CTC mode (WGMn3:0 =4 or 12), the OCRNA or ICRn register are used to manipulate the
counter resolution. In CTC mode the counter is cleared to zero when the counter value (TCNTn) matches either the OCRnA
(WGMn3:0 = 4) or the ICRn (WGMn3:0 = 12). The OCRnNA or ICRn define the top value for the counter, hence also its
resolution. This mode allows greater control of the compare match output frequency. It also simplifies the operation of
counting external events.

The timing diagram for the CTC mode is shown in Figure 13-6. The counter value (TCNTn) increases until a compare match
occurs with either OCRNA or ICRn, and then counter (TCNTn) is cleared.

Figure 13-6. CTC Mode, Timing Diagram

OCnA Interrupt Flag Set

T T . B ity or ICFn Interrupt Flag Set
i i i i i i i * (Interrupt on TOP)
N R
i v
v vy
TCNTn
0CnA ! Y ! |
n . -
(Toggle) (COMnA1:0 = 1)
Period | ! 2 3 4 |
102 ATmega16/32/64/M1/C1 [DATASHEET] AtmeL

76470-AVR-01/15

An interrupt can be generated at each time the counter value reaches the TOP value by either using the OCFnA or ICFn flag
according to the register used to define the TOP value. If the interrupt is enabled, the interrupt handler routine can be used
for updating the TOP value. However, changing the TOP to a value close to BOTTOM when the counter is running with none
or a low prescaler value must be done with care since the CTC mode does not have the double buffering feature. If the new
value written to OCRnNA or ICRn is lower than the current value of TCNTn, the counter will miss the compare match. The
counter will then have to count to its maximum value (OxFFFF) and wrap around starting at 0x0000 before the compare
match can occur. In many cases this feature is not desirable. An alternative will then be to use the fast PWM mode using
OCRNA for defining TOP (WGMn3:0 = 15) since the OCRNA then will be double buffered.

For generating a waveform output in CTC mode, the OCnA output can be set to toggle its logical level on each compare
match by setting the compare output mode bits to toggle mode (COMnA1:0 = 1). The OCnA value will not be visible on the
port pin unless the data direction for the pin is set to output (DDR_OCnA = 1). The waveform generated will have a
maximum frequency of foc,a = foux 10/2 when OCRNA is set to zero (0x0000). The waveform frequency is defined by the
following equation: -

f _ fclk_I/O
0CnA ™ 2.N.(1+OCRnA)

The N variable represents the prescaler factor (1, 8, 64, 256, or 1024).

As for the normal mode of operation, the TOVn flag is set in the same timer clock cycle that the counter counts from MAX to
0x0000.

13.8.3 Fast PWM Mode

The fast Pulse Width Modulation or fast PWM mode (WGMn3:0 = 5, 6, 7, 14, or 15) provides a high frequency PWM
waveform generation option. The fast PWM differs from the other PWM options by its single-slope operation. The counter
counts from BOTTOM to TOP then restarts from BOTTOM. In non-inverting compare output mode, the output compare
(OCnx) is set on the compare match between TCNTn and OCRnx, and cleared at TOP. In inverting compare output mode
output is cleared on compare match and set at TOP. Due to the single-slope operation, the operating frequency of the fast
PWM mode can be twice as high as the phase correct and phase and frequency correct PWM modes that use dual-slope
operation. This high frequency makes the fast PWM mode well suited for power regulation, rectification, and DAC
applications. High frequency allows physically small sized external components (coils, capacitors), hence reduces total
system cost.

The PWM resolution for fast PWM can be fixed to 8-, 9-, or 10-bit, or defined by either ICRn or OCRnA. The minimum
resolution allowed is 2-bit (ICRn or OCRnA set to 0x0003), and the maximum resolution is 16-bit (ICRn or OCRnNA set to
MAX). The PWM resolution in bits can be calculated by using the following equation:

_log(TOP+1)

R =
FPWM lOg(Z)

In fast PWM mode the counter is incremented until the counter value matches either one of the fixed values 0xO0FF,
0x01FF, or OX03FF (WGMn3:0 = 5, 6, or 7), the value in ICRn (WGMn3:0 = 14), or the value in OCRnA (WGMn3:0 = 15).
The counter is then cleared at the following timer clock cycle. The timing diagram for the fast PWM mode is shown in Figure
13-7. The figure shows fast PWM mode when OCRNA or ICRn is used to define TOP. The TCNTn value is in the timing
diagram shown as a histogram for illustrating the single-slope operation. The diagram includes non-inverted and inverted
PWM outputs. The small horizontal line marks on the TCNTn slopes represent compare matches between OCRnx and
TCNTn. The OCnx interrupt flag will be set when a compare match occurs.

ATmega16/32/64/M1/C1 [DATASHEET] 103
Atmel 76470-AVR-01/15

104

Figure 13-7. Fast PWM Mode, Timing Diagram

OCRnNx/ TOP Update and
TOVn Interrupt Flag Set and

r-------- q---—--- - ro----—-—- m--p-—p--—--—-—-—-- e R PP OCnA Interrupt Flag Set
i i i i i or ICFn Interrupt Flag Set
1 1 1 1 (Interrupt on TOP)

\j \ \j ¥ -

AN

TCNTn /

OCnx (COMnx1:0 = 2)

OCnx l_l | | I | I | I I_I (COMNnx1:0 = 3)
. 1 2 3 4 5,6 7 8
Period l<—>|<—>|<—>|<—>|->—|->—|<—>|—<—>|

The Timer/Counter overflow flag (TOVn) is set each time the counter reaches TOP. In addition the OCnA or ICFn Flag is set
at the same timer clock cycle as TOVn is set when either OCRNA or ICRn is used for defining the TOP value. If one of the
interrupts are enabled, the interrupt handler routine can be used for updating the TOP and compare values.

When changing the TOP value the program must ensure that the new TOP value is higher or equal to the value of all of the
compare registers. If the TOP value is lower than any of the compare registers, a compare match will never occur between
the TCNTn and the OCRnx. Note that when using fixed TOP values the unused bits are masked to zero when any of the
OCRnNXx registers are written.

The procedure for updating ICRn differs from updating OCRnA when used for defining the TOP value. The ICRn register is
not double buffered. This means that if ICRn is changed to a low value when the counter is running with none or a low
prescaler value, there is a risk that the new ICRn value written is lower than the current value of TCNTn. The result will then
be that the counter will miss the compare match at the TOP value. The counter will then have to count to the MAX value
(OxFFFF) and wrap around starting at 0x0000 before the compare match can occur. The OCRnA Register however, is
double buffered.

This feature allows the OCRnA 1/O location to be written anytime. When the OCRNA I/O location is written the value written
will be put into the OCRNA buffer register.

The OCRNA compare register will then be updated with the value in the buffer register at the next timer clock cycle the
TCNTn matches TOP. The update is done at the same timer clock cycle as the TCNTn is cleared and the TOVn flag is set.

Using the ICRn register for defining TOP works well when using fixed TOP values. By using ICRn, the OCRNA register is
free to be used for generating a PWM output on OCnA. However, if the base PWM frequency is actively changed (by
changing the TOP value), using the OCRnNA as TOP is clearly a better choice due to its double buffer feature.

In fast PWM mode, the compare units allow generation of PWM waveforms on the OCnx pins. Setting the COMnx1:0 bits to
two will produce a non-inverted PWM and an inverted PWM output can be generated by setting the COMnx1:0 to three (see
Table on page 110). The actual OCnx value will only be visible on the port pin if the data direction for the port pin is set as
output (DDR_OCnx). The PWM waveform is generated by setting (or clearing) the OCnx Register at the compare match
between OCRnx and TCNTn, and clearing (or setting) the OCnx Register at the timer clock cycle the counter is cleared
(changes from TOP to BOTTOM).

The PWM frequency for the output can be calculated by the following equation:

_ fclk7U0
fOCnxPWM “N- (1 +TOP)

The N variable represents the prescaler divider (1, 8, 64, 256, or 1024).

The extreme values for the OCRnx Register represents special cases when generating a PWM waveform output in the fast
PWM mode. If the OCRnx is set equal to BOTTOM (0x0000) the output will be a narrow spike for each TOP+1 timer clock
cycle. Setting the OCRnx equal to TOP will result in a constant high or low output (depending on the polarity of the output set
by the COMnx1:0 bits.)

ATmega16/32/64/M1/C1 [DATASHEET]
76470-AVR-01/15 A t mel-

13.8.4

A frequency (with 50% duty cycle) waveform output in fast PWM mode can be achieved by setting OCnA to toggle its logical
level on each compare match (COMnA1:0 = 1). This applies only if OCR1A is used to define the TOP value (WGM13:0 =
15). The waveform generated will have a maximum frequency of focna = fok 110/2 When OCRNA is set to zero (0x0000). This
feature is similar to the OCnA toggle in CTC mode, except the double buffer feature of the Output Compare unit is enabled in
the fast PWM mode.

Phase Correct PWM Mode

The phase correct Pulse Width Modulation or phase correct PWM mode (WGMn3:0 = 1, 2, 3, 10, or 11) provides a high
resolution phase correct PWM waveform generation option. The phase correct PWM mode is, like the phase and frequency
correct PWM mode, based on a dual-slope operation. The counter counts repeatedly from BOTTOM (0x0000) to TOP and
then from TOP to BOTTOM. In non-inverting compare output mode, the output compare (OCnx) is cleared on the compare
match between TCNTn and OCRnx while upcounting, and set on the compare match while downcounting. In inverting output
compare mode, the operation is inverted. The dual-slope operation has lower maximum operation frequency than single
slope operation. However, due to the symmetric feature of the dual-slope PWM modes, these modes are preferred for motor
control applications.

The PWM resolution for the phase correct PWM mode can be fixed to 8-, 9-, or 10-bit, or defined by either ICRn or OCRnA.
The minimum resolution allowed is 2-bit (ICRn or OCRNA set to 0x0003), and the maximum resolution is 16-bit (ICRn or
OCRNA set to MAX). The PWM resolution in bits can be calculated by using the following equation:

R _ log(TOP+1)
PCPWM — log(2)

In phase correct PWM mode the counter is incremented until the counter value matches either one of the fixed values
0x00FF, 0x01FF, or 0x03FF (WGMn3:0 =1, 2, or 3), the value in ICRn (WGMn3:0 = 10), or the value in OCRnA
(WGMn3:0 = 11). The counter has then reached the TOP and changes the count direction. The TCNTn value will be equal to
TOP for one timer clock cycle. The timing diagram for the phase correct PWM mode is shown on Figure 13-8. The figure
shows phase correct PWM mode when OCRNA or ICRn is used to define TOP. The TCNTn value is in the timing diagram
shown as a histogram for illustrating the dual-slope operation. The diagram includes non-inverted and inverted PWM
outputs. The small horizontal line marks on the TCNTn slopes represent compare matches between OCRnx and TCNTn.
The OCnx Interrupt flag will be set when a compare match occurs.

Figure 13-8. Phase Correct PWM Mode, Timing Diagram

OCRnx/ TOP Update and
OCnA Interrupt Flag Set
———————————— r--------------—p------——-———————{ or ICFn Interrupt Flag Set
(Interrupt on TOP)

TOVn Interrupt Flag Set
(Interrupt on Bottom)

R ittt bl l bbbt

R iiaiabet Sttt bl |
]
1
]
]
1
]
]
1
]
]
1
]
]
1
]
]
1
]

TCNTn 7

0Cnx L] | | 1] | | comnxto=2)
‘OCnx [] | | | | | | [(comnxt0=3)

Period |<+>|<;>|<;>|<;>|
ATmega16/32/64/M1/C1 [DATASHEET 105
Atmel 9 []

76470-AVR-01/15

The Timer/Counter overflow flag (TOVn) is set each time the counter reaches BOTTOM. When either OCRnA or ICRn is
used for defining the TOP value, the OCnA or ICFn flag is set accordingly at the same timer clock cycle as the OCRnx
registers are updated with the double buffer value (at TOP). The interrupt flags can be used to generate an interrupt each
time the counter reaches the TOP or BOTTOM value.

When changing the TOP value the program must ensure that the new TOP value is higher or equal to the value of all of the
compare registers. If the TOP value is lower than any of the compare registers, a compare match will never occur between
the TCNTn and the OCRnx. Note that when using fixed TOP values, the unused bits are masked to zero when any of the
OCRnNx Registers are written. As the third period shown in Figure 13-8 illustrates, changing the TOP actively while the
Timer/Counter is running in the phase correct mode can result in an unsymmetrical output.

The reason for this can be found in the time of update of the OCRnx Register. Since the OCRnx update occurs at TOP, the
PWM period starts and ends at TOP. This implies that the length of the falling slope is determined by the previous TOP
value, while the length of the rising slope is determined by the new TOP value. When these two values differ the two slopes
of the period will differ in length. The difference in length gives the unsymmetrical result on the output.

It is recommended to use the phase and frequency correct mode instead of the phase correct mode when changing the TOP
value while the Timer/Counter is running. When using a static TOP value there are practically no differences between the
two modes of operation.

In phase correct PWM mode, the compare units allow generation of PWM waveforms on the OCnx pins. Setting the
COMnNx1:0 bits to two will produce a non-inverted PWM and an inverted PWM output can be generated by setting the
COMnNx1:0 to three (See Table on page 111). The actual OCnx value will only be visible on the port pin if the data direction
for the port pin is set as output (DDR_OCnx). The PWM waveform is generated by setting (or clearing) the OCnx register at
the compare match between OCRnx and TCNTn when the counter increments, and clearing (or setting) the OCnx register at
compare match between OCRnx and TCNTn when the counter decrements. The PWM frequency for the output when using
phase correct PWM can be calculated by the following equation:

_ fclkfI/O
fOCnxPCPWM " 2.N. TOP

The N variable represents the prescaler divider (1, 8, 64, 256, or 1024).

The extreme values for the OCRnx register represent special cases when generating a PWM waveform output in the phase
correct PWM mode. If the OCRnx is set equal to BOTTOM the output will be continuously low and if set equal to TOP the
output will be continuously high for non-inverted PWM mode. For inverted PWM the output will have the opposite logic
values. If OCR1A is used to define the TOP value (WGM13:0 = 11) and COM1A1:0 = 1, the OC1A output will toggle with a
50% duty cycle.

13.8.5 Phase and Frequency Correct PWM Mode

The phase and frequency correct Pulse Width Modulation, or phase and frequency correct PWM mode (WGMn3:0 = 8 or 9)
provides a high resolution phase and frequency correct PWM waveform generation option. The phase and frequency correct
PWM mode is, like the phase correct PWM mode, based on a dual-slope operation. The counter counts repeatedly from
BOTTOM (0x0000) to TOP and then from TOP to BOTTOM. In non-inverting compare output mode, the output compare
(OCnx) is cleared on the compare match between TCNTn and OCRnx while upcounting, and set on the compare match
while downcounting. In inverting compare output mode, the operation is inverted. The dual-slope operation gives a lower
maximum operation frequency compared to the single-slope operation. However, due to the symmetric feature of the dual-
slope PWM modes, these modes are preferred for motor control applications.

The main difference between the phase correct, and the phase and frequency correct PWM mode is the time the OCRnx
Register is updated by the OCRnx buffer register, (see Figure 13-8 and Figure 13-9 on page 107).

The PWM resolution for the phase and frequency correct PWM mode can be defined by either ICRn or OCRnA. The
minimum resolution allowed is 2-bit (ICRn or OCRnA set to 0x0003), and the maximum resolution is 16-bit (ICRn or OCRnA
set to MAX). The PWM resolution in bits can be calculated using the following equation:

log(TOP + 1)

Rppcpwm = log(2)

106 ATmega16/32/64/M1/C1 [DATASHEET]
76470-AVR-01/15 A t mel-

In phase and frequency correct PWM mode the counter is incremented until the counter value matches either the value in
ICRn (WGMn3:0 = 8), or the value in OCRnA (WGMn3:0 = 9). The counter has then reached the TOP and changes the
count direction. The TCNTn value will be equal to TOP for one timer clock cycle. The timing diagram for the phase correct
and frequency correct PWM mode is shown on Figure 13-9. The figure shows phase and frequency correct PWM mode
when OCRNA or ICRn is used to define TOP. The TCNTn value is in the timing diagram shown as a histogram for illustrating
the dual-slope operation. The diagram includes non-inverted and inverted PWM outputs.

The small horizontal line marks on the TCNTn slopes represent compare matches between OCRnx and TCNTn. The OCnx
interrupt flag will be set when a compare match occurs.

Figure 13-9. Phase and Frequency Correct PWM Mode, Timing Diagram

OCnA Interrupt Flag Set
or ICFn Interrupt Flag Set
(Interrupt on TOP)

1
|
|
1
|
|
1
|
|
1
|
|
1
|
|
]

1
|
1
1
|
1
1
|
1
1
|
1
1
|
1
1
|

1
1
1
1
1
i
! OCRnx/ TOP Update and
! TOVn Interrupt Flag Set
\) (Interrupt on Bottom)

- --——t-——————==n
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
i
- --——t-———————=n

[S .

TCNTn

OCnx | I | I_ (COMnNx1:0 = 2)
OCnx | | | I_ (COMnx1:0 = 3)
Period P;ﬁ;ﬁéﬁéﬁ

The Timer/Counter overflow flag (TOVn) is set at the same timer clock cycle as the OCRnx registers are updated with the
double buffer value (at BOTTOM). When either OCRnNA or ICRn is used for defining the TOP value, the OCnA or ICFn flag is
set when TCNTn has reached TOP. The interrupt flags can then be used to generate an interrupt each time the counter
reaches the TOP or BOTTOM value.

When changing the TOP value the program must ensure that the new TOP value is higher or equal to the value of all of the
compare registers. If the TOP value is lower than any of the compare registers, a compare match will never occur between
the TCNTn and the OCRnx.

As Figure 13-9 shows the output generated is, in contrast to the phase correct mode, symmetrical in all periods. Since the
OCRnNx registers are updated at BOTTOM, the length of the rising and the falling slopes will always be equal. This gives
symmetrical output pulses and is therefore frequency correct.

LI
-

Using the ICRn register for defining TOP works well when using fixed TOP values. By using ICRn, the OCRnA register is
free to be used for generating a PWM output on OCnA. However, if the base PWM frequency is actively changed by
changing the TOP value, using the OCRNA as TOP is clearly a better choice due to its double buffer feature.

In phase and frequency correct PWM mode, the compare units allow generation of PWM waveforms on the OCnx pins.
Setting the COMnx1:0 bits to two will produce a non-inverted PWM and an inverted PWM output can be generated by setting
the COMnx1:0 to three (See Table on page 111). The actual OCnx value will only be visible on the port pin if the data
direction for the port pin is set as output (DDR_OCnx). The PWM waveform is generated by setting (or clearing) the OCnx
register at the compare match between OCRnx and TCNTn when the counter increments, and clearing (or setting) the OCnx
register at compare match between OCRnx and TCNTn when the counter decrements. The PWM frequency f